TABLE OF CONTENTS

0 910111 91	Page
Acknowledgement	iii
Abstract	iv
Table of Contents	viii
List of Tables	xiv
List of Illustrations	XV
Abbreviations	xix
Chapter 1 Introduction	1
1.1 Lychee	1
1.2 High Pressure Processing of foods	4
1.2.1 Evolution of high pressure processing	4
1.2.2 The history of high pressure	4
1.2.3 General principles, advantages and units of high pressure	5
1.2.4 Effect of high pressure on proteins	6
1.2.4.1 Pressure effects in intermolecular interaction	6
1.2.4.2 Pressure effects on protein structure	7
1.2.5 Effect of high pressure on enzyme activity	8
1.2.6 Effects of high pressure on chemical related to food qualit	y 9
1.2.7 Effect of high pressure on microorganisms	13
1.2.7.1 Mode of action of HPP on microorganisms	14
1.2.7.2 The effects of food constituents on pressure	
resistance	16
1.2.8 Effects of pressure processing on fruit products	20
1.3 The objectives of this study	21
Chapter 2 Effects of heat and high pressure on quality determinations	23
2.1 Introduction	23
2.1.1 Effect of high pressure on pH of samples	23

2.1.2 Effects of high pressure on colour	24
2.1.3 Pink discolouration in canned lychee	26
2.2 Experimental	31
2.2.1 Effect of pressure on quality determinations	31
2.2.1.1 Materials	31
2.2.1.2 Methods	31
2.2.1.2.1 Canning process	31
2.2.1.2.2 High pressure processing	31
2.2.1.2.3 Quality determinations	32
2.2.1.2.4 Experimental design	32
2.2.2 Determination of pink discolouration in heated lychee	32
2.2.2.1 Materials	32
2.2.2.2 Method	33
2.3 Results and Discussions	34
2.3.1 Effect of pressure and heat on quality determinations	34
2.3.2 Pink discolouration in heated lychee	37
Chapter 3 Effects of high pressure treatment on the activity of peroxidase	
and polyphenoloxidase	40
3.1 Introduction	40
3.1.1 Peroxidase	40
3.1.1.1 Generalities	40
3.1.1.2 Reaction mechanism	42
3.1.1.3 Substrates of POD	43
3.1.1.4 pH and temperature optima of enzyme activity	44
3.1.1.5 Temperature stability of POD	45
3.1.1.6 Determination of enzyme activity	46
3.1.1.7 Effects of high pressure on POD activity	48
3.1.2 Polyphenoloxidase	50
3.1.2.1 Generalities	50
3.1.2.2 Reaction mechanism	52
3.1.2.3 Substrates of PPO	53
3.1.2.4 pH and temperature optima of PPO activity	54

3.1.2.5 Temperature stability of PPO

55

21260	
3.1.2.6 Determination of enzyme activity	57
3.1.2.7 Effects of high pressure on PPO activity	59
3.2 Experimental	61
3.2.1 Materials	61
3.2.2 Methods	61
3.2.2.1 High pressure processing	61
3.2.2.2 Assay for peroxidase (POD) activity	62
3.2.2.3 Assay for polyphenoloxidase (PPO) activity	62
3.2.2.4 Experimental design	62
3.3 Results and Discussions	64
3.3.1 pH optima for POD	64
3.3.2 pH optima for PPO	65
3.3.3 Effect of combined UHP/Temperature treatment on POD	
activity	66
3.3.4 Effect of combined UHP/Temperature treatment on PPO	
activity	66
Chapter 4 Effect of high pressure treatment on the Lipoxygenase activity	
and formation of flavour components	76
4.1 Introduction	76
4.1.1 Lipoxygenase	76
4.1.1.1 Generalities	76
4.1.1.2 Reaction mechanism	77
4.1.1.3 Structure and active site	80
4.1.1.4 Determination of enzyme activity	80
4.1.1.4.1 The manometric technique	81
4.1.1.4.2 Spectrophotometric assay	81
4.1.1.4.3 Colourimetric methods	82
4.1.1.5 Effects of high pressure on lipoxygenase activity	83
4.1.2 Flavour components	83
4.1.2.1 Lychee flavour	84
4.1.2.2 Effect of high pressure on flavour components	85

4.2 Experimental	89
4.2.1 Effect of high pressure treatment on the lipoxygenase	
activity	89
4.2.1.1 Materials	89
4.2.1.2 Methods	89
4.2.1.2.1 Canning process	89
4.2.1.2.2High pressure processing	89
4.2.1.2.3 Assay for lipoxygenase(LOX) activity	90
4.2.1.2.4 Experimental design	90
4.2.2 Effect of high pressure treatment on the volatile component	ts90
4.2.2.1 Materials and Equipments	90
4.2.2.2 Methods	91
4.2.2.2.1 High pressure processing	91
4.2.2.2.2 Canning process	91
4.2.2.2.3 Headspace Solid Phase Micro-	
Extraction (SPME) Analysis	91
4.2.2.2.4 Capillary Gas Chromatography/Mass	5
spectrophotometry (GC-MS)	93
4.2.2.2.5 Identification of volatile compounds	94
4.3 Results and Discussions	95
4.3.1 pH optima for LOX	95
4.3.2 Effect of high pressure treatment on LOX activity	95
4.3.3 Effect of high pressure treatment on the volatile compound	s 99
Chapter 5 Effect of high pressure on texture, microstructure and	
microbiological quality	111
CODYM25.1 Introduction & Chiang Mai Universi	111
5.1.1 Texture and microstructure	111
5.1.1.1 Plant cell wall	112
5.1.1.2 Components related to texture and cellular	
structure of plant	114
5.1.1.2.1 Pectic substances	114
5.1.1.2.2 Cellulose	115

5.1.1.2.3 Hemicellulose	115
5.1.1.3 Event which effect texture and microstructure	
of fruit	115
5.1.1.3.1 Fruit ripening	115
5.1.1.3.2 Postharvest treatments	117
5.1.1.3.3 Precooking effect	117
5.1.1.3.4 Thermal processing	118
5.1.1.3.5 High pressure processing	119
5.1.1.3.6 Cell turgor	120
5.1.1.3.7 Cell-to-Cell de-bonding versus cell	
rupture	121
5.1.1.4 Determination of cellular structure	121
5.1.2 Microbiology	123
5.2 Experimental	126
5.2.1 Effect of high pressure treatment on texture and micro-	
structure	126
5.2.1.1 Materials	126
5.2.1.2 Methods	126
5.2.1.2.1 Canning process	126
5.2.1.2.2 High pressure processing	126
5.2.1.2.3 Texture analysis	127
5.2.1.2.4 Confocal Scanning Laser Microsco	рy
(CSLM)	127
5.2.1.2.5 Experimental design	127
5.2.2 Effect of high pressure on microorganisms	128
CODYMENT 5.2.2.1 Materials 8 Mail Univers	128
5.2.2.2 Methods	128
5.2.2.2.1 High pressure processing	128
5.2.2.2.2 Microbiological analysis	128
5.2.2.3 Experimental design	129
5.3 Results and Discussions	130
5.3.1 Effect of combined UHP/Temperature treatment on textu	re130

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

LIST OF TABLES

Table	019191	Page
1.1	Export of lychee products in Thailand from 1995-1999	
	(Unit=Million tons)	3
2.1	Effects of pressure on the pH of several systems	23
2.2	General characteristics of fresh lychee and lychees processed	
	by various means	34
2.3	Combined effects of high pressure and temperature at 20°C on the colour	
	attributes of fresh lychees. All values are the means \pm S.D. of 12	
	determinations.	35
2.4	Combined effects of high pressure and temperature at 60°C on the colour	
	attributes of fresh lychees. All values are the means \pm S.D. of 12	
	determinations.	35
2.5	Comparison of the colour attributes of pressurised syrup lychee at 20°C.	
	All values are the means \pm S.D. of 12 determinations.	36
2.6	Comparison of the colour attributes of pressurised syrup lychee at 60°C	
	and canned lychees. All values are the means \pm S.D. of 12 determinations	s. 37
4.1	Volatile compounds in unpressurised and pressurised fresh lychee	101
4.2	Volatile compounds in canned lychee and pressurised syrup lychee	108
5.1	Microbiological level (cfu g ⁻¹) of pressure-treated lychee at 20°C	
	and unpressurised lychee stored at 2°C for 6 weeks.	141
5.2	Microbiological level (cfu g ⁻¹) of pressure-treated lychee at 40°C	
	and unpressurised lychee stored at 2°C for 6 weeks.	142
5.3	Microbiological level (cfu g ⁻¹) of pressure-treated lychee at 60°C	
	and unpressurised lychee stored at 2°C for 6 weeks.	142
5.4	Combination effects of high pressure and temperature on the	
	reduction of yeasts and moulds on fresh lychee.	143

LIST OF ILLUSTRATIONS

Figure	F	Page
2.1	Possible pathway of pink pigment formation in canned lychees.	30
2.2	Alcoholic extracts of lychee in acid lacking the peak at 544 nm (A),	
	when heated in boiling water the colourless leucoanthocyanidin are	
	converted into anthocyanidin with a peak at 544 nm (B).	38
3.1	Horseradish peroxidase has the ferric iron coordinated to the four	
	nitrogens of pyrrole ring of the protoporphyrin IX. From Wong (1995a).	42
3.2	The variation of lychee peroxidase activity as a function of pH	64
3.3	The variation of lychee polyphenoloxidase activity as a function of pH	65
3.4	Effect of combined UHP/Temperature at 10 min on POD activity of	
	fresh lychee. All values are the means \pm S.D. of duplicate determinations	
	on 3 samples. Bars with different superscript were significantly different	
	(p<0.05).	67
3.5	Effect of combined UHP/Temperature at 20 min on POD activity of	
	fresh lychee. All values are the means \pm S.D. of duplicate determinations	
	on 3 samples. Bars with different superscript were significantly different	
	(p<0.05).	68
3.6	Effect of combined UHP/Temperature at 10 min on POD activity of	
	syrup lychee. All values are the means \pm S.D. of duplicate determinations	S
	on 3 samples. Bars with different superscript were significantly different	
	(p<0.05).	69
3.7	Effect of combined UHP/Temperature at 20 min on POD activity of	
	syrup lychee. All values are the means \pm S.D. of duplicate determinations	5
	on 3 samples. Bars with different superscript were significantly different	
	(p<0.05).	70
3.8	Effect of combined UHP/Temperature at 10 min on PPO activity of	
	fresh lychee. All values are the means \pm S.D. of duplicate determinations	
	on 3 samples. Bars with different superscript were significantly different	

	(p<0.05).	71
3.9	Effect of combined UHP/Temperature at 20 min on PPO activity of	
	fresh lychee. All values are the means \pm S.D. of duplicate determinations	
	on 3 samples. Bars with different superscript were significantly different	
	(p<0.05).	72
3.10	Effect of combined UHP/Temperature at 10 min on PPO activity of	
	syrup lychee. All values are the means \pm S.D. of duplicate determinations	
	on 3 samples. Bars with different superscript were significantly different	
	(p<0.05).	74
3.11	Effect of combined UHP/Temperature at 20 min on PPO activity of	
	syrup lychee. All values are the means \pm S.D. of duplicate determinations	
	on 3 samples. Bars with different superscript were significantly different	
	(p<0.05).	75
4.1	The essential part of a fatty acid which permits it to be a substrate for	
	lipoxygenase. Required are cis double bonds at ω -6 and ω -9 positions,	
	a hydrogen in the L_s position on ω -8 carbon, and hydrogen at the ω -6	
	carbon. The ω -3 and ω -4 position may be saturated or unsaturated.	
	From Whitaker (1985).	78
4.2	Reaction catalysed by lipoxygenase, using 8,11,14- (all-cis)	
	eicosatrieonic acid as a typical substrate. From Whitaker (1985).	79
4.3	New flavour isolation apparatus which can control temperature and	
	magnetic stirring speed of a sample for SPME analysis.	
	From Lee et al. (2003).	92
4.4	Sequence of events showing extraction steps and desorption (injection)	
	steps followed to perform an analysis using SPME. The fiber is inserted	
	directly into a liquid sample with the subsequent absorption of most the	
	analyte molecules (small circles) from the solution. From Harmon (2002).	93
4.5	The variation of lychee lipoxygenase activity as a function of pH	96
4.6	Inactivation of LOX activity of fresh lychee as a function of pressures	
	(200-600 MPa at ambient temperature) and times of 10 and 20 min. All	
	values are the means \pm S.D. of duplicate determinations on 3 samples.	
	Bars with different superscript were significantly different (p<0.05).	97

4.7 Inactivation of LOX activity of lychee in syrup as a function of		Inactivation of LOX activity of lychee in syrup as a function of pressures	
		(200-600 MPa at ambient temperature) and time of 20 min. All values	
		are the means \pm S.D. of duplicate determinations on 3 samples. Bars	
		with different superscript were significantly different (p<0.05).	98
	4.8	GC-MS chromatogram of unpressurised and pressurised fresh lychee;	
		1=ethyl acetate, 2=2-methyl-3-buten-2-ol, 3=2-methyl butanal, 4=	
		heptane, 5=2-ethyl furan, 6=pentanal, 7=3-hydroxy-2-butanone, 8=3-	
		methyl-3-buten-1-ol, 9=3-methyl-1-butanol, 10=(E)-2-pentenal, 11=	
		1-octene, 12=hexanal, 13=(E)-2-hexenal, 14=3-methylbutyl acetate,	
		15=heptanal, 16=methyl hexanoate, 17=β-myrcene, 18=2-pentyl furan,	
		19=ethyl hexanoate, 20=octanal, 21=ρ-cymene, 22=limonene, 23=ρ-	
		cymenene, 24=nonanal, 25=cis-rose oxide, 26=menthol.	100
	4.9	Enzymatic pathway to isoprene. From McGee and Purzycki (2002).	103
	4.10	Overview of the pathway leading to monoterpene formation in plants.	
		From McGee and Purzycki (2002).	103
	4.11	Biochemical pathway illustrating the enzymatic activity of LOX and	
		HPL. LOX oxidises linolenic acid and linoleic acid into linolenic acid	
		hydroperoxide and linoleic acid hydroperoxide, respectively. Further	
		cleavage by HPL, forming 12-oxo-trans-10-dodecenoic acid and cis-	
		3-hexenal or hexanal, respectively. An isomerisation factor (IF)	
		interconverts cis-3-hexenal to trans-3-hexenal in vivo.	
		From Bate <i>et al.</i> (1998)	106
	4.12	GC-MS chromatogram of unpressurised and pressurised syrup lychee;	
		1=ethyl acetate, 2=2-methyl-3-buten-2-ol, 3=2-methyl butanal, 4=	
		heptane, 5=2-ethyl furan, 6=pentanal, 7=3-hydroxy-2-butanone, 8=3-	
		methyl-3-buten-1-ol, 9=3-methyl-1-butanol, 10=(E)-2-pentenal, 11=	
		1-octene, 12=hexanal, 13=(E)-2-hexenal, 14=3-methylbutyl acetate,	
		15=heptanal, 16=methyl hexanoate, 17=β-myrcene, 18=2-pentyl furan,	
		19=ethyl hexanoate, 20=octanal, 21=ρ-cymene, 22=limonene, 23=ρ-	
		cymenene, 24=nonanal, 25=cis-rose oxide, 26=menthol.	107
	5.1	A typical plant cell "parenchyma cell" and the component of the	
		plant cell. From Koning (1994)	113

5.2	Combined effects of high pressure and temperature for 10 min on	
	the firmness of fresh lychees. All values are the means \pm S.D. of 12	
	determinations. Bars with different superscript were significantly	
	different (p<0.05).	131
5.3	Combined effects of high pressure and temperature for 20 min on	
	the firmness of fresh lychees. All values are the means± S.D. of 12	
	determinations. Bars with different superscript were significantly	
	different (p<0.05).	132
5.4	Combined effects of high pressure and temperature for 10 min on	
	the firmness of lychees processed in syrup. All values are the means	
	± S.D. of 12 determinations. Bars with different superscript were	
	significantly different (p<0.05).	133
5.5	Combined effects of high pressure and temperature for 20 min on	
	the firmness of lychees processed in syrup. All values are the means	
	± S.D. of 12 determinations. Bars with different superscript were	
	significantly different (p<0.05).	134
5.6	CSLM of unpressurised flesh lychee with samples taken progressively	
	from the outside (A) to the inside (D) (each scale bar = $80 \mu m$).	137
5.7	CSLM of pressure treated flesh lychee at 200 MPa and 20°C for 20 min	
	with samples taken progressively from the outside (A) to the inside (D)	
	(each scale bar = $80 \mu m$).	138
5.8	CSLM of pressurised flesh lychee at 600 MPa and 20°C for 20 min	
	with samples taken progressively from the outside (A) to the inside (D)	
	(each scale bar = $80 \mu m$).	139

ABBREVIATIONS

POD Peroxidase

PPO Polyphenoloxidase

LOX Lipoxygenase

PME Pectinmethylesterase

HPP High Pressure Processing

UHP Ultra-high pressure

°C Degree Celsius

min minute

MPa Mega Pascal

GC-MS Gas Chromatography/Mass Spectrophotometry

SPME Solid Phase Micro-Extraction

Fig Figure

CSLM Confocal Scanning Laser Microscopy

wk Week

μm micrometer

g.mm gram.millimeter

PBS Phosphate Buffer Saline

IMS Industrial methylated spirit 99

g gram

TA Titratable Acidity

TSS Total soluble solid

wt weight

MT Million Tons

kg/cm² kilogram/square centrimeter

S.D. Standard deviation

hr hour