TABLE OF CONTENTS

	Page	
ACKNOWLEDGEMENTS	iii	
ABSTRACT (ENGLISH)	v	
ABSTRACT (THAI)	viii	
LIST OF TABLES	xxii	
LIST OF FIGURES	xxv	
ABBREVIATIONS AND SYMBOLS	xxxi	
CHAPTER 1 INTRODUCTION	1	
1.1 Statement and significance of the problem	1//	
1.2 Objectives	3	
1.3 Scope of study	3	
1.4 Literature reviews	6	
1.4.1 Wound and scar	6	
1.4.1.1 Pathophysiology of hypertrophic scars	7	
and keloids		
1.4.1.2 Treatment of scars	8	
A. Invasive treatment	8	
B. Non-invasive treatment	9	
1.4.1.3 Pharmacologic therapies of hypertrophic		
scars and keloids		

	1.4.1.4	Scar treatment products available in	10
		the markets	
1.4.2	Natural	peptides	10
	1.4.2.1	Sources of natural peptides	10
	1.4.2.2	Applications of natural peptides	14
	1.4.2.3	Protease enzymes	16
		A Classification of the protease enzymes	16
		B Sources of protease enzymes	17
		C. Scar treatment by protease enzymes	17
1.4.3	Papain		19
	1.4.3.1	Protease enzymes from papaya	19
	1.4.3.2	Methods of extraction and purification	20
		A. Salt precipitation	20
		B. Aqueous/solvent extraction	21
		C. Ion exchange chromatrography	21
	1.4.3.3	Qualitative and quantitative analysis of papain	22
		A. Electrophoretic method	22
		B. High performance liquid chromatography	23
		C. Immunoassay technique	24
	1.4.3.4	Papain in pharmaceutical and cosmeceutical	25
		applications	
	1.4.3.5	Papain in scar treatment	25
1.4.4	Bromela	ain C P C P F W	27
	1.4.4.1	Protease enzymes from pineapple	28

xiii

	1.4.4.2	Methods of extraction and purification	29
		A. Precipitation method	29
		B Aqueous two phase extraction	30
		C. Ion exchange chromatography	30
	1.4.4.3	Qualitative and quantitative analysis of	31
		bromelain	
		A. Electrophoretic method	31
		B. High performance liquid chromatography	31
		C. Infrared (IR) spectroscopy	32
		D. Differential scanning calorimetry	33
		E. Lowry and Bradford method	34
	1.4.4.4	Bromelain in pharmaceutical and cosmeceutical	35
		applications	
	1.4.4.5	Bromelain in scar treatment	36
1.4.5	Problem	ns of protease enzymes in pharmaceutical	37
	and cos	smeceutical applications	
	1.4.5.1	Chemical stability	37
	1.4.5.2	Skin irritation	37
1.4.6	Transde	ermal delivery systems	38
	1.4.6.1	Skin structure and routes of skin penetration	39
	1.4.6.2	Advantages of transdermal delivery systems	41
	1.4.6.3	Skin penetration enhancement of peptides	42
	1.4.6.4	In vitro skin transdermal absorption by	44
		Franz diffusion cells	

xiv

1.4.7 Nanocarrier delivery systems	46
1.4.7.1 Nanovesicles	46
A. Classification of nanovesicles	46
B. Methods of preparation	48
C. Physical characteristics of nanovesicles	48
D. Elastic nanovesicles	52
E. Application of elastic nanovesicles in	56
topical pharmaceuticals and cosmeceuticals	
1.4.7.2 Nanoparticles	58
A. Classification of nanoparticles	59
B. Methods of preparation	60
C. PLGA nanospheres	62
E. Applications of nanoparticulate delivery	64
systems	
1.4.8 Biological assay of scar treatment	65
1.4.8.1 <i>In vitro</i> biological assays to evaluate	65
scar treatment	
A. Antioxidative acitivity	65
B. Cytotoxicity on human skin fibroblast	68
C. Gelatinolytic activity on MMP-2	70
stimulation (zymography)	
E. Collagenolytic acitivity	73
1.4.8.2 <i>In vivo</i> scar treatment evaluation assay	- 75
A. Rabbit skin testing for irritation	75

B. Rabbit ear model for hypertrophic scar	77
and keloids determination	
C. Performance test of scar reduction in	79
human volunteers	
CHAPTER 2 MATERIALS AND METHODS	81
2.1 Materials and equipments	81
2.1.1 Chemicals	81
2.1.2 Cell lines	84
2.1.3 Animals	84
2.1.4 Equipments	84
2.2 Methods	87
Part 1: Development of the modified proper elastic niosomal formulations	88
loaded with the model drug (calcitonin)	
1.1 Effects of niosomal concentrations and various dispersants on	88
physical characteristics of elastic niosomes loaded with calcitonin	
1.1.1 Preparation of blank niosomes and niosomes loaded with	88
calcitonin	
1.1.2 Physical characteristics of niosomes	88
1.1.3 Measurement of deformability index (DI)	88
1.2 Effects of dispersants on the maximum loading and entrapment	90
efficiency of calcitonin in elastic niosomes	
1.3 Effects of phosphate buffer concentrations on physical characteristic	ics 91
of elastic niosomes	

	1.4	Comparison of physical characteristics and cytotoxicity of elastic	91
		niosomes	
		1.4.1 Preparation of elastic niosomes	91
		1.4.2 Morphology of elastic niosomes	92
		1.4.3 Entrapment efficiency of calcitonin loaded in elastic niosomes	92
		1.4.4 Cytotoxicity of elastic niosomes	93
Part 2:	Che	mical stability and transdermal absorption of elastic niosomes loaded	94
	with	n the model drug (calcitonin)	
	2.1	Physico-chemical stability of calcitonin loaded in niosomes	94
	2.2	Transdermal absorption by vertical Franz diffusion cells	95
		2.2.1 Preparation of the rat skin	95
		2.2.2 Sample preparation	96
		2.2.3 Transdermal absorption experiment	96
		2.2.4 Extraction of calcitonin from the treated samples	96
		2.2.5 Data calculation and statistical analysis	97
Part 3:	Prep	aration and biological activities of the extracted protease enzymes	97
	3.1	Preparation of the crude extracts containing protease enzymes	97
	3.2	Partial purification of the protease enzymes by precipitation	98
	3.3	Qualitative and quantitative analysis of the protease enzymes	99
		3.3.1 High performance liquid chromatography (HPLC) analysis	99
		3.3.2 Sodium dodecyl sulfate polyacrylamide gel electrophoresis	99
		(SDS-PAGE) analysis	
	3.4	Biological activities 1	.00
		3.4.1 Free radical scavenging assay	00

xvii

	3.4.2 Lipid peroxidation inhibition activity	101
	3.4.3 Human skin fibroblast cytotoxicity by the SRB assay	101
	3.4.4 Gelatinolytic activity (zymography) on MMP-2	102
Part 4:	Development of the elastic niosomes loaded with the extracted	103
	papain and bromelain	
	4.1 Preparation of blank elastic niosomes and NaC elastic niosomes	103
	loaded with the extracted papain and bromelain	
	4.2 Physical characteristics of niosomes	103
	4.3 Measurement of deformability index (DI)	104
	4.4 The maximum loading and entrapment efficiency of the extracted	104
	papain and bromelain loaded in NaC elastic niosomes	
	4.5 Cytotoxicity on human skin fibroblasts of the NaC elastic	105
	niosomes loaded with the extracted enzymes	
	4.6 Gelatinolytic activity (zymography) on MMP-2 stimulation	105
	4.7 Physico-chemical stability of the extracted protease enzymes	105
	loaded in NaC elastic niosomes	
Part 5:	Development of the PLGA nanospheres loaded with the standard papain	106
	5.1 Preparation of the standard papain loaded in PLGA nanospheres	106
	5.1.1 Emulsion solvent diffusion method in water	106
	5.1.2 Water-oil-water emulsion solvent evaporation method	107
	5.2 Physicochemical properties of the standard papain loaded	108
	in PLGA nanospheres	
	5.2.1 Particle size and zeta potential determination	108
	5.2.2 Morphology investigation	108

xviii

5.2.3 Encapsulation efficiency determination	109	
5.3 The release profile of the standard papain from the	109	
PLGA nanospheres		
5.4 Human skin fibroblast cytotoxicity by the SRB assay	110	
5.5 Physico-chemical stability of the standard papain loaded	110	
in PLGA nanospheres		
Part 6: Development of gel containing papain loaded in nanovesicles	111	
and nanoparticles preparation for scar treatment		
6.1 Preparation of gel containing papain loaded in nanovesicles	111	
and nanoparticles		
6.2 <i>In vitro</i> rat skin transdermal absorption by vertical	111	
Franz diffusion cells		
6.3 Rabbit skin irritation test by the closed patch test	112	
6.4 The physico-chemical stability of gel containing papain	113	
loaded in nanovesicles		
6.5 Hypertrophic scar model in the rabbit ears	114	
CHAPTER 3 RESULTS AND DISCUSSION	116	
Part 1: Development of the proper elastic niosomal formulations loaded	116	
with the model drug (calcitonin)		
1.1 Effects of niosomal concentrations and various dispersants on	116	
physical characteristics of elastic niosomes loaded with calcitonin		
1.2 Effects of dispersants on the maximum loading and entrapment	119	
efficiency of calcitonin in elastic niosomes		

	1.3 Effects of phosphate buffer concentrations on physical characteristics	121
	of elastic niosomes	
	1.4 Comparison of physical characteristics and cytotoxicity of elastic	123
	niosomes containing ethanol or the edge activators (NaC and NaDC)	
	1.4.1 Physical characteristics of elastic niosomes	123
	1.4.2 Deformability index of elastic niosomes	128
	1.4.3 Entrapment efficiency of calcitonin in elastic niosomes	129
	1.4.4 Cytotoxicity of elastic niosomes loaded with calcitonin	130
Part 2:	Physical and chemical stability and transdermal absorption of elastic	133
	niosomes loaded with calcitonin	
	2.1 Characteristics of non-elastic and elastic niosomes loaded	133
	with calcitonin	
	2.2 Physico-chemical stability at various storage temperatures	134
	of calcitonin loaded in elastic niosomes	
	2.3 Transdermal absorption of calcitonin loaded in elastic niosomes	138
Part 3:	Preparation and biological activities of the extracted protese enzymes	144
	3.1 Characteristics of the enzymes	144
	3.2 Biological activities of the extracted protease enzymes	147
	3.2.1 DPPH radical scavenging activity	147
	3.2.2 Lipid peroxidation inhibition activity	150
	3.2.3 Cytotoxicity of the extracted protease enzymes	151
	3.2.4 Gelatinolytic activity (zymography) on MMP-2	153
Part 4:	Development of the elastic niosomes loaded with the extracted	154
	papain and bromelain	

4.	1 Physical characteristics of the blank and the non-elastic and	154
	NaC elastic niosomes loaded with the enzymes	
4.	2 Deformability index (DI) of the blank and the non-elastic and	159
	NaC elastic niosomes loaded with the extracted enzymes	
4.	3 The maximum loading and entrapment efficiency of the	160
	extracted enzymes in NaC elastic niosomes	
4.	4 Cytotoxicity of NaC elastic niosomes loaded with the	162
	extracted enzymes on human skin fibroblast	
4.	5 Gelatinolytic activity (zymography) on MMP-2 of the	165
	extracted protease enzymes	
4.	6 Physical stability of elastic niosomes loaded with the papain and	168
	chemical stability of the papain loaded in elastic niosomes	
Part 5: D	evelopment of the PLGA nanospheres loaded with the standard papain	172
5	1 Characteristics of the standard papain loaded PLGA nanospheres	172
	5.1.1 Particle size and zeta potential values	173
	5.1.2 Morphology of the standard papain loaded in	175
	PLGA nanospheres	
	5.1.3 Encapsulation efficiency of the standard papain loaded	176
	in PLGA nanospheres	
adans	2 The release profile of the standard papain from	177
	the PLGA nanospheres	
Copyright	3 In vitro cytotoxicity of the standard papain loaded	181
	in PLGA nanospheres	

5.4 Physicochemical stability at various storage temperatures	184
of papain loaded in PLGA nanospheres	
Part 6: Development of gel containing papain loaded in nanovesicles	187
and nanoparticles for scar treatment	
6.1 Physical characteristics of gel containing papain loaded	187
in nanovesicles and nanoparticles	
6.2 Transdermal absorption through rat skin	189
6.3 Rabbit skin irritation	195
6.4 The physico-chemical stability of gel containing papain	197
loaded in nanovesicles	
6.5 Hypertrophic scar model in the rabbit ears	201
CHAPTER 4 CONCLUSION	204
REFERENCES	212
APPENDICES	250
APPENDIX A	251
APPENDIX B	255
APPENDIX C	257
APPENDIX D	259
CURRICULUM VITAE	263

LIST OF TABLES

Table		Page	
1	Various studies on the treatment approaches and their proposed	11	
	mechanisms of wound healing and scar formation		
2	The examples of the scar reduction products available in the markets	13	
3	Effect of Moricrase-containing ointment application on keloid scars	18	
4	Characteristics of protease enzymes from pineapple	28	
5	Examples of the delivery methods toenhance protein/peptide across	43	
	the skin		
6	Preparation methods of nanovesicles	49	
7	The application of elastic nanovesicles for transdermal drug delivery	57	
	through animal and human skin		
8	The advantages and drawbacks of the preparation methods	61	
9	Studies on various nanoparticle to enhance oral bioavailability of the	66	
	therapeutic peptides and proteins		
10	Types of MMPs	71	
11	Draize evaluation of dermal reactions	76	
12	The Vancouver scar scale	79	
13	Descriptions of various niosomal systems for physical characteristic	89	
	investigation		
14	Effects of various niosomal concentrations on vesicular deformability	117	
	indov		

]	15	Effects of dispersant types on vesicular deformability index	117
1	16	Entrapment efficiency of calcitonin loaded in ethanol elastic and	121
		non-elastic niosomes	
1	17	Effects of various concentrations of phosphate buffer on vesicular	122
		deformability index	
	18	Physical characteristics and deformability index (DI) of various	124
		blank non-elastic and elastic niosomal formulations	
1	19	Physical characteristics and deformability index (DI) of the selected	126
		non-elastic and elastic niosomes loaded with calcitonin in comparing	
		to their corresponding blank niosomes	
	20	Vesicular sizes (nm) and zeta potential (mv) of blank non-elastic and	135
		elastic niosomes after stored at various temperatures for 12 weeks	
2	21	Vesicular sizes (nm) and zeta potential (mv) of non-elastic and elastic	135
		niosomes loaded with calcitonin (2mg/ml) after stored at various	
		temperatures for 4 weeks	
2	22	The cumulative amounts (mg/cm ²) and fluxes (mg/cm ² /h) of	140
		calcitonin from various systems in whloe skin and receiver	
		compartment solution following transdermal absorption across	
		excised rat skin at 6 h by vertical Franz diffusion cells	
adan	23	Antioxidant activities of the extracted enzymes in comparing to	148
		the standards	
Copyrig	24	The percentages of cell viability on human skin fibroblast by the	152
		SRB assay of the extracted protease enzymes	

25	Vesicular sizes, zeta potential values and deformability index (DI)	157
	of the non-elastic and elastic niosomes loaded with the extracted	
	papain and bromelain	
26	Comparison biological activities of standard and extracted protease	169
	enzymes (papain and bromelain)	
27	The comparison of particle sizes, zeta potential values and	173
	encapsulation efficiency (%EE) of PLGA nanospheres loaded	
	with the standard papain prepared by the ESD and ESE methods	
28	The release kinetics of the standard papain from the PLGA	180
	nanospheres prepared by the the ESD and ESE method in 0.2 M	
	phosphate buffer (pH 7.0) solution at 27±2 °C for 48 hours	
29	Physical characteristics of gel containing papain loaded in nanovesicles	188
	(non-elastic and elastic niosomes) and nanoparticles (PLGA nanospheres	s)
30	Primary irritation index (PII) and category of irritation based on	196
	PII of various gel formulations	
31	Vesicular size, zeta potential values, viscosity of various gel formulation	s 199
	when kept at 4±2, 27±2 and 45±2°C for 3 months	
B.1	Amounts of the composition in the prepared nanovesicles	256

LIST OF FIGURES

Figure		Page	
1	The phase of wound healing	7	
2	Papaya tree and fruit (Carica papaya L)	19	
3	Ion-exchange chromatography of the papaya enzymes on the	22	
	SP-Sepharose Fast Flow		
4	The PAG electrophoresis patterns of (a) proteinase obtained by	23	
	affinity chromatography on the immobilized cystatin, (b) reference		
	papain (Serva), and (c) Carica papaya latex sample: (1) papain;		
	(2) chymopapain; (3) peptidase B; (4) peptidase A		
5	Rp-HPLC profiles of papain	24	
6	Pineapple plant and fruit	27	
7	SDS-PAGE electrophoresis of isolated bromelain.	32	
8	FTIR spectra of freeze-dried bromelain powder	33	
9	DSC thermogram of bromelain powder	34	
10	Micrographes from light microscope (A) and transmission electron	38	
	(B) microscope of human epidermis after 24 h papain treatment		
11	Skin structure of human skin	39	
12	Three main pathways of skin penetration including transappendageal,	40	
	intercellular and transcellular pathway		
13	Strategies for optimisation of protein and peptide drug permeation	42	
	across the skin		

