TABLE OF CONTENTS

	Page
Acknowledgments	
Abstract	
Thai abstract	
Table of contents	
List of Figures	
List of Tables	
List of Appendix Tables and Figures	
Chapter 1 INTRODUCTION	1
	_
Chapter 2 LITERATURE REVIEW	4
	\ <u>"</u>
1. Green manure and soil productivity	4
2. Sesbania rostrata as potential green manure species	
in paddy fields	5
3. Biological characteristics of Sesbania rostrata	6
3.1. Adaptation to physical environments	6
3.2. Nodulation	7
3.3. Rhizobium	8
3.4. Nitrogen fixation	9
3.5. Pest on Sesbania rostrata	10
4. Green manure management in rice-based cropping systems	10
5. Intercropping - Concepts, Interactions and yield	
advantages	12
5.1. Concepts of intercropping	12
5.2. Interactions in intercropping	13
5.3. Yield advantages and stability	14
Convright hy Chiang Mai Univers	
Chapter 3 MATERIALS AND METHODS	17
All rights reserve	
1. Field survey	17
2. Field experiment	19
2.1. Treatments	19
2.2. Design	19

	2.3. Cultural practice	19
	2.4. Data collection	21
	2.4.1. Soil	21
	2.4.2. Rice	21
	2.4.3. Sesbania	22
	2.5. Data analysis	22
Chapter	4 RESULTS	25
1.	Field survey	25
	1.1. Rice-based intensive cropping systems in	
	Mekong Delta of Vietnam	25
	1.2. Sesbania-Rice intercropping practice in	
	Mekong Delta of Vietnam	28
2.	Field experiment	31
	2.1. Agronomic characteristics	31
	2.1.1. Growing period	31
	2.1.2. Plant height	33
	2.1.3. Tiller number	35
	2.1.4. Leaf area index	36
•	2.2. Light penetration	37
	2.3. Dry matter yield	38
	2.4. Yield and yield components	43
	2.5. Nodulation and nitrogen yield	47
	2.5.1. Nodulation	47
	2.5.2. Nitrogen yield	50
	2.5.3. Nitrogen fixation	56
	2.6. Simple N-balance	56
Chapter	5 DISCUSSION by Chiang Mai University	58
1.	The possibility of Sesbania-Rice intercropping	58
2.	Interactions between Sesbania rostrata and rice	59
	2.1. Competition for light	59
	2.2. Effects on growth and yield	60
3.	Productivity of intercropping	61

3.1. Dry matter and seed yield	61
3.2. Nitrogen yield	63
4. Nitrogen contribution	63
4.1. Nitrogen fixation	63
4.2. N-balance	65
CONCLUSION AND SIZE OF THE CONCLUSION AND SIZE O	-67
References	68
Appendix	71
Curriculum Vitae	
minimus .	
MAY TERS	
A UNIVE,	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figure		Page
1	Locations for the field survey in the Mekong Delta of Vietnam conducted in April 1991	18
2	The major cropping pattern and the possible green manure crop in the target area of the study in the Mekong Delta of Vietnam	28
3	Growth duration of rice and <i>S. rostrata</i> in different mixtures related to current cropping system in the target area (1) start of flowering (2) finish of harvesting	32
4	Plant height of rice as affected by intercropping and sowing date of S. rostrata	33
5	Plant height of <i>S. rostrata</i> as affected by inter- cropping and sowing date, compared with rice (———)	34
6	Tillering ability of rice as affected by intercropping and sowing date of <i>S. rostrata</i>	36
7	Leaf area index of rice as affected by intercropping and sowing date of S. rostrata	37
8	Light penetration on top of rice as affected by inter- cropping and sowing date of <i>S. rostrata</i> (% from the maximum light interception on the field at around noon)	38
9	Total dry matter of rice as affected by intercropping and sowing date of <i>S. rostrata</i>	39
10	Total dry matter of <i>S. rostrata</i> as affected by intercropping and sowing date	41
11	Leaf dry weight of <i>S. rostrata</i> as affected by intercropping sowing date	42
12	Shoot dry matter and seed yield of rice and S. rostrata as affected by intercropping and sowing date of S. rostrata	48
13	Nodulation of <i>S. rostrata</i> varied with age and affected by intercropping and sowing date	49
14	Nitrogen yield of the systems at flowering and harvesting stages of rice as affected by intercropping	55

LIST OF TABLES

Table		Page
1	The treatment combinations used in the experiment	20
2	The use of chemical fertilizer and rice yield in different planting methods and growing seasons practiced by farmers in Cai Lay district (Tien giang province), Vietnam	26
.3	Chemical properties of some representative soils in Cailay (Tien Giang) and Phong Hoa (Dong Thap), Vietnam	27
4	The use of chemical fertilizer and Sesbania sp. intercrops related to rice yield in Phong Hoa, Lai Vung (Dong Thap)	30
5	Growth duration of rice and S. rostrata as affected by intercropping and sowing date	31
6	Dry matters of rice and <i>S. rostrata</i> at harvest of rice as affected by intercropping and sowing date of <i>S. rostrata</i>	40
7	Grain yield and yield components of rice as affected by intercropping and sowing date of <i>S. rostrata</i>	43
8	Seed yield and yield components of <i>S. rostrata</i> as affected by intercropping sowing date	45
9	Relative Yield Total (RYT) and Area Time Equivalent Ratio (ATER) in different proportions and times of S. rostrata introduction to rice stand related to seed yield	47
10	Nitrogen content (%) in rice at harvesting stage as affected by intercropping and sowing date of S. rostrata	50
11	Nitrogen yield (kg/ha) of rice at harvesting stage as affected by intercropping and sowing date of S.rostrata	51
12	Nitrogen content $(%)$ in $S.$ rostrata at harvesting stage of rice as affected by intercropping and sowing date	52
13	Nitrogen yield(kg/ha) of <i>S.rostrata</i> at harvesting stage of rice as affected by intercropping and sowing date	53
14	Relative Yield Total (RYT) and Area Time Equivalent Ratio (ATER) in different proportions and times of Sesbania introduction to rice stand related to total nitrogen yield	• 54
15	Total nitrogen yield, nitrogen fixation and nitrogen	57

LIST OF APPENDIX TABLES AND FIGURES

Table		Page
1	Meteorological data at the experimental station, Chiang Mai, Thailand in 1991.	74
2	Analysis of soil on which the experiment was carried out	77
3,	ANOVA of some soil properties after experimentation	78
4	ANOVA of tiller numbers/hill of rice varried with time	78
5	ANOVA of plant height (cm) of rice varried with time	. 78
6	ANOVA of leaf area index of rice varried with time	79
7	ANOVA of light penetration on top of rice (% from max. light interception) varried with time	79
8	ANOVA of total dry matter (t/ha) of rice varried with time	79
9	ANOVA of yield and yield components of rice	80
10	ANOVA of N-content (%) and N-yield (kg/ha) of rice	80
11	ANOVA of plant height (cm) of S. rostrata varried with time	80
12	ANOVA of yield and yield components of S. rostrata	81
13	ANOVA of dry matter of S. rostrata at final harvest	81
14	ANOVA of nitrogen content (%) of $S.\ rostrata$ at harvest of rice	81
15	ANOVA of nitrogen yield and N-fixation (kg/ha) of S. rostrata at harvest of rice	82
16	ANOVA of nitrogen yield and N-balance (kg/ha) of the whole systems	82
17	Plant height (cm) of rice at different stages	82
18	Tiller number /hill of rice at different stages	83
19	Plant height (cm) of S. rostrata at different stages	83
20	Light interception (uE/m2/s) at different stages	84
21	Total dry matter (t/ha) of rice at different stages	85

22	Leaf dry matter (t/ha) of <i>S. rostrata</i> at different stages	85
23	Stem dry matter (t/ha) of <i>S. rostrata</i> at different stages	86
24	Total dry matter (t/ha) of <i>S. rostrata</i> at different stages	86
25	Nodule dry matter (g/plant) of <i>S. rostrata</i> at different stages	87
Figure	300	
rigure		
1	Meteorological data at the experimental station, Chiang Mai, Thailand in 1991	74
2	Layout of the field experiment	75
3 5	Crop arrangement in intercropping	76

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved