## TABLE OF CONTENTS

| CONTENT                                                    | PAGE            |
|------------------------------------------------------------|-----------------|
| Acknowledgement                                            | iii             |
| Abstract (in English)                                      | iv              |
| Abstract (in Thai)                                         | vi              |
| Table of contents                                          | viii            |
| List of tables                                             | √x              |
| List of figures                                            | xii             |
| Abbreviation                                               | XV              |
| Chapter 1 Introduction                                     |                 |
| 1.1 Background information                                 | 1//             |
| 1.2 Objectives of this research                            | 4               |
| Chapter 2 Literature review                                |                 |
| 2.1 Probiotics                                             | 5               |
| 2.2 Encapsulation technique                                | 11              |
| 2.3 Yoghurt manufacture                                    | 19              |
| 2.4 Spray drying                                           | 22              |
| 2.5 Vacuum drying                                          | 31              |
| 2.6 Packaging materials                                    | 32              |
| Chapter 3 Materials and Methods                            |                 |
| 3.1 Materials                                              | $\frac{33}{33}$ |
| 3.2 Chemical and media                                     | 33              |
| 3.3 Equipment                                              | 34              |
| 3.4 Preparation for microorganism and encapsulated process | 35              |
| 3.5 Research designs and methods                           | 36              |

| Chapter 4 Results and Discussion                                      |    |
|-----------------------------------------------------------------------|----|
| 4.1 Finding a suitable concentration of supporting material           | 44 |
| to immobilized L. acidophilus                                         |    |
| 4.2 Finding a best addition time and concentration of                 | 47 |
| immobilized L. acidophilus to produce a high recovery                 |    |
| of L. acidophilus in yoghurt powder                                   |    |
| 4.3 Production of dried yoghurt powder using different outlet         | 55 |
| temperature of a spray drier                                          |    |
| 4.4 Rehydration of <i>L. acidophilus</i> containing yoghurt powder    | 63 |
| using different distilled water temperature                           |    |
| 4.5 The shelf-life of <i>L. acidophilus</i> containing yoghurt powder | 67 |
| stored at different storage temperature and packed using              |    |
| different packaging materials                                         |    |
| Chapter 5 Conclusions and Recommendations                             |    |
| 5.1 Conclusion                                                        | 79 |
| 5.2 Recommendations                                                   | 80 |
| References                                                            | 81 |
| Appendix A                                                            | 89 |
| Appendix B                                                            | 93 |
| Appendix C                                                            | 95 |
| Appendix D                                                            | 98 |
| Curriculum vitae                                                      | 99 |
|                                                                       |    |
|                                                                       |    |
|                                                                       |    |
|                                                                       |    |

## LIST OF TABLES

| TA | BLES                                                                 | PAGE        |
|----|----------------------------------------------------------------------|-------------|
| 1  | Lactic acid bacteria used in fermented milks and lactic acid drink   | 6           |
| 2  | Main flavor characteristic of some strains commonly used in          | 7           |
|    | probiotic mixtures                                                   |             |
| 3  | Encapsulation of lactic acid and probiotic bacteria by the extrusion | 14          |
|    | technique                                                            |             |
| 4  | Encapsulation of lactic acid and probiotic bacteria by the emulsion  | <b>5</b> 15 |
|    | technique                                                            |             |
| 5  | Positive and negative features of extrusion and emulsion technique   | 16          |
| 6  | Comparison between a nutrition value of milk and yoghurts            | 20          |
| 7  | Operating Parameter for some spray-dried materials                   | 23          |
| 8  | Range of droplet and particle sizes obtained in spray dryers         | 24          |
| 9  | Quality changes in foods during drying                               | 27          |
| 10 | Physical characteristics of calcium-alginate-hi-maize starch         | 45          |
| 11 | Different microbiological methods to release immobilized             | 45          |
|    | L. acidophilus from calcium alginate-hi-maize starch beads           |             |
|    | in phosphate buffer (0.1 M at pH 7.0)                                |             |
| 12 | The cell recovery (%) of L. acidophilus released from calcium        | 46          |
|    | in alginate hi-maize beads phosphate buffer (pH 7.0) and             |             |
|    | a stomacher for 20 min                                               |             |
| 13 | Physical characteristic of dried yoghurt powder produced by          | 48          |
|    | a vacuum dryer                                                       |             |
| 14 | Physical properties of yoghurt powder produced by using              | 59          |
|    | different outlet temperature of spray drier                          |             |

