TABLE OF CONTENTS

	DOGO
Acknowledgement	page iii
Abstract in Thai	iv
Abstract in English	vi
List of table	xiv
List of illustrations	xv
List of abbreviations and symbols	xix
Chapter 1 Introduction	1
Chapter 2 Review of Literature	3 552
2.1 Origin and distribution of litchi	3
2.2 Climate of litchi growing area	3
2.3 Litchi in Thailand	4
2.4 Botany of 'Hong Huay' litchi	5
2.5 Development of litchi tree	8
2.5.1 Leaf development	8
2.5.2 Flower development	8
2.5.3 Anthesis	8
2.5.4 Fruit growth	9
2.6. Physiology of flowering	10
2.6.1 Models of flowering	10
2.6.1.1 Florigen/antiflorigen model	10
2.6.1.2 Nutrient diversion model	University
2.6.1.3 Multifactorial control theory	e ¹² rve o
2.6.2 Flowering process	12
2.7. Factors affecting flowering in fruit trees	16
2.7.1Environmental factors	16
2.7.1.1 Effect of day length or photoperiod	16

2.7.1.2 Effect of low temperature	16
2.7.1.3 Effect of drought and water stress	18
2.7.2 Endogenous factors	19
2.7.2.1 Juvenility	19
2.7.2.2 Leaf photosynthesis aspects	20
2.7.2.3 Carbohydrate	21
2,7.2.4 Plant hormones	22
1) Cytokinins (CKs)	22
2) Auxins	26
3) Gibberellins (GAs)	27
4) Abscisic acid (ABA)	31
5) Ethylene	32
2.8 Effect of agricultural practices	32
2.8.1 Girdling or cincturing	32
2.8.2 Pruning	33
2.8.3 Chemical application	34
2.8.4 Water management	34
2.8.5 Young leaves destruction	35
2.9 Interaction of environment, plant development stage	
and practice on flowering and possible role of plant hormone	35
Chapter 3 Effect of Low Temperature on Flowering, Physiology and	
Biochemical Change	37
3.1 Introduction	37
3.2 Materials and methods	38
3.2.1 Plant materials acclimatization and experimental design	L 3811Versity
3.2.2 Data collection	9 ⁴¹ V 9
3.2.2.1 Effect of low temperature on flowering	41
3.2.2.2 Effect of low temperature on physiological activities	41
1) Chlorophyll fluorescence	42
2) Photosynthetic efficiency	42

3.2.2.3 Hormones analysis	43
1) Sample collection	43
2) Hormone extraction and purification	44
3) Quantification of hormones	46
3.2.2.4 Carbohydrate analysis	47
3.2.2.5 Statistical analysis	47
3.3 Results	47
3.3.1 Effect of low temperature duration on flowering	47
3.3.2 Physiological change during cold treatment	49
3.3.2.1 Diurnal photosynthetic activity	49
3.3.2.2 Photosynthesis, transpiration and stomatal movement	52
3.3.2.3 Assimilate distribution	54
3.3.3 Change in hormonal content during cold treatment	55
3.4 Discussion	57
3.4.1 Effect of low temperature regime on flowering	57
3.4.2 Physiological response of litchi plant to low temperature	
regime	58
3.4.3 Response of litchi plant to cold temperature at the	
hormonal level	61
3.5 Conclusion	62
Chapter 4 Relationship Between Leaf Age and Diffusible IAA	63
4.1 Introduction	63
4.2 Material and methods	63
4.3 Results DV Chiang Mail	_64 iversity
4.4 Discussion	65
4.5 Conclusion	66
Chapter 5 Development of Terminal Bud and Changes in Physiology and	
Biochemistry of Litchi Plant Grown Under Low Temperature	67
5.1 Introduction	68

5.2 Material and methods	69
5.2.1 Plant sample and cold treatment	69
5.2.2 Data collection	72
5.2.2.1 Morphological change of the terminal buds	73
5.2.2.2 Percentage of flowering	72
5.2.2.3 Changes in leaf physiological aspects	72
1) Measurement of total chlorophyll content	73
5.2.2.4 Changes in endogenous hormonal contents	
in plant tissues	74
5.2.2.5 Changes in carbohydrate contents in leaves and roots	74
5.3 Results	74 503
5.3.1 Effect of temperature regime on flushing or flowering	74
5.3.2 Development of the terminal buds under low temperature	75
5.3.3 Change in total chlorophyll content	76
5.3.4 Effect of low temperature on physiological activities	77
5.3.4.1 Diurnal changes of photosynthesis, transpiration	
and stomatal movement	.77
5.3.4.2 Change of physiological activities during cold	
treatment and during rising up the temperature regime	78
5.3.5 Change of carbohydrate content in leaves and root under	
low temperature	80
5.3.6 Change of endogenous hormonal content under low	
temperature condition	81 Versity
5.4 Discussion	84r V e
5.4.1 Effect of low temperature on flowering of litchi tree	85
5.4.2 Effect of low temperature on physiological	
activities and assimilate distribution	85

	5.4.3 Effect of low temperature on hormonal change	
	and relation to bud development	88
	5.5 Conclusion	89
Chapter 6	Changes in Physiology and Biochemistry of Litchi Plant when	
	Flowering Under Low Temperature	90
	6.1 Introduction	90
	6.2 Material and methods	91
	6.2.1 Changes in terminal bud development	92
	6.2.2 Percentage and days to flowering after cold treatment	93
	6.2.3 Changes in leaf total chlorophyll	93
	6.2.4 Change in leaf physiological activities	93
	6.2.5 Changes in carbohydrates content in leaves and roots	93
	6.2.6 Changes in endogenous hormonal contents in plant organs	93
	6.3 Results	94
	6.3.1 Percentage and days of flowering after cold treatment	94
	6.3.2 Development of terminal buds during cold treatment	94
	6.3.3 Changes in physiological activities as affected	
	by low temperature treatment	97
	6.3.3.1 Leaf total chlorophyll	97
	6.3.3.2 Changes in photosynthetic rate, transpiration rate,	
	stomatal conductance and leaf temperature	97
	1) Diurnal changes	97
	2) Photosynthetic activities changes	100
	6.3.3.3 Change in assimilate content	101
	6.3.4. Effect of low temperate on hormonal level	102° Vers
	6.4 Discussion	106
	6.4.1 Effect of low temperature on bud development	106
	6.4.2 Effect of transition from cold-to-warm temperature	
	on physiological activities	107

ļ

6.4.3 Relation between hormonal change and reproductive	
bud development during transition from cold-to-warm	
temperature	108
6.5 Conclusion	109
Chapter 7 General Discussion and Conclusion	110
7.1 General discussion	110
7.1.1 Appropriate duration of low temperature to promote	31
inflorescence bud development	110
7.1.2 Mechanism of physiological responses and some	
biochemical changes of litchi when flowering under	
low temperature	111
7.1.2.1 Photosynthesis, chlorophyll and assimilate	755
distribution	111
7.1.2.2 Transpiration and stornatal conductance	113
7.1.2.3 Physiological response in the aspect of	9//
hormone balance	113
1) Hormone balance in plant tissues	113
2) Model of hormonal transport in plant under	
warm or low temperature	117
7.1.3 Relationship between terminal bud development and changes	
in physiology and biochemistry	122
7.2 Conclusion	126
7.3 Suggestions for future experiment	126
7.4 Suggestions for field application	127 Versity
References	128
Curriculum vitae	147 V E U

LIST OF TABLES

Table	page
2.1 The harvesting time of litchi in Thailand separated by the production zone	5
3.1 Effects of temperatures on leaf flushing and flowering	48
5.1 Effects of temperatures on leaf flushing and flowering	75
6.1 Effects of temperatures on leaf flushing and flowering	94

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

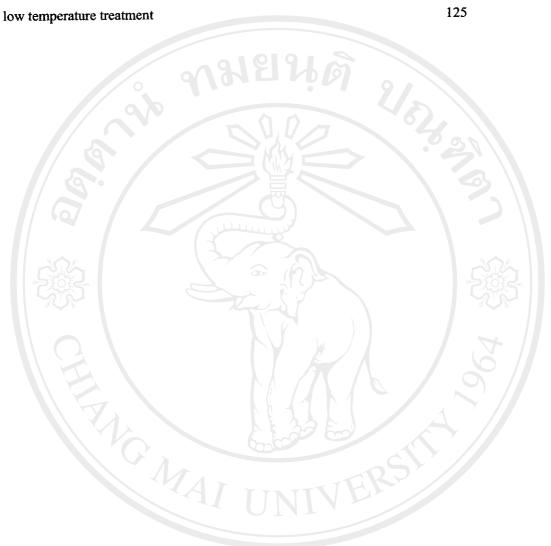

LIST OF ILLUSTRATIONS

Figure	P	age
2.1	Canopy and fruit clusters of 'Hong Huay' (A) and 'Tai So' (B) litchi	6
2.2	'Hong Huay' litchi tree (A), young leaves (B), hermaphrodite functioning	
	as male (C1) and female flowers (C2), panicles (D) and fruit clusters (E)	7
2.3	Structures of zeatin (A), zeatin riboside (B), isopentenyladenosine	
	(i-Ado) and isopentenyladenine (D)	24
2.4	Structure of IAA	26
2.5	Structures of GA ₁ (A), GA ₃ (B) and GA ₂₀ (C)	29
3.1	Studied plants grown in a growth chamber and in the field	39
3.2	Stepwise change of ambient temperature in chamber 1 (28 days cold duration	on)
	and chamber 2 (38 days cold duration) starting from acclimatization period,	
•	cold treatment and warming up period	40
3.3	Diurnal changes of temperature, light intensity and relative humidity at the	
	day of visible active bud and of flowering	40
3.4	Maximum and minimum temperatures and relative humidity at opened	
	field in Lampang Agricultural Research and Training Centre during	
	experimental period	41
3.5	Column systems used for hormone purification	45
3.6	Stage of the vegetative flushing (A), active-swelling buds (B) and	
	flowering (C)	49
3.7	The diurnal photosynthetic apparatus of litchi leaves at warm	
	and low temperature conditions at days 24 after treatments	51
3.8	Fv/Fm, Pn, Tr, Gs and Tl of litchi leaves at warm and low	
	Temperature condition during 24 days of treatments	53
3.9	TNC and RS contents in leaves and roots of litchi plants grown	
	under warm and low temperature conditions	54

3.10	Hormonal concentrations in plant tissues at warm and low temperature	
	conditions during the first month of treatments	56
3.10	(Continued)	57
4.1	Young (A) and fully mature (B) litchi leaves at the stage of field collection	64
4.2	Concentrations of diffusible IAA in young and fully mature litchi leaves	65
5.1	Growth chamber (A) and greenhouse (B) as cold and warm	
	temperature treatments respectively	70
5.2	Maximum and minimum of ambient temperature in the growth chamber	
	during the acclimatization period, cold treatment and temperature	
	increasing period (flowering promoting period)	71
5.3	Maximum and minimum temperatures and relative humidity in greenhouse	
	kept under natural conditions during the experimental period	71
5.4	Longitudinal sections of the terminal buds at vegetative stage at	
	1 st week of warm temperature treatment (A), and developmental	
	stage of terminal buds at 1 st week (B), 2 rd week (C), 3 rd week (D)	
	and 4 th week (E) of low temperature treatment	76
5.5	Total chlorophyll concentration in leaves at warm and low temperature	
	conditions during 42 days of treatments	77
5.6	Diurnal changes in PAR, Fv/Fm, Pn, Tr, Gs and Tl at day 24 of	
	cold treatment	78
5.7	Change of PAR, Fv/Fm, Pn, Tr, Gs and Tl during the cold	
	treatment (Tc) and during temperature rising period (Tw)	80
5.8	TNC and RS concentrations in leaves and roots at warm and low	
	temperature conditions during the first month of treatments	81
5.9	Hormonal concentrations in plant tissues at warm and low temperature	
	conditions during the first month of treatments	83
5.9	(Continued)	84

6.1	Maximum and minimum of ambient temperature in the cold growth chamber		
	during the acclimatization period, cold treatment, and temperature		
	increasing period	92	
6.2	Maximum and minimum temperatures in the warm growth chamber during		
	the experiment period	92	
6.3	Longitudinal section of terminal buds at vegetative stage at 38 days after		
	flushing under warm temperature (A), and at day 35 of cold treatment (B),		
	day 4 (C), day 11 (D) and day 18 after rising temperature of cold treatment		
	(E)	96	
6.4	Total chlorophyll concentrations in leaves under low temperature		
	compared to warm temperature during two months	97	
6.5	Diurnal changes in PAR, Fv/Fm, Pn, Tr, Gs and Tl during treatment	99	
6.6	Changes of PAR, Fv/Fm, Pn, Tr, Gs and Tl during the cold		
	treatment and during temperature rising period	101	
6.7	TNC and RS concentrations in leaves and roots at warm and low		
	temperature conditions during the second month of treatments	102	
6.8	Hormonal concentrations in plant tissues at warm and low temperature		
	conditions during the second month of treatments	104	
6.8	(Continued)	105	
7.1	Difference of TNC and RS concentrations in leaves and roots between		
	low and warm temperature	112	
7.2	Difference of hormonal concentrations in buds and leaves between low		
	and warm temperature	114	
7.3	Difference of hormonal concentrations in bark and wood between low		
	and warm temperature	hisiversity	
7.4	Difference of hormonal concentrations in xylem sap and leaf diffusate		
	between low and warm temperature	116	
7.5	Scheme of hormonal changes in litchi trees under warm		
	and low temperature conditions	121	

7.6 Overview of relationship between terminal bud development,
physiological and biochemical changes of litchi tree when expose to

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

List of abbreviations and symbols

µmol: Micromole

°C : Degree Celcius

ABA : Abscisic acid

CKs : Cytokinins

DW : Dry weight

EDTA: ethylenediamine tetraacetic acid

FAA : Formalin-acetic acid alcohol

Fm: Maximal fluorescence

Fo : Minimal or basal fluorescence

Fv : Variable fluorescence

Fv/Fm: Optimum quantum yield of PS II

GA_{1,3,20}: Gibberellin A₁, gibberellic acid,

and Gibberellin A20

GAs : Gibberellins

Gs: Stomatal conductance

HPLC: High Performance Liquid

Chromatography

i-Ade : Isopentenyl-adenine

i-Ado : Isopentenyl-adenosine

IAA : Indole-3-acetic acid

KClO₃: Potassium chlorate

Lsd : Least significant difference

M : Molar

mmol: milimole

NaOCl: Sodium hypoclorite

ng : Nanogram

nm : Nanometer

PAR : Photosynthetically active radiation

PBZ : Paclobutrazol

Pn: Photosynthetic rate

ppm: part per million

PS : Photosystem

PVP : Polyvinylpyrrolidone

RH: Relative humidity

RIA : Radio-immunoassay

rpm : Round per minute

RS : Reducing sugar

SAM : Shoot apical meristem

t. : Temperature

Tamb : Ambient temperature

TBA : Tertiary butyl alcohol

Tc: Temperature during cold period

Tl : Leaf temperature

TNC: Total non-structural carbohydrate

Tr : Transpiration rate

Tw : Temperature during rising

temperature period

Z : Zeatin

ZR : Zeatin riboside