14	The Franz diffusion cell apparatus	44
15	The fluxes (µg/cm²/h) of Gdm from various systems in stratum	45
	corneum (SC) and viable epidermis and dermis (VED), at 6 h	
	by vertical Franz diffusion cells	
16	Mechanism to penetrate the skin of ethosomes	53
17	Chemical structures of sodium cholate (NaC), sodium deoxycholate	55
	(NaDC), Tween 80 and Span 80	
18	Encapsulation mechanism models: drug entrapped in, dissolved or	59
	dispersed within, and adsorbed on: a) nanocapsules and b) nanospheres	
19	Procedure of emulsion solvent diffusion (ESD) method	61
20	Procedure of emulsion solvent evaporation (ESE) method	62
21	Chemical structure of polylactic polyglycolic acid co-polymer	63
22	SEM and TEM images of PLGA nanospheres	64
23	Reaction of the DPPH radical in the presence of the antioxidant	67
	during the DPPH assay	
24	(A) DPPH radical scavenging activities of various hydrolysates	68
	from the defatted rice endosperm protein (REP) and (B) Inhibition	
	of linoleic acid autoxidation by the Neutrase hydrolysate	
	from rice endosperm protein (NHREP)	
25	Representative photographs of cells (original magnification x100).	70
	A=Control L929 cells at 24 h; B=L929 exposed to Dentsply	
	gutta-percha for 24 h; C=Control RPC-C2A cells at 48 h;	
	D= RPC-C2A exposed to Resilon for 48 h	
26	Gelatin zymography	72

xxvii

27	Profile of plasmin-dependent and independent collagenolytic activity	74
	of murine skin fibroblasts	
28	Hypertrophic scar in the rabbit ear model and the scar elevation index	78
	(SEI) evaluation	
29	Hypertrophic median sternotomy scar at week 0 (A) and week 32 (B)	80
30	Scheme of the scope of the study	87
31	The procedure for the preparation of PLGA nanospheres by the	107
	emulsion solvent diffusion method in aqueous PVA solution (ESD)	108
32	The procedure for the preparation of PLGA nanospheres by the	
	water-oil-water (w/o/w) emulsion solvent evaporation method (ESE)	
33	The maximum loading and entrapment efficiencies of calcitonin	120
	in niosomes by sodium dodecyl sulphate polyacrylamide gel	
	electrophoresis (SDS-PAGE)	
34	Negative-staining TEM images of the niosomal formulations	121
	(20000X) composed of Tween 61/cholesterol (1:1) dispersed in	
	5 mM phosphate buffer pH 7.0	
35	The percentages of human skin fibroblast viability by SRB assay	132
	of the blank niosomes (A) and calcitonin loaded in niosomes (B)	
36	The percentages of calcitonin remaining in various systems when	136
	stored at various temperatures for 4 weeks	
37	Cumulative amounts (mg/cm ²) of calcitonin from various systems	141
	in whole skin (A) and receiver compartment solution (B)	
	at 1, 3 and 6 h by vertical Franz diffusion cells	

xxviii

38	The fluxes (mg/cm ² /h) of calcitonin from various systems	143
	in whole skin (A) and receiver compartment solution (B)	
	at 1, 3 and 6 h by vertical Franz diffusion cells	
39	Sodium dodecyl sulfate polyacrylamide gel electrophoresis of the	145
	extracted papain (a), extracted bromelain (b) in comparing to the	
	molecular weight marker	
40	The HPLC chromatograms of the standard papain (A) extracted	146
	papain (B) standard bromelain (C) and extracted bromelain (D)	
41	The amino acid sequences of papain (A) and bromelain (B)	150
42	Gelatinolytic activity of the extracted protease enzymes in comparing	154
	to the control and concanavalin A. (a) zymograms and (b) MMP-2	
	stimulation relative to the control	
43	Negative-staining TEM images of the protease enzymes loaded in	158
	niosomes (20000X)	
44	Cytotoxicity comparison of both the free standard and extracted	164
	enzymes (papain and bromelain) and the enzymes loaded in NaC	
	elastic niosomes on human skin fibroblasts by the SRB assay	
45	Zymograms of MMP-2 stimulation of both free standard and extracted	166
	enzymes (papain and bromelain) and the enzymes loaded in elastic	
	niosomes in comparing to the untreated cells, negative control	
	(vitamin C) and positive control (concanavalin A)	

46	The relative pro MMP-2 and active MMP-2 stimulation of both	167
	free standard and extracted enzymes (papain and bromelain) and	
	the enzymes loaded in non-elastic and NaC elastic niosomes in	
	comparing to the control	
47	The percentages of remaining both free standard and extracted	171
	papain and the papain loaded in non-elastic and NaC elastic niosomes	
	stored at different temperatures (4±2, 27±2 and 45±2 °C) for 12 weeks	
48	The scanning electron (A) and transmission electron (B)	176
	microphotographs of the PLGA nanospheres (composed of	
	100 mg PLGA and 10% w/v PVA403) loaded with 43 µg papain/	
	mg PLGA nanospheres prepared by the ESE method	
49	Comparision of the release profile of the standard papain from	178
	the PLGA nanospheres prepared by the ESD and ESE method	
	in 0.2 M phosphate buffer (pH 7.0) solution at 27±2 °C	
50	The percentages of human skin fibroblast viability by the SRB assay	182
	of (A) the blank nanospheres and (B) the PLGA nanospheres loaded	
	with papain prepared by the ESD and the ESE method)	
51	The percentages remaining of the free papain and papain loaded	186
	in PLGA nanospheres prepared by the ESE method stored at different	
	temperatures (25±2, 4±2 and 45±2 °C) for 6 weeks	
52	Cumulative amounts (mg/cm ²) of papain from various formulations	190
	in whole skin (A) and receiver solution (B) at 1, 3 and 6 h by	
	vertical Franz diffusion cells	

53	The fluxes (mg/cm ²) of papain from various formulations	191
	in whole skin (A) and receiver solution (B) at 1, 3 and 6 h	
	by vertical Franz diffusion cells	
54	The percentages remaining of papain in various gel formulations	200
	when stored at different temperatures for 3 months	
55	The percentage of hypertrophic scar reduction of various gel	202
	formulations after 7, 14, 21 and 28 days of application	
56	The hematoxylin-eosin-stained cross-section of the induced scars	203
	of the rabbits' ear skin treated with various gel formulations after	
	28 days of application	
A.1	Chemical structure of Tween 61	251
A.2	Chemical structure of cholesterol	252
A.3	Chemical structure of sodium cholate	253
A.4	Chemical structure of sodium deoxycholate	254
A.5	Structure of concanavalin A	254

ABBREVIATIONS AND SYMBOLS

CC₅₀ chelating concentration at 50% activity

cm centimeter

cm² square centimeter

DI deformability index

DLS dynamic light scattering

D-MEM dulbecco's modified eagle's medium

DMSO dimethyl sulfoxide

DPPH 1, 1-Diphenyl-2-picryhydracyl

EDTA ethylenediaminetetraacetic acid

ESD emulsion solvent diffusion method

ESE emulsion solvent evaporation method

FBS fetal bovine serum

g gram

h hour

HPLC high performance liquid chromatography

IPC₅₀ inhibition peroxidation concentration at 50% activity

kDa kilodalton

kilogram

M molar

mg milligram

ml milliliter

xxxii

mm millimeter

mM millimolar

MMP matrix metalloproteinase

mV millivolt

mV millivolt

MW molecular weight

NaC sodium cholate

NaDC sodium deoxycholate

nm nanometer

OECD Organisation for Economic Co-operation and Development

PBS phosphate-buffered saline

PII primary irritation index

PLGA poly (lactide-co-glycolide)

PVA polyvinyl alcohol

rpm revolutions per minute

SC stratum corneum

SC stratum corneum

SC₅₀ scavenging concentration at 50% activity

SD standard deviation

SDS sodium dodecyl sulfate

SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis

SEI scar elevation index

SEM scanning electron microscope

SLS sodium luaryl sulfate

xxxiii

SRB sulphorodamine B

t₅₀ half life

t₉₀ shelf life

TEM transmission electron microscope

TEMED N,N,N',N'-tetramethyl ethylenediamine

TFA trifluoroacetic acid

Tween 61 polyoxyethylene sorbitan monostearate

UV ultraviolet

v/v volume by volume

vs versus

w/v weight by volume

°C celcius degree

μg microgram

ul microliter

um micromiter

ลิ<mark>ขสิทธิ์มหาวิทยาลัยเชียงใหม่</mark> Copyright[©] by Chiang Mai University All rights reserved