| 15 | Physical characteristics of rehydrated L. acidophilus containing       | 65 |
|----|------------------------------------------------------------------------|----|
|    | yoghurt solution affected by different temperature of rehydrated water |    |
| 16 | pH of yoghurt powder packed in different packaging materials           | 70 |
|    | and storage temperatures                                               |    |
| 17 | Total titratable acidity of yoghurt powder packed in a different       | 71 |
|    | packaging material and storage temperature                             |    |
|    |                                                                        |    |
|    |                                                                        |    |



## LIST OF FIGURES

| FIGURES |                                                                                                           | PAGE |
|---------|-----------------------------------------------------------------------------------------------------------|------|
| 1       | Proposed mechanism of viable and non-viable probiotic health effects                                      | 5    |
| 2       | Flow diagram of encapsulation of bacteria by the extrusion and emulsion techniques                        | 13   |
| 3       | Cryo-SEM of whole and fracture small alginate microsphere                                                 | 19   |
|         | loaded with <i>bifidobacterium lactis</i> Bb-12 after exposure for 1 h at 37°C in simulated gastric juice |      |
| 4       | Outline of stimulation and the inhibition of the growth of yoghurt bacteria in milk                       | 21   |
| 5       | An examples of the manufacture of set yoghurt                                                             | 22   |
| 6       | Picture of spray dry powders using a rotary atomizer (a) and                                              | 25   |
|         | pressure atomizer (b)                                                                                     |      |
| 7       | The bead density of calcium alginate- hi-maize starch beads                                               | 46   |
|         | affected hi-maize starch concentration                                                                    |      |
| 8       | The survival rate of L. acidophilus cells (%) in dried yoghurt                                            | 50   |
|         | affected by the different presentation forms of the probiotic cells,                                      |      |
|         | during temperature and drying times                                                                       |      |
| 9       | Color values of L. acidophilus containing dried yoghurt affected                                          | 51   |
|         | by different presentation forms of the probiotic cells, drying                                            |      |
|         | temperatures and drying times                                                                             |      |
| 10      | Moisture content (%) of L. acidophilus containing dried yoghurt                                           | 52   |
|         | affected by different presentation forms of the probiotics cells,                                         |      |
|         | drying temperatures and drying times                                                                      |      |

| 11 | Water activity of L. acidophilus containing dried yoghurt affected    | 52 |
|----|-----------------------------------------------------------------------|----|
|    | by different presentation forms of the probiotic cells, drying        |    |
|    | temperatures and drying times                                         |    |
| 12 | Rehydration property (%) of L. acidophilus containing dried           | 53 |
|    | yoghurt affected by different presentation forms of the probiotic     |    |
|    | cells, drying temperatures and drying times                           |    |
| 13 | Dispersibility property (%) of L. acidophilus containing dried        | 54 |
|    | yoghurt affected by different presentation forms of the probiotic     |    |
|    | cells, drying temperatures and drying times                           |    |
| 14 | Yield (%) of L. acidophilus containing dried yoghurt affected by      | 54 |
|    | different presentation forms of the probiotic cells, drying           |    |
|    | temperatures and drying times                                         |    |
| 15 | The acidification profile and the total titratable acidity of yoghurt | 56 |
|    | during fermentation processing                                        |    |
| 16 | The log cfu/ml of S. thermophilus and L. bulgaricus (log cfu/ml)      | 57 |
|    | during the yoghurt fermentation                                       |    |
| 17 | Color values of yoghurt powder produced by a spray drier using        | 58 |
|    | different outlet temperatures                                         |    |
| 18 | pH and total titratable acidity of yoghurt powder produced by         | 60 |
|    | a spray drier using different outlet temperature                      |    |
| 19 | The survival rate (%) of lactic acid bacteria in yoghurt powder       | 62 |
|    | produced by a spray drier using different outlet temperature          |    |
| 20 | The survival rate (%) of S. thermophilus, L. bulgaricus and           | 63 |
|    | L. acidophilus in rehydrated yoghurt solution affected by             |    |
|    | different temperatures of rehydrated water                            |    |
| 21 | pH and total titratable acidity of rehydrated L. acidophilus          | 65 |
|    | containing yoghurt solution affected by different temperature         |    |
|    | of rehydrated water                                                   |    |

| 2   | 2 Color values of rehydrated <i>L. acidophilus</i> containing yoghurt                  | 66 |
|-----|----------------------------------------------------------------------------------------|----|
|     | solution affected by different temperature of rehydrated water                         |    |
| 2   | The number of S. thermophilus in L. acidophilus containing                             | 67 |
|     | yoghurt powder affected by storage temperatures of 4°C and                             |    |
|     | room temperature and packaging materials, which were PET/                              |    |
|     | PP/Al and nylon/PE                                                                     |    |
| 2   | 4 The number of L. bulgaricus in L. acidophilus containing                             | 68 |
|     | yoghurt powder affected by storage temperatures of 4°C and                             |    |
|     | room temperature and packaging materials, which were PET/                              |    |
|     | PP/Al and nylon/PE                                                                     |    |
| 2   | The number of <i>L. acidophilus</i> containing yoghurt powder                          | 69 |
|     | affected by storage temperatures of 4°C and room temperature                           |    |
|     | and packaging materials, which were PET/ PP/Al and nylon/PE                            |    |
| 2   | 26 Moisture content (%) of L. acidophilus containing yoghurt                           | 72 |
|     | powder affected by storage temperatures and packaging materials                        |    |
| 2   | 27 Water activity (a <sub>w</sub> ) of <i>L. acidophilus</i> containing yoghurt powder | 73 |
|     | affected by storage temperatures and packaging materials                               |    |
| 2   | 28 Color value of <i>L. acidophilus</i> containing yoghurt powder                      | 74 |
|     | affected by storage temperatures and packaging materials                               |    |
| 2   | 9 Solubility (%) of <i>L. acidophilus</i> containing yoghurt powder                    | 75 |
|     | affected by storage temperatures and packaging materials                               |    |
| 803 | Rehydration (%) of <i>L. acidophilus</i> containing yoghurt powder                     | 76 |
|     | affected by storage temperatures and packaging materials                               |    |
| Co  | Water holding capacity of <i>L. acidophilus</i> containing yoghurt                     | 77 |
|     | powder affected by storage temperatures and packaging materials                        |    |
| AI  | 32 Bulk density of <i>L. acidophilus</i> containing yoghurt powder                     | 78 |
|     | affected by storage temperatures and packaging materials                               |    |

## ABBREVIATIONS AND SYMBOLS

DE Dextrose Equivalent value

MRS deMan-Rogosa-Sharpe

MRD Maximum Recovery Diluent

HHD Homofermentative and Heterofermentative Differential

LAB Lactic Acid Bacteria

PET Polyethylene tetraphthalate

SGJ Simulated Gastric Juice

PP Polypropylene

Al Aluminum

PE Polyethylene

log cfu/ml Exponential colony per milliliter

cfu/ml Colony per milliliter

cfu/g Colony per gram

min Minute h Hour

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright<sup>©</sup> by Chiang Mai University All rights reserved