CHAPTER 3 - FROHTIER HODELS

. The theoretical definition of a production Ffunection
expresses the maximum amount of output obtsinable from a
given set of input bundles with fixed technology. The idesa
‘has been accepted for many decades, and for almost as long,
econometricians have been estimating average productions.
It has only been since the pioneering work of Farrell (1857)
that serious considerations have been given to the
possibility of estimating so-called frontier production
funntion,'in an effort to bridge the gap between theory and
empirical work (Aigner, et al., 1877).

Ever since, there have been substantial modifications
in thé estimation of frontier functions. Forsund et al.
(1880) did an extensive survey on the history and estimation
of frontier productions, while Kopp (1881) listed eight of
the most recent frontier function estimates by detailing the
type of function estimated, the assumptions made concerning
the stochastic disturbance, the constraints on error terms,
the estimation method emploved, and the corresponding
.measure of productive efficiency. In general, fiva broad
approaches are employed, which are discussed as follows.

3.1. Development of Frontier Functions
3.1.1. Deterministic Non-parametrie Frontiers

The beginning point for any discussion of frontier and
‘efficiency measurement is.the work of Farrell (1957), who
provided definitions and a computational framework for both

technical and alloecative efficiency (Forsund et al., 1980).
Consider a firm using two inputs Xy and xy to produce output
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a, and assume that the firm's production frontier
@=f(xy, x7 ) is characterized by constant returns to scale,
159 that it may be written as 1 = E(x, /@, x3/8), that is,

frontier Eechnnlngy can be characterized by the unit

isoquant, UU", as depicted in figure 1. '
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Figure 1 Illustration of measurement nf economnic
efficiency (adapted from Seitz, 1972;
Forsund et al., 1980)

If the observed firm using (xﬂ,x% )} to produce output
Q", let point A in fig. 1 represent (& /@, &/@). Also,
PP’ represents the price ratio of input prices. Then,

TE = 0B/OA, PE = OD/0OB, EE = TE#PE = OD/0A

1=



It should be noted that the efficient vnit isoquant is
ﬁn-ubservable; it must be estimated from a sample of
observations. Farrell's approach is non-parametric in the
sense that he simply construects the free disposal convex
hull of .the observed dinput-output ratios by 1linear
programming techniques. The principal advantage of the
approach is that no functional form is imposed on the dats.
The prinuiﬁal disadvantages are that (1}.the assumption of
constant returns to scale is restrictive, and extension to
non-censtant returns to scale is cumbersome; (2) the
frontier ‘“computed” in this way is extremely sensitive to
outliers (Forsund et al., 1980).

3.1.2. Deterministic Parametric Frontiers

Almost as an. after thought, Farrell proposed anmputing‘
a paiametric convex hull of the observed input-output
‘ratios, and ﬁigner_and Chu (1968) were the first to follow
Farrell‘s suggestions (Forsund et al. 1880). '

The deterministic parametric frontier model begins by
assuming a production Ffunetion giving maximum possible
cutput from a set of certain inputs. For a given firm, say
the ith, we write,

Q; = £(X 5 B) + e e 3.1

Where @; is the actual output of the firm obtained,
f(Xj 5 B) is the maximum output obtainable from inputs X;, 8
is =a., vector of parameters to be estimated, e iz an
‘unspecified random shock constrained to be everywhere less
than or equal to zero.
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The ﬁudal is estimated through linear programming or
guadratic programnming.

The principal advantages of this approach as compared
with  the non-parametric approach are its ability ‘to
characterize frontier technology in & simple mathematical
form, and its ability to accommodate non-oconstant returns to
scale (Forsund et al., 1980). The main disadvantages are,
(13 since no assumptions are made about its properties, the
parameters are not -ﬂstinatad in any statistical sense, but
are ﬁarely "computed” via mathematical programming; (2) the
approach are also extremely sensitive to outliers (Aigner et
‘al., 1877; Schmidt et al., 19789).

3.1.3. Deterministic Statistical Frontiers

Afriat (1872) was the firs; to explicitly propose this
model (Forsund, 1880). .The model is specified as the
détarqinistic frontier mentioned above (Eq. 3.1). However,
the error term in this case is a random disturbance -
specified to follow a one-sided distribution [eg., truncated
normal, exponential (Afriat, 1972), gamma (Richmond, 1874;
Greene, 1980a), etec.] (Kopp, 1981). Therefore, it is a
“"full" frontier in the sense that all nbsarvﬁtians lie
beneath the frontier production function (Kopp, 1981), and
the wvariation in output is related only to technical
inefficiency. The model c¢an be estinated by maximum
likelihood estimation.

Since Afriat (1972) snd Richmond (1874) employed the
expected value of the oﬁe-sideﬂ distribution a8 their
measure of technical efficiency, an individual measure of
efficiency can not be obtained for each observation, but can
‘only be defined over the entire sample. Similarly, the
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gamma distrzbution Proposed by Greene (1880a) can only get
the sanple mean inefficiency, but not individual
observation.

3.1.4. Probabilistic Frontiers

‘The problem of extreme sensitivity to outliers in the
deterministic frontier has led to the development of so-
called “probabilistic frnntiers“ (Timmer, 1871; Dugger,
19?45, which are estimated by the =ame types of mathematical
programming technique, except that some specified proportion

-of the observations is allowed to lie above the frontier,
'i.e., the error terms for some observations are allowed to
have ‘“wrong" signs. The selection of this proportion is
assaﬁtially arbitrary, lacking explicit economic or
statistical justification (Aigner et al., 1877). The second
problem is that the first Problem raised against
deterministic Prontiers Still remains, i.e., the frontier is
computed rather than estimated, and hypothesis testing is .
¥1mpnss1b1e '

3-115- Stochastic Frontier

' The essential idea behind the stochastic frontier model
is that the error term is ¢omposed of two parts, a symmetrie
component and = one-sided component. The symmetrie
component in this context refers to the error term with zero
mean and normal distribution, which permits random variation
of the frontier smeross Firme, and captures the effects of
neasurement error, other statistical “noise”, and random
shocks beyond the firm's contrel. The one-sided component
captures the effects of inefficiency relative to the
'stnchgstic frontier. A stochastie production fronFier medel

E

may be written as,
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&= £ (X, B) + (v-u) ..., IR TS T .. 3.2

Where the stochastic production is f (X, B) + v, and v
has some .svmmatric distribution to capture the random
‘effects of Deasurement error and exogenous shooks which
cause the placement of the deterministic kernel (X, B) to
vary across firms. Technical inefficiency relative to the
stnchastie_prnductiun-frantisr is captured by the nnu—sidad.
error ccnpénant,.-u, where uz0. The condition uz0 ensures
that =all observations 1ie on or beneath the stochastic
production frontier.

Direct estimates of the stochastic production frontier
.nodel_ may be nbtainéd by either maximum likelihood or
- corrected OLS (COLS) methods. The COLS estimates are easier
to compute than the maximum likelihood estinates, although
they are asymptotically less efficient (Forsund et al,,
1380). Olson et al. (1880) present Honte Carlo evidence
which indicates that COLS zénsrally performs as well &g
maximum likelihood, even Ffor rather large sample sizes.

Whether the model is estimated by maximunp likelihood or
by COLS, the distribution of u must be specified, This
could be half normal distribution, sxponential distribution
or log—nnrnal distribution (Haddala, 1877). In the next
section, 'the half normal error specification will bhe
discussed in more detail,

3.2, Stochastic Frontier: The Case of Half Normal
Distribution '

.iha stochastic production frontier is re-written as
follows, '
Q= f(X, B) + e, €=v-u ... e 3.3



where, @ is some neasure of cutput,
X is a vector of inputs,
B is a vector of the parameters to be astimtted,
v is a two-sided error term with zero mean and normal
distribution. . .
u {(u20) is the one-sided error term to capture the
" "technical inefficiency” of the firm in the
production.
It is assumed that v is cansed by disturhannes such as
"weather, luck, and machine performance" or other variations
of some exogenous changes in the production itself, which '
are beyond the control of the firm. A reasonable assumption
s to assume v to be normal distributed with N(O, ov®) and u
to have half- normal distribution (Maddala, 1877 & 1983).

2 uz
E(u) = == eXp{- -—-———- ), o220 ,,... 3.4
(2r)ir2.g 4 20 u*

which' has the Ffollowing population mean and variance,
(Assume that u and v are independent),

EQu) = ous(2/%)is2, V(u) = ou®s[(r-2)/n] 7 5

) To write the likelihood funetion, we need the density
of composite residual v-u. - To do this, we define e€zv-u in
3.3. We write the joint density function of v and u and
transform this to 2 joint density function in € and u and
integrate u (from O to @). After simplification, we get the
dansity function,

! 1 b ar € e=
fl€) = -~ (-=-)ir2 [ 1 - F (====)] exp(- -—--= ), —w<ecm
ou m o Zu?_



where 0 =. o w®* + o +v®* and A = o w/0c v and F(.) is the-
cumulative distribution function of the standard normal.

: 1 It =2 :
F(t) = ——==~-=]-w exp(- —---= )dz e feaaes 3.7
. (Zmylr2 ) : b

The densit# function invnlvas cunulative normals, and
it can be computsd by the Maximum Likelihood {HL}_
estimation. : '

When a frontier production function in the form of 3.3
is estimated, one can readily obtain residuals €3 = @ 3 -
£(x 3; B), which can be regarded as estimates of the error
_term €5, Jondrow et al. (1882) was the first (Ali et al.,
19889) to demonstrate how farm-specific estimates of
inefficienoy may be calculated. They show that us for each
‘observation may be derived from the conditional distribution -
of u, given (v-u). Given a normal distribution of v and a
half normal distribution of wu, the expected value of farm-
specific inefficiency uy, given {v-u) is,

B\ £(.) €3+ :
E(uil€3) = g*[=-mmece = (=mm~= 1 T @n), % AL .. 3.8
) . 1-F(.) o

where o%2 = (g wZig +2}/02,
A =0u/ o v
02 = 0 uZ 4+ g V2

and £(.) and F(.) represent the standard normal density and
cumulative distribution functions, respectively, estimated

at (e 3*4/0).

