TABLE OF CONTENTS

	Page
Acknowledgements	iii
Abstract (English)	V
Abstract (Thai)	viii
Table of Contents	xi
List of Tables	xiii
List of Figures	xvi
List of Appendices	xxviii
List of Publications	xxx
Chapter 1 Introduction	1
Chapter 2 Biodiversity and taxonomy	36
Chapter 3 The genus Oxydothis and its phylogenetic relationship	
within the Xylariales	150
Chapter 4 Morphology and phylogenetic study of leaf spotting	
fungal species associated with terrestrial palms	174
Chapter 5 Phylogenetic relationship of Dictyochaeta wallichianensis	
within Chaetosphaeriaceae	202
Chapter 6 Fungal community variation on decaying fronds of Thai Dwarf	
Fishtail Palm	218

TABLE OF CONTENTS (CONTINUED)

Chapter 7 Analysis of vertical spatial distribution of fungal community	
on Thai Dwarf Fishtail Palm	256
Chapter 8 Endophytic and epiphytic fungi of Thai Dwarf Fishtail Palm	289
Chapter 9 Conclusions	314
References	320
Appendices 3	352
Curriculum Vitae	403
Publications	408

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table		Page
1.1	The most commonly Ascomycetes genera identified from palms in	
	Brunei, Ecuador, and Malaysia during 1988-1994	27
1.2	List of the most common Ascomycetes genera encountered	
	on palms	28
2.1	List of palmicolous fungi found on Wallichia siamensis	
	and other palms during the present study	38
3.1	Comparison of Oxydothis wallichianensis with similar	
	Oxydothis species	163
3.2	Comparison of Oxydothis inaequalis with O. asymmetrica	164
3.3	Comparison of Oxydothis sp. FIH 019 with similar	
	Oxydothis species	164
3.4	Comparison of Oxydothis cyrtostachicola with J-Oxydothis	
	Species MAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	165
3.5	Morphological comparison of Oxydothis with	
	Amphisphaeriaceae and Hyponectriaceae	172
4.1	Morphological comparison of Cercospora arecacearum with other	
	Cercospora species from Arecaceae	183

LIST OF TABLES (CONTINUED)

Table		Page
6.1	Two tail <i>t</i> -test tables showing comparison of mean data	
	between fungal diversity indices on pinna and primary rachis	
	of Wallichia siamensis	239
6.2	Two tail <i>t</i> -test tables showing comparison of mean data	
	between fungal diversity indices on pinna and secondary rachis	
	of Wallichia siamensis	240
6.3	Two tail <i>t</i> -test tables showing comparison of mean data	
	between fungal diversity indices on primary and secondary	
	rachis of Wallichia siamensis	241
6.4	Percentage indicator values (IndVal percentage) for all taxa	
	with frequency of occurrence (FO) > 25%	244
6.5	A proportion of fungal community diversity on various	
	species of palms	250
7.1	Two tail <i>t</i> -test tables showing comparison of mean data	
	between Shanon-Weiner (H') fungal diversity indices on	
	hanging-fallen fronds and primary-secondary rachis	
	of Wallichia siamensis	e ₂₆₂
8.1	Isolation rate of fungal community on Wallichia siamensis at	
	five different site based on tissue types and combination of	
	tissue types-method (experimental designt)	296

LIST OF TABLES (CONTINUED)

Table		Page
8.2	Table showing Sørensen index of similarity among different	
	type of microhabitat	305
8.3	Descriptive, test of homogeneity of variances, and ANOVA	
	tables generated from One-Way ANOVA analysis showing	
	the statistical test of isolation rate of surface disinfected and	
	non-surface disinfected samples	311

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

Figur	e 93236	Page
1.1	Morphology structure of Thai Dwarf Fishtail Palm	
	(Wallichia siamensis)	3
1.2	Structure of several economically important palm seeds	7
1.3	General morphology structure of palms	10
1.4	Structures of palm leaves	11
1.5	Palm growth habits	13
1.6	A climbing palm, Calamus sp.	13
1.7	Illustration map of early Cretaceous or late Jurassic period	16
1.8	Illustration map of late Cretaceous period	18
1.9	Illustration of Wallace's line in Malay Archipelago	19
2.1	Micrographs of Anthostomella limitata on Wallichia siamensis	60
2.2	Micrographs of Anthostomella puiggarii on Wallichia siamensis	63
2.3	Micrographs of Apiospora siamicola sp. nov. (from holotype)	65
2.4	Micrographs of Arecomyces foliicola sp. nov. (from holotype)	69
2.5	Micrographs of Botryosphaeria obtusa on Wallichia siamensis	73
2.6	Micrographs of Chaetospermum chaetosporum	
	on Wallichia siamensis	75
2.7	Micrographs of Chaetosphaeria fusiformis on Wallichia siamensis	77

Figur	e	Page
2.8	Micrographs of Fasciatispora petrakii on Wallichia siamensis	79
2.9	Micrographs of Glomerella cingulata on Wallichia siamensis	81
2.10	Micrographs of Guignardia uniappendiculatum sp. nov.	
	(from holotype)	83
2.11	Line drawings of Mycosphaerella wallichiae sp. nov.	
	(from holotype)	86
2.12	Micrographs of Myelosperma tumidum on Wallichia siamensis	88
2.13	Micrographs of Neorehmia arecae on Wallichia siamensis	91
2.14	Micrographs of Ophioceras tenuisporum on Wallichia siamensis	93
2.15	Micrographs of Oxydothis daemonoropsicola on	
	Wallichia siamensis	95
2.16	Micrographs of Oxydothis inaequalis (from holotype)	97
2.17	Micrographs of Oxydothis wallichianensis (from holotype)	99
2.18	Micrographs of Pemphidium rattanicola on Wallichia siamensis	101
2.19	Micrographs of Pestalosphaeria elaeidis on Wallichia siamensis	103
2.20	Micrographs of Pestalotiopsis guepinii on Wallichia siamensis	105
2.21	Micrographs of <i>Protocreopsis pertusa</i> on <i>Wallichia siamensis</i>	107

Figur	e MULLING	Page
2.22	Micrographs of Pseudohalonectria palmicola on	
	Wallichia siamensis	109
2.23	Micrographs of Rachidicola obclavatum sp. nov. (from holotype)	111
2.24	Micrographs of Rosellinia victoriae on Wallichia siamensis	113
2.25	Micrographs of Submersisphaeria suthepensis sp. nov.	
	(from holotype)	115
2.26	Micrographs of Terriera brevis on Wallichia siamensis	117
2.27	Micrographs of <i>Apiosporina rhapisicola</i> sp. nov. (from holotype)	119
2.28	Micrographs of Astrosphaeriella caryotae sp. nov. (from holotype)	121
2.29	Micrographs of Astrosphaeriella palmicola sp. nov. (from holotype)	124
2.30	Line drawings of Fasciatispora ujungkulonensis (from holotype)	126
2.31	Line drawings of Guignardia arengae sp. nov. (from holotype)	130
2.32	Micrographs of Linocarpon nonappendiculatum sp. nov.	
	(from holotype)	132
2.33	Micrographs of Lophiostoma livistonicola sp. nov. (from holotype)	135
2.34	Line drawings of Mycosphaerella arecacearum sp. nov.	
	(from holotype)	e ₁₃₇
2 35	Line drawings of Mycosphaerella borassi sp. pov. (from holotype)	139

Figure		Page
2.36	Line drawings of Oedocephalum formosus sp. nov. (from holotype)	142
2.37	Micrographs of Oxydothis cyrtostachicola (from holotype)	144
2.38	Micrographs of Terriera livistonae sp. nov. (from holotype)	146
2.38	Micrographs of Venturia frondicola sp. nov. (from holotype)	148
3.1	Micrographs of Oxydothis wallichianensis (from the holotype)	156
3.2	Micrographs of Oxydothis inaequalis (from holotype)	158
3.3	Micrographs of Oxydothis cyrtostachicola (from holotype)	161
3.4	Phylogenetic tree based on partial 28S nrDNA sequence data	
	representing placement of members of the Oxydothis	
	within class Sordariomycetes	166
3.5	Phylogenetic tree based on ITS nrDNA sequence data representing	
	placement of members of the Oxydothis within the Xylariales	167
4.1	Cercospora arecacearum (from holotype)	180
4.2	Single parsimonious tree based on ITS nrDNA sequence data	
	representing placement of Cercospora arecacearum within	
	representatives of the family Mycosphaerellaceae	186
4.3	Line drawings of <i>Fusarium sansainensis</i> sp. nov. (from holotype)	188

Figure	93121367	Page
4.4	Micrographs of Fusarium sansainensis sp. nov. (from holotype)	189
4.5	The best parsimonious tree based on ITS nrDNA sequence data	
	representing placement of Fusarium sansainensis within	
	representatives of the family Nectriaceae	193
5.1	Micrographs of Dictyochaeta wallichianensis sp. nov. (from holotype)	208
5.2	Micrographs of Dictyochaeta wallichianensis sp. nov. on PDA	
	(from holotype)	209
5.3	The best parsimonious tree based on ITS nrDNA sequence data	
	representing placement of Dictyochaeta wallichianensis	
	within representatives of the family Chaetosphaeriaceae	211
6.1	Species area curve of fungal number identified against number	
	of samples examined	227
6.2	Dominance diversity curve showing the proportion of fungal	
	abundance on different frond types of Wallichia siamensis	228
6.3	Distribution of all taxa calculated from total specimens of	
	Wallichia siamensis	229
6.4	Distribution of all taxa recorded from primary rachis of	
	Wallichia siamensis	230

Figure		Page
6.5	Distribution of all taxa recorded from secondary rachis	
	of Wallichia siamensis	231
6.6	Distribution of all taxa recorded from pinna of Wallichia siamensis	232
6.7	Histogram of Shannon-Weiner diversity index (H') and	
	evenness index (E') showing the diversity and evenness levels	
	of fungal community on different tissue types of Wallichia siamensis	233
6.8	Histogram of Shannon-Weiner diversity index (H') and	
	evenness index (E') showing the diversity and evenness levels	
	of fungal community on different sites	234
6.9	Box plot showing diversity level of fungal community on total	
	samples collected of Wallichia siamensis	235
6.10	Box plots showing proportion of diversity level of fungal	
	community on samples collected from different tissue types	
	of Wallichia siamensis	235
6.11	Box plot showing abundance of fungal community on total	
	samples collected of Wallichia siamensis	236
6.12	Box plots showing abundance of fungal community on samples	
	collected from different tissue types of Wallichia siamensis	237

Figure	, भारा भारत	Page
6.13	Histogram showing similarity of fungal community occurs on	
	different tissue types (as microhabitat) of Wallichia siamensis	238
6.14	Dendogram for hierarchical clustering generated using Ward method	
	and rescaled distance cluster combine matrix of all taxa with	
	Σ records > 10 from total samples collected	242
6.15	Dendogram representing hierarchical clustering (using Centroid method))
	of the pooled data from all specimens collected at five sites	243
6.16	Box plots showing distribution of <i>Ophioceras tenuisporum</i> on	
	Wallichia siamensis based on tissue types	245
6.17	Box plots showing distribution of Lophiostoma macrostomum on	
	Wallichia siamensis based on tissue types	246
6.18	Box plots showing distribution of Ophioceras tenuisporum on	
	Wallichia siamensis based on tissue types	247
6.19	Correspondence Analysis (CA) showing a relationship between taxa	
	(FO > 10%) and tissue types (as microhabitat)	248
6.20	Proportion number of fungi overlapping among different tissue	
	types of Wallichia siamensis	254

Figure		Page
7.1	Species area curve of number of fungi identified against number	
	of samples examined	262
7.2	Proportion all taxa on fronds of Wallichia siamensis grouped	
	based on pseudo-systematic position of a taxon	263
7.3	Distribution of all taxa on Wallichia siamensis based on	
	frequency of occurrence data (FO > 10)	265
7.4	Qualitative distribution of all taxa recorded on Wallichia siamensis	
	based on experimental desin	265
7.5	Quantitative distribution of all taxa recorded on Wallichia siamensis	
	based on experimental design	266
7.6	Qualitative distribution of all taxa recorded on Wallichia siamensis	
	based on tissue types	266
7.7	Quantitative distribution of all taxa recorded on Wallichia siamensis	
	based on tissue types	267
7.8	Qualitative distribution of all taxa recorded on Wallichia siamensis	
	based on combination of experimental design-tissue types	268
7.9	Quantitative distribution of all taxa recorded on Wallichia siamensis	
	based on combination of experimental design-tissue types	268

Figure	. พมยนต	Page
7.10	Average number of record per sample all taxa recorded on	
	Wallichia siamensis based on experimental design	269
7.11	Average number of record per sample all taxa recorded on	
	Wallichia siamensis based on tissue types	270
7.12	Average number of record per sample all taxa recorded on	
	Wallichia siamensis based on combination of	
	experimental design-tissue types	271
7.13	Dominance diversity curve showing the proportion of fungal abundance	
	on Wallichia siamensis based on combination of experimental	
	design-tissue types as microhabitat	272
7.14	Two dimensional of Multi Dimensional Scaling (MDS) ordination	
	of all taxa with frequency of occurrence > 10% based on total	
	abundances and Euclidean distance model	274
7.15	Dendogram for hierarchical clustering (using Ward method) of all taxa	
	with Σ records > 10 from total samples collected based on rescaled	
	distance cluster combine matrix	275

Figure		Page
7.16	Correspondence Analysis (CA) of all taxa with frequency of occurrence	ee
	> 10% and combination of experimental design-tissue types	
	(as microhabitat)	276
7.17	Contingency table of Correspondence Analysis (CA) showed relationsh	ip
	between taxa and microhabitats (represented by combination of	
	experimental design-tissue type)	277
7.18	Box plots showing distribution of dominant species on	
	Wallichia siamensis after one year decomposition based	
	on experimental design and tissue types	278
7.19	Box plots showing proportion of diversity level of fungal	
	community on Wallichia siamensis grouped based on	
	experimental design and tissue types	280
7.20	Box plots showing Margalef's index species richness of fungal	
	community of Wallichia siamensis based on combination of	
	experimental design and tissue types	280
7.21	Box plots showing abundances of fungal community of	
	Wallichia siamensis based on experimental design and tissue types	281

Figure		Page
7.22	Graphic showing distribution of fungal community on hanging fronds	
	of Wallichia siamensis based on species richness dataset	282
7.23	Graphic showing distribution of fungal community on fallen fronds	
	of Wallichia siamensis based on species richness dataset	283
7.24	Graphic showing similarities among selected microhabitats	
	based on Sørensen index analysis	284
7.25	The major biogeographic zones for microbial colonization of plant	
	surfaces as a function of exposure and nutrient availability	286
8.1	Bar errors showing mean of total fungal individual records based	
	on tissue types as microhabitat	297
8.2	Distribution of all taxa on Wallichia siamensis based on abundances	
	data (Σ records > 5)	298
8.3	Box plots showing the distribution of the most dominant species on	
	Wallichia siamensis based on tissue types as microhabitat	299
8.4	Bar errors showing mean of total fungal individual records based on	
	tissue types and experimental design (surface disinfection and	
	non-surface disinfection)	300
8.5	Bar errors showing mean of total fungal individual records on different	
	tissue types and site	301

Figure		Page
8.6	Graphic showing distribution of fungal community on	
	Wallichia siamensis generated from non-surface disinfection method	
	based on species abundances dataset	302
8.7	Graphic showing fungal community overlap generated from	
	surface- disinfection and non surface- disinfection methods	302
8.8	Graphic showing distribution of endophytic fungal community on	
	Wallichia siamensis based on species richness dataset	303
8.9	Graphic showing distribution of endophytic fungi community on	
	Wallichia siamensis based on abundances dataset	304
8.10	Dendogram for hierarchical clustering (using Ward method) of all taxa	
	with frequency of occurrence > 5% from total samples collected	
	based on rescaled distance cluster combine matrix	307
8.11	Two dimensional of symmetric plot generated from multiple	
	correspondence analysis showing the relationship among seven	
	dominant taxa (represented by genus name), tissue types, and	
	experimental design	308

xxviii

LIST OF APPENDICES

Appendix Pa			Page
	1	Sequences used in phylogenetic analysis of Oxydothis	
		within Xylariales	352
	2	Sequences used in the phylogenetic analysis of	
		Cercospora arecacearum and related species	355
	3	Sequences used in the analysis of Fusarium sansainensis	
		and related species	357
	4	Sequences used in the phylogenetic analysis of	
		Dictyochaeta wallichianensis	360
	5	List of all taxa found on fronds of Wallichia siamensis are shown	
		with total number recorded, % Occurrence and % Abundance	363
	6	List of taxa recorded on Wallichia siamensis with Σ records,	
		% Occurrence, % Recurrence and % Abundance at each	
		microhabitat and site	366
	7	List of all taxa found on fronds of Wallichia siamensis are shown	
		with total number recorded and % Abundance	377
	8	List of taxa recorded on Wallichia siamensis with Σ records,	
		% Occurrence, % Recurrence and % Abundance at each	
		microhabitat, treatment and site	380
	9	Frequency occurrence of all taxa recorded is represented	
		based on various grouping of microhabitat	386

LIST OF APPENDICES (CONTINUED)

Appendix Appendix	Page
List of all taxa found on fronds of Wallichia siamensis are shown	1
with total number recorded, % Abundance and % Occurrence	390
11 List of taxa recorded on <i>Wallichia siamensis</i> with Σ records,	
% Occurrence, % Recurrence and % Abundance at each	
microhabitat and site	393

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF PUBLICATIONS

- 1. **Hidayat, I.**, Jeewoon, R., To-anun, C., and Hyde, K. D. (2006) The genus *Oxydothis*: new palmicolous taxa and phylogenetic relationship within *Xylariales. Fungal Diversity* **23**: 159-179.
- 2. **Hidayat, I.**, Meeboon, J., and To-anun, C. (2007). *Anthostomella* and *Fasciatispora* species (Xylariaceae) from palms including *F. ujungkulonensis* sp. nov. *Mycotaxon* **102**: 347–354.
- 3. **Hidayat, I.**, Meeboon, J., K.D. Hyde, and C. To-anun. (2007). A study on microfungi associated with necrotic leaves of palms. In: *Proceedings of the International Conference on 'Integration of Science and Technology for Sustainable Development* (Eds. Soytong, K. and Hyde K. D.), KMITL, Ladkrabang, Bangkok, Thailand, 26-27 April 2007. p. 279-285
- 4. To-anun, C., Nguenhom, J., Meeboon, J., and **Hidayat, I.** (2009). Two fungi associated with necrotic leaflets of areca palms (*Areca catechu*). *Mycological Progress* 8: 115-121.

ลับสิทธิมหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved