Independent Study Title

ION IMPLANTATION
MODIFICATION OF WC-Co

Author

Miss Waraporn Nualpang

Independent study for

B.S (Materials science), Chiang Mai University

ABSTRACT

Important industrial tool material, tungsten carbide cemented with cobalt, was modified by ion implantation. Samples of WC-6.5%Co were implanted with C, N, B and Ar ions at an energy of 80 keV to the doses mostly ranging from 1 - 8 x 10¹⁷ ions/cm². After ion implantation, microhardness and surface microstructure were measured and observed. Both C- and N- ion implantations can induce increase depends on the ion species and dose. For C-ion implantation, the dose is 8 x 10¹⁷ ions/cm², while for N-ion implantation, the optimal dose is medium, about 6 x 10¹⁷ ions/cm². Low-dose Ar-ion pre-implantation plays a positive role in further increasing the hardness, probably due to a grain fining effect from the ion beam bombardment. The hardness increase can be achieved up to as high as 100% compared to that of unimplanted surface when appropriate ion implantation conditions are applied. The experimental results provide useful hints to surface modification of the WC tools by ion beams.

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ชื่อเรื่อง

ION IMPLANTATION MODIFICATION OF WC-Co

ชื่อผู้แต่ง

บางสาว วราภรณ์ นวลแปง

การค้นคว้าอิสระ

วิทยาสาสตร์บัณฑิต สาขาวัสคุศาสตร์ มหาวิทยาลัยเชียงใหม่

บทคัดย่อ

ไอออนอิมพลานเตชั่นเป็นกระบวนการเคลื่อบฝังผิวของวัสดุ ซึ่งทำให้เกิดการเปลี่ยนแปลงคุณ สมบัติทางกายภาพและคุณสมบัติทางเคมี รายงานฉบับนี้เป็นการศึกษาผลของการเคลื่อบฝังผิวของ กังสเตนการ์ไบต์ (WC-Co) ซึ่งเป็นวัสดุที่สำคัญมากในภาคอุดสาหกรรม โดยการเคลื่อบฝังWC-6.5%Co ด้วยไอออนของ C, N, B และ Ar พลังงาน 80 กิโลอิเล็กตรอนโวลท์ ด้วยไอออนโดสระหว่าง1 – 8 x 10¹⁷ ไอออนต่อตารางเซนติเมตร แล้ววัดความแข็งและสังเกตพื้นผิว การเคลื่อบฝังด้วยไอออนของ C และ N ทำให้ความแข็งที่พื้นผิวเพิ่มขึ้น โดยการเพิ่มขึ้นขึ้นอยู่กับชนิดและไอออนโดส จากการทดลอง การเคลื่อบฝังด้วยไอออนของ C ด้วยไอออน 8 x 10¹⁷ ไอออนต่อตารางเซนติเมตร ส่วนโอออนของ N ด้วยไอออน 6 x 10¹⁷ โอออนต่อตารางเซนติเมตร ส่วนโอออนของ N ด้วยไอออน 6 x 10¹⁷ โอออนต่อตารางเซนติเมตร ทำให้ความแข็งเพิ่มมากที่สุด การเคลื่อบฝังด้วย ไอออนของ Ar ด้วยก่อนการเคลื่อบฝังด้วยไอออนของ C หรือ N ทำให้ความแข็งเพิ่มขึ้นมากกว่าการ เกลือบฝังด้วย C หรือ N เพียงอย่างเดียวเมื่อเทียบกันที่ไอออน โดสก่าเดียวกัน

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved