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CHAPTER II 

 

LITERATURE REVIEW 

 

 

This chapter deals with a systemization of the productive efficiency study. 

Alternative approaches of the frontier analysis are presented such deterministic and 

stochastic frontier production function, and data envelopment analysis (DEA). The 

articles related to the study are also reviewed in this section.  

 

2.1  Approaches of frontier production function and productive efficiency study 

 

In microeconomic theory a production function is defined in terms of the 

maximum output that can be produced from a specified set of inputs, given the 

existing technology available to the firms involved. However, up until the late 1960s, 

most empirical studies used traditional least-squares methods to estimate production 

functions. Hence the estimated functions could be more appropriately described as 

response (or average) functions (Battese, 1992). 

 

Productive efficiency has been adopted in production analysis for years. 

Generally, technical efficiency refers to the ability to minimize input used in the 

production of a given output vector, or the ability to obtain maximum output from a 

given input vector. Farrell (1957) defined the sample of farm productive efficiency 

that accounted for multiple inputs consisting of two components: technical and 

allocative efficiencies. The frontier methodology has become a widely used tool in 

applied production analysis and played an important landmark in technical 

measurement of production efficiency. 

 

The large number of studies in different areas on frontier models, especially in 

agricultural economics that have been developed, based on Farrell’s work. They can 

be divided into two basic types: parametric and non-parametric approaches as 

addressed in Figure 2. 
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Figure 2   Alternative approaches of the frontier analysis 

 
Parametric frontiers, which rely on a specific functional form, can be separated 

into two kinds of model: deterministic and stochastic. The deterministic model 

assumes that any deviation from the frontier is only due to inefficiency, while the 

stochastic approach allows for symmetric statistical noise. There are two essential 

differences between the econometric approach and mathematical programming 

methods to the construction of a production frontier and the calculation of efficiency 

relative to the frontier as stated below 

 

The econometric approach has the virtue of being stochastic, and so attempts to 

distinguish the effects of statistical noise from those of productive inefficiency. 

However, the econometric approach is parametric, and so can confound the effects of 

misspecification of (even flexible) functional forms (of both technology and 

inefficiency) with inefficiency. In addition, a flexible form is susceptible to 

multicollinearity, and theoretical restrictions may be violated. A main attraction of the 

econometric approach is the possibility it offers for a specification in the case of panel 

data. It also allows for a formal statistical testing of hypotheses and the construction 

of confidence intervals (Hjalmarsson et al., 1996). Coelli (1995) concluded that the 
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stochastic frontier method is recommended for use in agricultural applications, 

because measurement error, missing variables and weather, etc. are likely to play a 

significant role in agriculture. 

 

The mathematical programming approach is nonstochastic, and lumps noise and 

inefficiency together and calls the combination inefficiency. The Data Envelopment 

Analysis (DEA) version of the mathematical programming approach is 

nonparametric, and less prone than the Stochastic Frontier Analysis (SFA) to 

specification error, meaning that it does not require a specific functional form. It also 

imposes regularity conditions a priori rather than testing them ex-post. DEA has the 

additional advantage over SFA that it can accommodate many inputs and many 

outputs, although it generates more efficient firms when the number of variables 

increases (Tauer and Hanchar, 1995).  

 

Nevertheless, a major drawback of this method is that it does not allow for 

random noise as do parametric frontiers and DEA does not support panel data 

estimation, and so for each year a new production possibility set is calculated. Every 

observation is compared with the frontier of the production possibility set of each 

year. Another characteristic of DEA method is the potential sensitivity of the efficient 

scores to the number of observations and as well as to the number of outputs and 

inputs that can point out the solutions to input optimization to each specific farm  

(Shafip and Reman, 2000). 

 

In order to estimate a frontier production function and draw productive efficiency 

of the specific farms, parametric approach in the stochastic frontier form uses maximum 

likelihood estimation (MLE) to come up with the frontier function. Meanwhile, non-

parametric approach with the DEA (Coelli et al., 2001; Thanassoulis, 2001) uses linear 

programming, and parametric approach in the deterministic frontier form uses both linear 

programming (LP) and modified ordinary least squares (Figure 2).  

 

Deterministic frontier approach 
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The procedure of deterministic frontier estimation was addressed by Aigner and 

Chu (1968) that the deterministic production frontier model can be converted into 

either a pair of mathematical programming models as follows: 

 

yi = f (xi, ai) exp(-Ui) 

where, TE = exp(-Ui) =  yi /
^

yi  

          exp = exponential term  

 

It requires that TE ≤1, so Ui ≥0. Next, assuming that f(Xi, ai) takes a log-linear 

Cobb-Douglas form, the deterministic production frontier model becomes 

 

Yj = a0 + ΣaiXij - Ui,                       (1) 

where, Yj = lnyj and  Xij = lnxij 

 

The objective is to obtain estimates of the parameter vector of ai for which the 

sum of proportionate deviations of the observed output of each producer beneath 

maximum feasible output is minimized. The resulting deviations are then converted to 

measures of technical efficiency for each producer. Such a model can be addressed as  
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ai  = coefficients estimated 

         n = number of observations  

U = one sided error term,  

Xij = ln-value of input i used by farm j 

Yj = ln-value of output of farm j 

 There is another method of the deterministic frontier production function 

estimation, namely corrected ordinary least squares (MOLS) that was addressed in 
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Afriat (1972) and Richmond (1974). The authors suggested that the deterministic 

production frontier model could be estimated in two steps. Firstly, OLS is used to 

estimate parameters under the assumption that disturbances follow an explicit one-

sided distribution such as exponential or half normal. Secondly, the estimated 

intercept is shifted up by the mean of the assumed one-sided distribution, E(
^

u ). The 

OLS residuals can then be used to provide consistent estimates of the technical 

efficiency of each producer. However, there is no guarantee that the modification of 

OLS shifts the estimated intercept up by enough to ensure that all producers are 

bounded from above by the estimated production frontier. If this happens, it is 

uncomfortable to explain for the cases that technical efficiency score is greater than unity. 

 

In short speaking, the above deterministic frontier model exists a serious 

deficiency: it did not take into account of the possible influence of random shocks. 

Therefore, a fundamental problem with deterministic frontier is that any measurement 

error, any other sources of stochastic variation in the dependent variable, is embedded 

in the one-sided error component. As a consequence, outliers can have profound 

effects on the estimates and any shortcoming in the specification of the model could 

translate into increased inefficiency measures.  

 

DEA approach 

 

Charnes et al. (1978) first introduced DEA that was extended the Farrell  (1957) 

technical efficiency measure from a single-input, single-output process to a multiple-

input, multiple-output process. Since then, DEA has been used to assess efficiency in 

many different areas. The authors proposed a method in which the multiple-input, 

multiple output model was reduced to a ratio with a single "virtual" input and single 

"virtual" output by estimating a set of weights depicting each DMU (decision making 

unit) in the most favorable position relative to other DMUs. In equation form, the 

model is addressed as follows: 

 

Max  wo = ƒ
=

s

r 1

uryro 



ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

ÅÔ¢ÊÔ·¸Ô ìÁËÒÇÔ·ÂÒÅÑÂàªÕÂ§ãËÁè
Copyright  by Chiang Mai University
A l l  r i g h t s  r e s e r v e d

 14

          ƒ
=
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vixio =1 

          ƒ
=
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=

m

i 1

vixij ≤ 0  j=1…o… N 

          ur  ≥ ε  ,  and vi ≥ ε    r = 1…s;  i =1…m 
 

where,  yrj =  quantity of output r produced by firm j, 

 xij = quantity of input i used by firm j, 

 ur = weight for output r, 

 vi   = weight for input i, and 

 ε   = small positive quantity. 

 

Färe et al. (1994) proposed the input-oriented and output-oriented DEA models 

to measure technical efficiency. The models can be expressed as below: 

 

Input-oriented technical efficiency model examines the vector of inputs used in 

the production of any output bundle, and measures whether a firm is using the 

minimum inputs necessary to produce a given bundle of outputs. Linear programming 

for measuring input-oriented technical efficiency of any DMU is modeled as  

 

Min λ 

s.t.       ujm ≤ ƒ
=

J

j 1

zjumj,   (m = 1,2,…,M)      

         ƒ
=

J

j 1

zjxnj ≤ λxnj,   (n = 1,2,…,N)     

          zj ≥ 0,   (j = 1,2,…,J) 

 

where, λ = efficiency measure to be calculated for each DMUj, 

ujm = quantity of output m produced by DMUj, 

xjn = quantity of input n used by DMUj, and 

zj = intensity variable for DMUj. 
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Output-oriented technical efficiency is a measure of the potential output of a 

DMU given that inputs are held constant. Färe et al. (1994) modeled the output 

technical efficiency measure for any DMU using linear programming as follows: 

 

Max θ  

s.t.       θujm ≤ ƒ
=

J

j 1

zjujm ,  m= 1, 2,…,M    

             ƒ
=

J

j 1

zj xjn ≤ xjn ,   n = 1,2,…,N    

zj ≥ 0 ,     j= 1,2,…,J 
 

where, θ  = output technical efficiency measure, 

         u jm = quantity of output m produced by DMU j, 

            xjn = quantity of input n used by DMU j, and 

            zj = intensity variable for DMU j. 

 
The problem of returns to scale can be dealt with by using the Banker et al. 

(1984) extension to the Constrained Categorical Regression (CCR) model as: (a) for 

constant returns to scale (CRS), the condition Σ zj ≥ 1 is added; and (b) for variable 

returns to scale (VRS), the constraint Σ zj = 1 is imposed. 

 
Since the variable λ, θ is calculated for each DMU, the preceding formulation is 

estimated once for each DMU in the data set. A value of λ =1.0 means that a firm is 

considered efficient, while a value λ <1.0 means a firm is inefficient. The θ  values 

from the output-oriented model indicate how much each DMU could be able to 

increase output production given that the inputs are held constant. If θ = 1, firm is 

considered efficient but θ >1 (e.g. θ  =1.1) meaning that firm should have been able to 

increase its outputs by 10%.  

  

Stochastic frontier approach 

  

Aigner, Lovell and Schmidt (1977), and Meeusen and van den Broeck (1977) 

simultaneously introduced the stochastic production frontier function models, in which 
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an additional random error, Vi, is added to the non-negative random variable, Ui. These 

models allow for technical inefficiency but they also acknowledge the fact that 

random shocks outside the control of producers can affect output. The great virtue of 

stochastic production frontier models is that the impact on output of shocks due to 

variation in labor and machinery performance, vagaries of the weather, and just plain 

luck can at least in principle be separated from the contribution of variation in 

technical efficiency (Kumbhakar and Lovell, 2000). Assume that stochastic frontier 

function takes a log-linear Cobb-Douglas form so it can be written as follows: 

 

LnYj = β0 + Σ βilnXij + Vj - Uj        (2) 

where,  Yj = output level of farm j, 

    Xij = input i used by farm j, 

Vj - Uj = ε j   (error terms,) 

Vj = two sided error terms representing random error of farm j   

        independently and identically distributed  as N(0, v
2) 

Uj = one sided error term-nonnegative, independently and identically  

                  distributed as N+( , u
2) representing technical inefficiency of farm j   

   β0, βij = parameters to be estimated,  

  

Crucial difference from the deterministic frontier approach is that the stochastic 

production function model incorporates a composed error structure with a two sided 

symmetric term (V) and a one sided component (-U). The one sided component 

reflects inefficiency while two sided error captures the random effects (exogenous 

events) beyond the control of the production unit, including measurement errors and 

other statistical noise typical of empirical relationships. Hence, stochastic frontier 

models address the noise problem (Thiam et al., 2001). 

 

The main different characteristics between traditional estimation, OLS and 

maximum likelihood estimation, MLE is that OLS implicitly assumes that all firms 

are fully efficient. Meanwhile, in reality even there were many cases that used the 

same technology of production and the same level of inputs but produced different 

levels of output. Therefore, the stochastic frontier analysis with association of MLE 
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was employed to explain this issue as the existence of inefficiency of production 

caused by management ability throughout the frontier analysis. OLS shows 

information on production function of average practice farmers while MLE provides 

information on production function of the best practice farmers. The estimated 

frontier function is then used to measure technical efficiency. 

 

Given the virtues of the stochastic frontier approach, the author selected this 

approach to apply for the study. Procedures of maximum likelihood estimation for the 

stochastic frontier production function are presented in detail in Chapter III. 

 

2.2   Related studies to frontier production and technical efficiency, and others  

       using quantitative methods in horticultural crops  

          

Schmidt and Lovell (1979) obtained evidence bearing total inefficiency and its 

technical and allocative components by mean of a straightforward extension of 

analysis of Aigner, Lovell and Schmidt (1977). Meeusen and van den Broeck (1977) 

assumed that the farmers tried to minimize the cost of producing its desired rate of 

output, subject to a stochastic production frontier. If the farmer is technically 

inefficient, it operates below the stochastic production function. They used MLE to 

estimate the stochastic production function and then calculated the average technical 

inefficiency. The price inefficiency parameters were derived from the minimum cost.  

 

Kalirajan (1981) estimated a stochastic Cobb-Douglas frontier production 

function and drew technical efficiency using data from 70 rice farmers located in the 

state of Tamil Nadu,  India. The variance of farm effects was found to be a highly 

significant component in describing the variability of rice yields (the estimate for the 

γ-parameter was 0.81). The  author proceeded to investigate the relationship between 

the difference between the estimated ‘maximum yield function’ and the observed rice 

yields and such variables as farmer’s experience, educational level, number of visits 

by extension workers, etc. The study showed that management practices and contacts 

with local extension agents had a significant positive impact on technical efficiency. 
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In this second-stage analysis, he noted the policy implications of these findings for 

improving crop yields of farmers.  

 

Huang and Bagi (1984) assumed a modified translogarithmic stochastic frontier 

production function to estimate the technical efficiencies of individual farms in India. 

It was found that the stochastic Cobb-Douglas frontier was not an adequate 

representation for describing the value of farm products, given the specifications of 

the translog model. The variance of the random effects was a significant component 

of the variability of value of farm outputs. Individual technical efficiencies ranged 

from about 0.75 to 0.95, but there appeared to be no significant differences in the 

technical efficiencies of small and large farms. 

 

Kalirajan and Shand (1986) investigated the technical efficiency of rice farmers 

within and without the Kemubu Irrigation Project in Malaysia during 1980. Given the 

specifications of a translog stochastic frontier production function for the output of the 

rice farmers, the Cobb-Douglas model was not an adequate representation of the data. 

Maximum-likelihood methods were used for estimation of the parameters of the 

models and the frontiers for the two groups of farmers were significantly different. 

The authors reported that the individual technical efficiencies ranged from about 0.40 

to 0.90, such that the efficiencies for those outside the Kemubu Irrigation Project were 

slightly narrow. However, given the relatively large estimated standard errors for the 

variances of the random errors in the stochastic frontiers, it may be the case that the 

stochastic model is not significantly different from the deterministic model. Hence 

this would suggest that the results obtained from the deterministic frontiers are more 

encouraging as to the positive impact of the credit program on participant farmers, 

even though the absolute levels of technical efficiencies were quite small. They 

concluded that their results indicated that the introduction of new technology for 

farmers does not necessarily result in significantly increased technical efficiencies 

over those for traditional farmers. 

 

Ekanayake and Jayasuriya (1987) estimated both the deterministic and 

stochastic frontier production functions of Cobb-Douglas type for two groups of rice 
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farmers in an irrigated area in Sri Lanka. The parameters of the two frontiers were 

estimated by maximum-likelihood and corrected ordinary least-squares methods. In 

only the ‘tail reach’ irrigated area, the stochastic frontier appeared to be significantly 

different from the deterministic model. Individual farm technical efficiencies were 

estimated for both regions. The estimates obtained for the farms in the ‘head reach’ 

area (for which the stochastic frontier appeared not to be significantly different from 

the deterministic frontier) were vastly different for the two different stochastic 

frontiers. These results are not intuitively reasonable. 

 

Battese and Coelli (1988) used the stochastic frontier Cobb-Douglas function to 

define for panel data for the three years, 1978-79, 1979-80 and 1980-81 on sample 

firms of dairy farms in New Wales and Victoria, Australia to estimate technical 

efficiencies and to test whether the mean technical efficiencies in the two states are 

equal, and to predict individual technical efficiencies of dairy farms. The hypothesis 

that nonnegative effects had half normal distribution was rejected for both states, and 

Cobb-Douglas production function was not a suitable model, since the half-normal 

distribution was not an adequate representation for the individual firm effects, which 

determine technical efficiencies of farms. The estimates of mean technical 

efficiencies based on frontier production function showed that dairy farms in South 

Wales were about 77 percent technically efficient, whereas those in Victoria have 

technical efficiency of about 63 percent with a significant difference at the 20 percent 

level for a one sided asymptotic t-test. The individual farm technical efficiencies 

ranged from 0.54 to 0.93 for New Wales Farms, whereas for Victorian farms, the 

range was 0.296 to 0.934.  

 

Kumbhakar et al. (1989) used a system approach to estimate technical, 

allocative and scale inefficiencies for Utah dairy farmers. The stochastic frontier 

production function which was specified included both endogenous and exogenous 

variables. The endogenous variables included were labor (including family and hired 

labor) and capital (the opportunity cost of capital expenses on the farm), whereas the 

exogenous variables included level of formal education, off-farm income and 

measures of farm size for the farmers involved. Both types of explanatory variables 
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were found to have significant effects on the variation of farm production. Technical 

efficiency of farms was found to be positively related to farm size. 

 

Kalirajan and Shand (1989) estimated the time-invariant panel-data model using 

data for Indian rice farmers over five consecutive harvest periods. The farm effects 

were found to be a highly significant component of the variability of rice output, 

given the specifications of a translog stochastic frontier production function. 

Individual technical efficiencies were estimated to range from 0.64 to 0.91, with an 

average of 0.70. A regression of the estimated technical efficiencies on farm-specific 

variables indicated that farming experience, level of education, access to credit and 

extension contacts had significant influences on the variation of the farm efficiencies. 

 

Bravo-Ureta and Rieger (1990) estimated both deterministic and stochastic 

frontier production functions for a large sample of dairy farms in the northeastern 

states of the U.S.A. for the years 1982 and 1983. The Cobb-Douglas functional form 

was assumed to be appropriate. The parameters of the deterministic frontiers were 

estimated by linear programming, corrected ordinary least-squares regression and 

maximum-likelihood methods (assuming that the non-negative farm effects had 

gamma distribution). The stochastic frontier model was estimated by maximum-

likelihood techniques (given that the farm effects had half-normal distribution). The 

stochastic frontier model had significant farm effects for 1982 but it was apparently 

not significantly different from the deterministic frontier in 1983. The estimated 

technical efficiencies of farms obtained from the three different methods used for the 

deterministic model showed considerable variability but were generally less than 

those obtained by use of the stochastic frontier model. However, the authors found 

that the technical efficiencies obtained by the different methods were highly 

correlated and gave similar ordinal rankings of the farms. 

 

Ali and Chaudry (1990) measured farm efficiency in four irrigated cropping 

regions in Punjab province, Pakistan using an estimate probabilistic frontier 

production function. A Cobb-Douglas production function was estimated from the 

data of whole farm survey in the years 1984-1985. Farm efficiency was estimated in 
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terms of technical efficiency, allocative efficiency and economic efficiency using 

OLS. Then it was transformed into a probabilistic production function using linear 

programming by deleting outliers one by one until all coefficients stabilized. They 

found that the average technical efficiency ranges from 0.8 in the rice region to 0.87 

in the sugar cane region. The study showed that there exists a 13-20 percent potential 

for increasing the gross income of the farmers at the existing levels of farmers' 

resources and technology.  

 

Kumbhakar (1990) used a panel-data framework and models firm-specific 

technical inefficiency which is allowed to vary over time to estimate economic 

efficiency of the production units. The specification is flexible enough to 

accommodate increasing, decreasing, and time-invariant behavior of technical 

inefficiency. Based on the assumption of cost minimization, time-varying firm- and 

input-specific allocative inefficiency is also incorporated. The estimation method 

suggested uses a parametric production function and cost-minimization hypothesis. 

The ML estimation method, based on a parametric production function, is developed 

to estimate the parameters. Estimates of technical and allocative inefficiency based on 

the ML parameter estimates are also suggested. Finally, formulas for calculating costs 

of technical and allocative inefficiency are derived. 

 

Bravo-Ureta and Rieger (1991) estimated technical efficiency of diary farms in 

New England region of the U.S using the Cobb-Douglas frontier production function 

based on the cross-sectional data of a sample of 511 dairy farms. They obtained 

technical efficiency ranging from 0.5 to 1.0 with an average of 0.82. The authors 

concluded that technical efficiency of individual farm was statistically independent of 

size of the dairy farms as measured by the number of cows. 

 

Battese and Coelli (1992) applied the panel-data model incorporating time-

varying firm effects in the analysis of data for paddy farmers in an Indian village who 

were observed for up to ten years. Given the specifications of a stochastic frontier 

production function with time-invariant parameters, the hypothesis of time-invariant 

technical efficiencies of the paddy farmers was rejected. However, given that a linear 
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time trend was included in the stochastic frontier model (Hicksian neutral technical 

change), and then the hypothesis of time-invariant technical efficiencies was accepted. 

In addition, the stochastic frontier production function with the time trend included 

was not significantly different from the average response function (i.e., technical 

inefficiencies could be considered absent from the model).  

 

Seyoum et al. (1998) investigated the technical efficiency of two samples of 

maize producers in eastern Ethiopia, one involving farmers within the Sasakawa-

Global 2000 project and the other involving farmers outside this program. The study 

used the stochastic frontier functions in which technical inefficiency effects were 

assumed to be functions of age and education of the farmers, together with the time 

spent by extensionists in assisting farmers. The stochastic Cobb-Douglas frontiers 

were found to have adequate representations of the data, given the specifications of 

the translog stochastic frontiers for farmers within and outside the project. The 

empirical results indicated that farmers within the project were more technically 

efficient than those outside the project. The mean frontier output of maize for farmers 

within the project was more significant than that for the farmers outside the project. 

 

Shafiq and Rehman (2000) examined the sources of resource use inefficiency 

for cotton production in Pakistan’s Punjab. The use of a non-parametric method, Data 

Envelopment Analysis (DEA), was developed to study the relative technical and 

allocative efficiencies of individual farms which used similar inputs, to produce the 

same product and operated under comparable circumstances. In the ‘cotton–wheat’ 

system of Pakistan, there were a considerable number of farms that were both 

technically and allocatively inefficient. The use of DEA showed that the technique 

provides a clear identification of both the extent and the sources of technical and 

allocative inefficiencies in cotton production. However, both the interpretation of the 

farm level results generated and the projection of these results to a higher level 

require care, given the technical nature of the agricultural production processes. 

 

Sriboonchitta and Wiboonpongse (2001) analyzed factors affecting outputs of 

the jasmine and nonjasmine rice production in Thailand. The stochastic production 
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frontier estimation method was thus used with self-selectivity variables. The factors 

included production inputs, physical and environmental factors, disease occurrence 

and technical efficiency. The method of estimation was modified to include a self-

selectivity variable to eliminate biases of the estimated parameters. The empirical 

results showed that the average technical efficiency for jasmine and nonjasmine rice 

were 60.72 and 62.81 percent respectively. The percents of the output reduction due 

to the drought were 35.13 and 26.13 while due to the neck blast were at 18.38 and 

insignificantly different from zero for jasmine and nonjasmine rice respectively, 

 

Sriboonchitta and Wiboonpongse (2001) also used both the Cobb-Douglas and 

translog models alternatively to estimate the stochastic frontier functions for both 

jasmine and nonjasmine rice yields in order to examine the effects of production 

inputs, technical efficiency and other factors on both jasmine and nonjasmine rice 

yields. The results showed that the Cobb-Douglas function was chosen to draw policy 

implications, and the crucial factors influencing jasmine rice yield were technical 

efficiency, chemical fertilizer, labor, irrigation, severe drought and neck blast. The 

factors affecting technical inefficiency for nonjasmine rice in a negative relationship 

were male labor to total labor ratio and farming experience while the labor influenced 

positively. For jasmine rice, there is only one variable male-labor ratio influencing 

technical inefficiency significantly. 

 

Zaibet and Dharmapala (1999) analyzed horticultural growers' technical 

efficiency in Oman using the stochastic production frontier (SPF) and the data 

envelopment analysis (DEA) methods. Different methods were used because the 

determinants of technical efficiency may be influenced by the method used and also 

by the assumptions (i.e. returns to scale) maintained. Results from the stochastic 

parametric frontier (SPF) and DEA-Charnes, Cooper and Rhodes (CCR) models 

showed that the percentage of farmers that could qualify as technically efficient was 

as low as 17 percent. When the DEA- Banker, Charnes and Cooper (BCC) method 

was used, this percentage increased to about 46 percent. Factors such as off-farm 

income and soil quality were found to be positively correlated to productivity. On the 
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other hand, small farm size and farmer's age showed a negative relationship with 

productivity.  

 

Vandeveer (2001) examined the need for litchi crop insurance in northern 

Vietnam. Hypothetical insurance programs were developed which proposed all-risk 

coverage based on area yields. The author used different premiums of two-guaranty 

average yield levels (85 and 90 percent) and indemnity prices to measure farmer’s 

responses to insurance selection. Binomial logit models were estimated for the yield 

insurance decision probabilities of farmers, including variables (e.g. premium, 

dummy for yield guarantee, indemnity price, schooling level, farming experience, 

ratio of minimum farm income to average farm income, average total income, number 

of risks happened, number of risk management responses, number of died litchi trees, 

and standard deviation of litchi yield). Results indicated that while farmer participation 

would be significant, crop insurance is not needed to achieve policy goals like raising 

farmer income or guaranteeing subsistence levels of income. Crop insurance is not 

needed to promote litchi production, which is already expanding rapidly due to its high 

profitability relative to other farm enterprises. Estimated premiums were quite low 

when expressed as a percent of expected revenue, and farmers were not responsive to 

changes in premiums. Econometric analysis indicated that high income farmers were 

more likely to participate, but other farmer characteristics seemed to matter little. 

 


