TABLE OF CONTENTS

			Page
ACKNOWLEDGEMENTS	S		iii
บทคัดย่อภาษาไทย		20	iv
ABSTRACT			
LIST OF TABLES			
LIST OF FIGURES			xviii
ABBREVIATIONS AND S	YMBOLS)	xxii
INTRODUCTION			
LITERATURE REVIEW			
		ndition	
		ogging	
		under Waterlogging	
		eg Condition	
		nergy Production	
		ogen Assimilation	
		rable Environments	
		to Waterlogging Resistanc	
	•	tion and Partitioning	

	Page
EXPERIMENT I: Effects of Transient Waterlogging on	Dry Matter
Accumulation and Grain Yield of Bar	
Objectives	
Materials and Methods	,
Results and Discussion	15
Photosynthetic efficiency	
Dry matter accumulation rate and partitioning coefficients	
Grain yield and its yield components	
Agronomic effects on grain yield	
EXPERIMENT II: Seed Growth and Seed Malt Quality	
Genotypes in Response to Transient Wa	
Objectives	
Materials and Methods	
Results and Discussion	29
Plant growth dynamics	29
Biochemical substance changes during grain filling of	
each barley genotypes	32
Seed malt quality	39
EXPERIMENT III: Influence of Hypoxia on Alcohol De Activity, Internal Ethylene Production	on and
Aerenchyma Formation in Barley Ro	oot 43
Objective	43
Materials and Methods	43

	Page
Results and Discussion	41
Alcohol dehydrogenase activity	
The relationship between internal ethylene production	46
and aerenchyma formation	48
EXPERIMENT IV: Acclimatic Adaptation of Barley Seedlings to	
Hypoxic Pre-treatment and High Temperature	
Objective	
Material and Methods	
Results and Discussion	50
Root growth and development	53
The blockemical substance changes for barley root survival	
The photosynthetic efficiency	
Total soluble sugar and nitrogen accumulation in the shoots	67
Acclimatic adaptation associated with total soluble sugar	
and nitrogen accumulation of each barley genotypes	72
Dry matter accumulation and partitioning	75
EXPERIMENT V: An Educational Mechanistic Model for Simul Dry Matter Accumulation of Barley under Var	rious
Temperature Levels and Hypoxia Conditions.	
Objectives	
Materials and Methods	79
Results and Discussion	90
Model testing	90
Model validation	94

				ŀ	Page
SUMMA	RY AND CO	NCLUSIO	NS		100
				······································	
APPEND					100
Appendix 1	Weekly values	of weathering	data (Decemb	per 1997- March 1998)	
					119
Appendix 2	2 The chemical a	and physical s	soil properties	at 0-30 cm of soil depth i	in
	the rainfed lov	vland field at L	.ARTC, Lampa	ang	. 119
Appendix 3	3 Analysis of vari	iance of photo	synthetic rate	, transpiration rate and	
	stomatal resista	ance of nine ba	arley genotype	/ es under three water	
	treatments in th	e field	./		. 120
Appendix 4	Analysis of vari	ance of total c	Iry matter at m	naturity, grain yield and	
				pes under three water	
	treatments in pa	addy field	<u>,</u>		123
Appendix 5	Path-coefficient	t analysis whic	h indicated di	irect and indirect	
	pathways of sor	me influence o	f predictor vai	riables; plant height,	
	total dry matter	at maturity, sp	ikes/m² and se	eeds/spike on response	
	variable as grai	n yield of nine	barley genoty	pes under different	
	water treatment	s (n= 81)	•••••	••••••	.125
Appendix 6	Weekly values of	of weathering (data from Sep	tember 1999	
	- May 2000 dur	ing the pot exp	periment		128
Appendix 7	Analysis of varia	ance of the 1,0	000 seed weig	ht, the percent of	
	germination; the	e percent of pr	otein content	in seeds of barley	
	genotypes unde	er different wa	ter treatments	in pot experiment	129
Appendix 8	Oxygen concen	tration and ter	nperature in d	ifferent nutrient solution	
	(a) and Daily cli	matic controlle	ed in plant gro	wth chambers (b) in	
	the laboratory ex	xperiment			120

Appendix 9	Preliminary test of the standard ethylene concentration used for GC
	analysis
Appendix 10	Oxygen concentration (ppm) and temperature in sub-experiments
	(a) and climatic diurnal controlled in plant growth chamber (b) under
	daily maximum temperature levels; 25/15, 30/15 and 40/15 °C 132
Appendix 11	The standard curve of the nitrite concentration for calculating nitrate
	reductase activity in the barley leaves
Appendix 12	? The standard curve of glucose concentration for calculating total
	soluble sugar and starch calculation
Appendix 13	The standard curve of total nitrogen concentration for calculating
	total nitrogen in each parts of plant
Appendix 14	The nitrogen (NH4+N) content determination from plant
	samples digested by Kjeldahl method136
Appendix 15	The photosynthetic rate and dry matter accumulation of barley
	genotypes grown in aerated and stagnant agar nutrient solution
	in the growth chamber at 20/15 °C
Appendix 16	Listing of functions and subroutines of the source code
	used in the machanistic modeling of SMG1 genotype
Appendix 17	Listing of functions and subroutines of the source code
	used in the machanistic modeling of FNBLS#140 genotype141
Appendix 18	Listing of functions and subroutines of the source code
	used in the machanistic modeling of BRBRF9629 genotype 143
Appendix 19	Observed and Simulated data of the shoots and roots of barley
	genotypes during aerated and hypoxic condition at ambient
	temperatures for model testing

			Page
Appendix 20 Observed and Sin	nulated data of the sho	ots and roots of barley	
genotypes during	aerated and hypoxic c	ondition at ambient	
temperatures for m	nodel validation		147
CORRICOLOW VITAE			149

LIST OF TABLES

Tab.	le Page
1	Photosynthetic rate (µmole CO²/m²/s) of nine barley
	genotypes at four growth stages under three water treatments
2	Transpiration rate (mole H ₂ O /m ² /s) of nine barley genotypes at four
	growth stages under three water treatments18
3	Stomatal resistance (s /cm) of nine barley genotypes at four growth stages
	under three water treatments
4	Leaf, stem, grain and crop growth rates (g /m²/day) for nine barley
	genotypes under three water treatments
5	Partitioning coefficients of nine barley genotypes under three water
	treatments
6	Average total dry matter accumulation at maturity, grain yield and its yield
	components of nine barley genotypes under three water treatments24
7	Path coefficient analysis of correlation variables on the direct (diagonal) and
	indirect (off-diagonal) effect of some agronomic characters of nine barley
	genotypes under three water treatments (N=81)
8	The leaf, stem, spike, seed and plant growth rates and partitioning coefficients
	of barley genotypes under different water treatments in pot experiment31
9	Average 1,000 grain weight, the percent of germination within 3 days and
	the percent of protein in seeds of barley varieties under different water
	treatments in pot experiment

Table	Page
	- "5"

10	The average ratio of shoot and root dry matter of barley genotypes under	
	aerated and hypoxic condition at ambient temperatures where were used	
	to be the fractions of dry matter partitioning to the shoots and roots of	
	each barley genotypes in the "BGUH" model	84
11	Standard mean square error (V) for the comparison of observed and	
	simulated values of dry matter accumulation for barley genotypes under	
	aerated and hypoxic condition at ambient temperatures	98

LISTS OF FIGURES

Figu	re Page
1	Photosynthetic rate (a), transpiration rate (b) and stomatal resistance (c) of
	barley varieties during grain filling period under different water treatments 34
2	Total soluble sugar in leaves, sheaths and seeds of barley genotypes
	during grain filling period under different water treatments 35
3	Leaf chlorophyll fluorescence of barley genotypes during grain filling
	period under different water treatments 36
4	The nitrate reductase activity in leaves of barley genotypes during
	grain filling period under different water treatments
5	Starch content in seeds of barley genotypes during grain filling
	period under different water treatments
6	The percent of total nitrogen in leaves, sheaths and seeds of barley
	genotypes during grain filling period under different water treatments37
7	Alcohol dehydrogenase activity in nodal roots (a), internal ethylene
	concentration (ppm) (b) and the percent of aerenchyma formation in nodal
	roots (c) of barley genotypes grown in aerated and stagnant agar solution47
8	The number of nodal root per plant of barley genotypes grown in aerated
	and stagnant agar nutrient solution under different temperature levels
	; 25/15, 30/15 and 40/15 °C (day /night temperature)
9	The nodal root length (cm) of barley genotypes grown in aerated and
	stagnant agar nutrient solution under different temperature levels; 25/15,
	30/15 and 40/15 °C (day /night temperature)56

\mathbf{T}	٠	
н	1	gure
1	1	xui C

Page

10	Alcohol dehydrogenase activity of the nodal roots of barley genotypes grown
	in aerated and stagnant agar nutrient solution under different temperature
	levels; 25/15, 30/15 and 40/15 °C (day /night temperature)
11	The nitrate reductase activity in the leaves of barley genotypes grown in
	aerated and stagnant nutrient solution under different temperature levels
	;25/15, 30/15 and 40/15 °C (day/night temperature)59
12	Photosynthetic rate (µmole C ₂ O /m ² /s) of barley genotypes grown
	in aerated and stagnant agar nutrient solution under different temperature
	levels; 25/15, 30/15 and 40/15 °C (day /night temperature)
13	Transpiration rate (mole H ₂ O /m ² /s) of barley genotypes grown in
	aerated and stagnant agar nutrient solution under different temperature
	levels; 25/15, 30/15 and 40/15 °C (day /night temperature)
14	Stomatal resistance (s/cm) of barley genotypes grown in aerated and
	stagnant agar nutrient solution under different temperature levels
	;25/15, 30/15 and 40/15 °C (day /night temperature)
15	The leaf chlorophyll fluorescence of the leaves of barley genotypes
	grown in aerated and stagnant agar nutrient solution under different
	temperature condition such as 25/15, 30/15 and 40/15 °C
	(day/night temperature)
16	Total soluble sugar in shoots of barley genotypes grown in aerated and
	stagnant nutrient solution under different temperature levels; 25/15,
	30/15 and 40/15 °C (day /night temperature)68
17	The percent of total nitrogen of the shoots of barley genotypes grown in
	aerated and stagnant agar nutrient solution under different temperature
	levels; 25/15, 30/15 and 40/15 °C (day /night temperature)70

_	٠			
н	1	σ	l Ti	re
•	7	<u> </u>	u,	

Page

18	The percent of total nitrogen of the roots of barley genotypes grown in
	aerated and stagnant agar nutrient solution under different temperature
	levels; 25/15, 30/15 and 40/15 °C (day/night temperature)
19	Dry matter accumulation and partitioning of barley genotypes grown in
	aerated and stagnant agar nutrient solution under different temperature
	levels; 25/15, 30/15 and 40/15 °C (day /night temperature)
20	The pattern of flow diagram of the mechanistic model which was
	constructed by the Stellar® program version 5.11 82
21	The fraction of daily visible solar radiation in the growth chamber which
	was used to construct the "BGUH" model
22	The fraction of daily ambient temperature in the growth chamber which
	was used to construct the "BGUH" model84
23	The relationship between the photosynthetic rate of barley genotypes
	and the maximum diurnal air temperatures in the growth chambers
24	The relationship between the shoot or root growth rates of barley genotypes
	and the maximum diurnal air temperatures in the growth chambers88
25	Comparison between simulated and observed shoot and root dry matter
	accumulation of SMG1 genotype under aerated and hypoxic condition at
	ambient temperatures for model testing
26	Comparison between simulated and observed shoot and root dry matter
	accumulation of FNBLS#140 genotype under aerated and hypoxic condition
	at ambient temperatures for model testing92
27	Comparison between simulated and observed shoot and root dry matter
	accumulation of BRBRF9629 genotype under aerated and hypoxic condition
	at ambient temperatures for model testing93

Figur	Page
28	Comparison between simulated and observed shoot and root dry matter
	accumulation of SMG1 genotype under aerated and hypoxic condition at
	ambient temperatures for model validation95
29	Comparison between simulated and observed shoot and root dry matter
	accumulation of FNBLS#140 genotype under aerated and hypoxic condition
	at ambient temperatures for model validation96
30	Comparison between simulated and observed shoot and root dry matter
	accumulation of BRBRF9629 genotype under aerated and hypoxic condition
	at ambient temperatures for model validation97

ACRONYMS, ABBRE VIATIONS AND DEFINITIONS

ABA

Abscisic acid

ACC

1- aminocyclopropane -1- carboylic acid

Aerated solution

aeration in solution

Aerenchyma formation

intercellular space in the root tissue

ADH

alocohol dehydrogenase

Anoxia

complete lack of O₂

CGR

crop growth rate; g/m²/day or g/plants/day

GGR

grain growth rate; g/m²/day or g/plants/day

Hypoxia

low, but not zero O2

LDH

lactate dehydrogenase

LGR

leaf growth rate; g/m²/day or g/plants/day

LCE

leaf chlorophyll efficiency

NR

nitrate reductase

PPFD

photosynthetic photon flux density; µmole /m²/s

RGR

root growth rate; g/m²/day or g/plants/day

StGR

stem growth rate; g /m² /day or g /plants /day

Stagant solution

unstirred solution

Transient waterlogging

saturated soil water holding for 2-3 days

Listings of the definitions and symbols in the simulation model:

ActTemp

the actual air temperature at the time; C

AerPhs

photosynthetic rate under aerated solution; μ moleCO $_2$ /m 2 /day

ConVCO₂

to convert kg CO₂ /ha /hr to g CO₂ /m² /hr

ConVertDM

the conversion to dry matter; g glucose /m2 /hr

ConvPAR

the conversion to PAR; joules /m2/s

GrossPhs

the rate of gross photosynthesis; kg CO2 /ha /hr

Initial_TDM

the initial total dry matter of plants; g /plants /day

LeafTFct

the fraction of leaf photosynthetic rate depended on

temperature levels

MaxDailyTemp

the daily maximum air temperature; C

Model

a simplified representation of a system. A submodel is a model

of a subsystem.

Module

A set of statements in a computer language that together

describes a system or a large part of a system.

NetGlu

net glucose concentration converted from CO₂ fixation process;

mole glucose /m2 /hr

PAR

photosynthetically active radiation; W/m²

PhsAssimHr

net photosynthetic rate; g /m² /day

PhsBar

selection of photosynthetic rate depended on water treatments

PhsRate

the actual photosynthetic rate; g /plants /day

PLEA(

initial efficiency use absorbed light by individual leaves

at the optimum temperature; (kg CO₂ / ha /hr) /(J /m²/s)

PLMX

the maximum rate of leaf photosynthesis of individual leaves at

the optimum temperature at 340 ppm CO2; kg CO2 /ha /hr

Q₁₀

Q₁₀ of maintaince respiration sensitivity to temperature

RtDM

the root dry matter accumulation; g /plants /day

RtGRate

the rate of root dry matter accumulation; g /plant/day

RtParFct

the ratio of dry matter partitioning to the roots

RtResMain

the effect of temperature on the root respiration maintenance

ShDM

the shoot dry matter accumulation; g /plants /day

ShGRate

the rate of shoot dry matter accumulation; g /plants/day

ShParFct

the ratio of dry matter partitioning to the shoots

ShResMain

the effect of temperature on the shoot respiration maintenance

Simulation model

A module that represents the relevant processes of a system,

	usually in the form of a computer program.
SolarChmbFct	the fraction of PAR changes in the growth chambers
TempChmbFct	the fraction of air temperature changes in the growth chambers
The Sellar® program	a program for simulation models
VS_SolarRad	visual solar radiation on the leaves; μ mole quanta /m²/s
VS_SolarRadiation	the daily maximum PAR in growth chamber; μ mole quanta /m²
's	
Water_treatment	the selected option for water treatments in the program
WLPhs	the photosynthetic rate under hypoxia; mole CO ₂ /m ² /day
	the connecter; the job of the connector is to connect elements,
	such as converter to flow, stock to flow and stock to
convert	er.
Variable 1	the converter; to serve a utilitarian role in the software. It holds
	values for constants, calculates algebraic relationships, and
	serves as the repository for graphical function.
Variable 2	the star inside the converter, means must input data as
	independent variable.
Stock1	the accumulated stock type. If it has a star inside the stock, it
	means to be independent stock which must input the data.
	the flow rate; it is the job of flows is to fill and drain lation.
	The unfilled arrow head on the flow pipe indicates the direction
	of the flow.