Table of Contents

	Page
Acknowledgement	iii
Thai abstract	iv
English abstract	v
Table of Contents	vii
List of Tables	xii
List of Figures	xv
Abbreviation and symbols	xviii
Chapter 1 Introduction	1
Chapter 2 Literature review	6
2.1 Beans	6
2.2 Pasteurization	21
2.3 Probiotic	24
2.4 Prebiotics	39
2.5 Microencapsulation	45
Chapter 3 Materials and Methods	493 813
3.1 Raw material	49
3.2 Probiotic microorganism	Mai ₄₉ University
3.3 Equipment	e s492 r v e o
3.4 Chemical reagent	51
3.5 Microbiological media	52

	Page
3.6 Methods	52
3.6.1 Preparation and maintenance of Lactobacillus	
acidophilus TISTR 450	52
3.6.2 Preparation of bean milk	52
3.6.3 Study the effect of different types of bean milk	
on the survival of L. acidophilus during storage in	
bean milk at 4°C for 15 days	53
3.6.4 The effects of pH values and casein concentrations	
on the survival of L. acidophilus in bean milk	1 306
during 15 days storage at 4°C	56
3.6.5 Investigation of an immobilized technique	
(an extrusion method) and initial concentrations of	
L. acidophilus in supporting the survival of the	
probiotic bacterium during storage in bean milk at	
4°C for 15 days	57
3.6.6 Evaluation for the survival of <i>L. acidophilus</i>	
in simulated gastrointestinal conditions during the	
shelf-life of the <i>L. acidophilus</i> in bean milk at 4°C	i University
for 15 days	860 e r v e d
3.7 Experimental designs and statistical analysis	62

	Page
Chapter 4 Result and Discussion	63
4.1 Study the effect of different types of bean milk on	
the survival of L. acidophilus during storage in	
bean milk at 4°C for 15 days	63
4.1.1 Chemical composition of bean milk	63
4.1.2 The survival of L. acidophilus during 15 days	
storage in bean milk at 4°C	64
4.1.3 Chemical properties of different types of bean milk	
added with L. acidophilus during 15 days storage	300
at 4°C	68
4.1.4 Physical properties of different types of bean milk added	/ 3 //
with <i>L. acidophilus</i> during 15 days storage at 4°C	73
4.2 The effects of pH values and casein concentrations on the	
survival of L. acidophilus in mung bean milk during 15 days	
storage at 4°C	77
4.2.1 The survival of L. acidophilus in mung bean milk	ยีกรใน
affected by different pH values and casein	iogoinr
concentrations during 15 days storage at 4°C	78University
4.2.2 Chemical properties of mung bean milk added	
with L. acidophilus and affected by different	
pH values and casein concentrations during	
15 days storage at 4°C	83

	Page
4.2.3 Physical properties of mung bean milk added	
with L. acidophilus and affected by different pH	
values and casein concentrations during 15 days	
storage at 4°C	92
4.3 The effects of initial concentrations of L. acidophilus and an	1.3
immobilized technique (an extrusion method) on the survival	131
of the probiotic bacterium in mung bean milk during 15 days	- -
storage at 4°C	96
4.3.1 The survival of <i>L. acidophilus</i> in mung bean milk	
affected by initial concentrations of the probiotic	7 4 //
bacterium and an immobilization technique during	/ 5 //
15 days storage at 4°C	97
4.3.2 Chemical properties of mung bean milk added	
with L. acidophilus and affected by initial	3
concentrations of the probiotic bacterium and	
an immobilization technique during 15 day	
storage at 4°C	101
4.3.3 Physical properties of mung bean milk added	
with L. acidophilus and affected by initial	SALVAO
concentrations of the probiotic bacterium and	
an immobilization techniqueduring 15 days	
storage at 4°C	106

	Page
4.4 The survival of L. acidophilus in simulated gastrointestinal	
conditions during the shelf-life of the L. acidophilus in	
mung bean milk at 4°C for 15 days	110
4.4.1 The survival of <i>L. acidophilus</i> in simulated	
high-acid gastric conditions during the shelf-life	1.21
of the L. acidophilus in mung bean milk at 4°C	131
for 15 days	111
4.4.2 The survival of <i>L. acidophilus</i> in simulated	
bile-salt conditions during the shelf-life of the	
L. acidophilus in mung bean milk at 4°C for 15 days	114
Chapter 5 Conclusion	118
References	121
Appendices	132
Appendix A Methods for chemical and physical analysis	133
Appendix B Methods for microbiological analysis	140
Appendix C Figures	143
Curriculum Vitae	
Copyright [©] by Chiang Ma	
All rights res	

List of Tables

Tables		Page
Table 2.1	Nutritional values for the edible portion of raw	
	mature soybeans (Glycine max) seeds	7
Table 2.2	Nutritional values for the edible portion of raw	
	mature red kidney bean (Phaseolus vulgasris) seeds	10
Table 2.3	Nutritional values for the edible portion of raw	
	mature black bean (Phaseolus vulgaris) seeds	14
Table 2.4	Nutritional values for the edible portion of raw	
	mature mung bean (Vigna radiata) seeds	17
Table 4.1	Chemical composition of bean milk	64
Table 4.2	Viability slopes of different microorganism groups	
	in different types of bean milk during 15 days	
	storage at 4°C	66
Table 4.3	Slopes for the chemical properties of different types of	
	bean milk during 15 days storage at 4°C	69
Table 4.4	Physical properties of different types of bean milk	แชียอใหม
	added with L. acidophilus during 15 days storage at 4°C	74
Table 4.5	Slopes for the physical properties of different types of	al Ciliversity
	bean milk added with L. acidophilus during 15 days	
	storage at 4°C	75

List of Tables (continued)

Tables		Page	•
Table 4.6	Viability slopes of different microorganism groups		
	in mung bean milk added with L. acidophilus		
	affected by different pH values and casein concentrations	2/5	
	during 15 days storage at 4°C	80	
Table 4.7	Slopes for the chemical properties of mung bean		3
	milk added with L. acidophilus and affected by		
	different pH values and casein concentrations	<u> </u>	
	during 15 days storage at 4°C	85	
Table 4.8	Physical properties of mung bean milk added with		
	L. acidophilus and affected by different pH values and		
	casein concentrations during 15 days storage at 4°C	93	
Table 4.9	Slopes for the physical properties of mung bean milk		
	added with L. acidophilus and affected by different pH		
	values and casein concentrations during 15 days		
	storage at 4°C	95	
Table 4.10	Viability slopes of different microorganism groups	11891	
	in mung bean milk affected by initial concentrations		
	of the L. acidophilus and an immobilization technique	ai Uni	versity
	during 15 days storage at 4°C	100	

List of Tables (continued)

Tables	Page
Table 4.11 Slopes of chemical properties change of mung bean milk	
added with L. acidophilus and affected by initial	
concentrations of the probiotic bacterium and an	
immobilizationtechnique during 15 days storage at 4°C	103
Table 4.12 Physical properties of mung bean milk added with	
L. acidophilus and affected by initial concentrations	
of the probiotic bacterium and an immobilization technique	
during 15 days storage at 4°C	108
Table 4.13 Slopes of physical properties of mung bean milk	900
added with L. acidophilus and affected by initial	
concentrations of the probiotic bacterium and an	
immobilization technique during 15 days storage at 4°C	109
Table 4.14 The survival of <i>L. acidophilus</i> in simulated high-acid	
gastric conditions during the shelf-life of the L. acidophilus	
in mung bean milk at 4°C for 15 days	112
Table 4.15 The survival slopes of <i>L. acidophilus</i> in simulated	เหยางใหา
high-acid gastric conditions during the shelf-life	
of the L. acidophilus in mung bean milk at 4°C for 15 days	iii4 Iniversity
Table 4.16 The survival slopes of <i>L. acidophilus</i> in bile-salt	served
conditions during the shelf-life of the L. acidophilus	
in mung bean milk at 4°C for 15 days	117

List of Figures

Figures		Page
Figure 2.1	Fructo-oligosaccharides	41
Figure 4.1	The number of L. acidophilus in different types of bean	8
	milk during 15 days storage at 4°C	65
Figure 4.2	Total plate count of different types of bean milk	3
	added with L. acidophilus during 15 days storage at 4°C	67
Figure 4.3	Total soluble solid (°Brix) of different types of bean milk	
	during 15 days storage at 4°C	69
Figure 4.4	Total titratable acidity (% lactic acid) of different types	
	of bean milk during 15 days storage at 4°C	70
Figure 4.5	pH value of different types of bean milk during 15 days	
	storage at 4°C	72
Figure 4.6	The number of L. acidophilus in mung bean milk affected	\$ [\] //
	by different pH values and casein concentrations during	
	15 daysstorage at 4°C	79
Figure 4.7	Total plate count of mung bean milk added with	
	L. acidophilus and affected by different pH values	
	and casein concentrations during 15 days storage at 4°C	82
Figure 4.8	Total soluble solid (°Brix) of mung bean milk added with	served
	L. acidophilus and affected by different pH values	
	and casein concentrations during 15 days storage at 4°C	84

List of Figures (continued)

Figures		Page
Figure 4.9	Total titratable acidity (% lactic acid) of mung bean milk	
	added with L. acidophilus and affected by different pH values	
	and casein concentrations during 15 days storage at 4°C.	. 87
Figure 4.10	pH value of mung bean milk added with L. acidophilus	301
	and affected by different pH values and casein concentrations	
	during 15 days storage at 4°C	89
Figure 4.11	Protein content of mung bean milk added with	
	L. acidophilus and affected by different pH values	53
	and casein concentrations during 15 days storage at 4°C	91
Figure 4.12	The number of L. acidophilus in mung bean milk	
	affected by initial concentrations of the probiotic bacterium	2 /
	and an immobilization technique during 15 days storage at 4°C	98
Figure 4.13	Total plate count of mung bean milk affected by initial	517
	concentrations of the L. acidophilus and an immobilization	
	technique during 15 days storage at 4°C	101
Figure 4.14	Total soluble solid (°Brix) of mung bean milk affected	แห่งเกใหม
	by initial concentrations of the L. acidophilus and an	
	immobilization technique during 15 days storage at 4°C	1 ₁₀₂ miversity
Figure 4.15	Total titratable acidity (% lactic acid) of mung bean milk	served
	affected by initial concentrations of L. acidophilus	
	and an immobilization technique during 15 days	
	storage at 4°C	104

List of Figures (continued)

Figures		Page
Figure 4.16	pH value of mung bean milk affected by initial	
	concentrations of L. acidophilus and an immobilization	
	technique during 15 days storage at 4°C	106
Figure 4.17	The survival of L. acidophilus and in simulated bile-salt	
	conditions during the shelf-life of the L. acidophilus in	
	mung bean milk at 4°C for 15 days	115
Figure C1	Bean milk	144
Figure C2	Gram staining of Lactobacillus acidophilus TISTR 450	145
Figure C3	A calcium-alginate bead contained Lactobacillus acidophilus	
	TISTR 450 cells	145

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATION AND SYMBOLS

Cm = centimeter

CFU/ml = Colony Forming Unit per milliliter

^oC = degree centigrade

Cp = centipoise

G = gram

Kcal = kilocalory

Mg milligram

Ml = milliliter

Mm = millimeter

Mg/g = milligram per gram

MRS = de Man Rogosa Sharpe

 μl = microliter

μm = micrometer

M = molarity

N = normality

Nm = nanometer

pH = power of hydrogen ion

w/v = weight by volume

w/w = weight by weight

% = percentage