In this model, % may be interpreted to be an indicator
"of the relative variability of the two sources of randon
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error that distinguish firms from one another. A 2 >0
implies o w2 -> @ and or o w® -> 0, i.e., the symmetric
error dominates in the determination of €, and the nodel
then becomes the density of N(0, o2) random variable, thus,
OLS  estimates and wmaximum likelihood estimation are
identical (Aigner, et al., 1997; Greene, 1985), On- the
other hand, when o +2 —>'D, then L 2 -> m;.ths one-sided
error becomes the dominant source of random variation in the
- model and the model becomes "full frontier" (Kopp, 1881).

The relative size of 0 w2 and 0 »2 are unpredictable.
The models estimated by Aigner et al. (1977), Schmidt and
Lovell (18768), show that in all cases + fuZ were very
negligible compared with ¢ vZ. In this case, the usual
speciflication of normal errors is not unreasonable (Maddala,
1877). However, the model estimated by Ali et al. (1888)
showed very high o© u? relative to o v2., This leads to -the
‘conclusion that u is dominant in the error component of the
sample data. ' Y

3.3. Duality Consideration

S0 far, most applications of frontier methodology have
been on gestimating production frontiers, which 'rield
.technical ‘inefficiency but not allocative inefficiency.
This is based on the assumption that input quantities are
exogenous, which is not always true, especially = in the
market economy. When input quantities are determined by
input’ prices, cost frontier is more appropriate.

tike production frontiers, cost frontier can be either
deterministic or stochastic. Forsund and Jansen (1977)
estimated a deterministic homothetic Cobb-Douglas cost
frontier, and Schmidt and  Lovell (1978) estimated a
stochastic Cobb-Douglas cost frontier. |
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Schmidt and Lovell (1879) -extended their production
frontier and obtained separate estimates of technical and
alloecative inefficiencies. They considered the Cobb-Douglas
production funetion;

n
In @ = A+ Z a1 In X 24+ (V-8) ...t nrenrnnnneennnnns 3.9
i=1

Where the condition u20 permits production to oceur
beneath the stochastic production frontier. In addition,
they  assume that the first-order condition for cost
minimization is not satisfied, this is expresséd by writing,

I (X 3/Xn) = 1n (8 4 W n/B n W a) 4 8 4 wuonnnnn. .. 3,10

where w is the price'nf an input, e 1 represents the amount
by which the ith first-order condition for cost minimization
fails to hold. The condition that e 1 », =, or <0 means
the input factor is over or under-utilized, which permits
production to oceccur off the least cost expansion path. The
combination of technical (u20) and alloeative (e s >, =, or
£0) inefficiencies yields a stochastic cost Prontier of the
form,

. 1 n 8 1 1
InC =% + --- In @ Z -we-vln Wi~ ---- (v-u) + (E-In r)
r - i=1 r r
b e e s s e 3.11
- n agz n
where E = 3 w-——- tesg + In [a 1 + 2 a8 geexp ¢~ 43],.., 3,17
j=2 r j=
n "
and r'= Z 38 1 e e e 3.13
i=1
The term E is minimized when e 2z = e 3 = ..... .. 2 en =

0, and then equals ln r. OQOtherwise, the non-negative value
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of E - In r is the addition to 1In C sattributable to
" allocstive inefficiency.

To summarize, the stochastic cost frontier is given by,

1 n a i 1 ,
E+ ====2ln @ + I =—====lfl W 1 = ===~ ¥ ea.  3.14
T i=1 r* . r ’

Firmsg” actual costs exceed the frontier for two
reasons, (1), technical inefficiency, reflected in tha- tafn
{(l/riu, and, (2), allocative ineffici&noy} reflected in the
term (E - 1ln r).

It is possible for one to obtain individual values of
(E - 1ln r), the allocative inefficiency of the individusl
observation, and therefore calculate the average value of
.the sample inefficiency. Thus, in addition to the
individual technieal inefficiency obtained as before, the
model may provide a whole picture of economic efficiency of
‘individual firms. °

The main weakness of this cost frontier approach is
that it is a fairly restrictive functional form (homogeneous
chb-ﬂouglés}. In addition, the system of equations 3.8--
3.13 requires data on both 1nput' prices and input
quantities; which may not always be available (Forsund et
al., 1880},
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