TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENT	iii
ABSTRACT	v
TABLE OF CONTENTS	ix
LIST OF TABLES	xi
LIST OF FIGURES	xii
ABBREVIATIONS	xiv
1. INTRODUCTION	1
2. OBJECTIVES	15
3. LITERATURE REVIEWS	16
4. MATERIALS AND METHODS	
4.1 Equipment	21
4.2 Sample used in the studies	21
4.3 Methods	22
4.3.1 Urinary microalbumin	22
4.3.2 Urinary NAG activity	23
4.3.3 HbA _{1C} determination	23
4.3.4 Fructosamine	24
4.3.5 Blood urea nitrogen (BUN)	24
4.3.6 Creatinine	25
4.3.7 Glucose	25
4 3 8 Hrinalysis	25

4.4 N	Method of studies	26
	4.4.1 Precision studies	26
	4.4.2 Linearity studies of MA and NAG	26
	4.4.3 Accuracy studies	26
	4.4.4 Stability of BPB and CNP-NAG reagents	27
	4.4.5 Clinical values of urinary MA and NAG	28
	determinations.	
	4.4.6 Normal reference values	28
	4.4.7 Correlation of the tests	29
5. RESULTS		
.(5.1 Precision of methods.	30
	5.2 Linearity studies of MA and NAG	30
	determination methods.	
	5.3 Accuracy studies	30
	5.4 Stability of BPB and CNP-NAG reagents	31
	5.5 Correlation of the tests	31
	5.6 Cut-off predictive levels of MA and NAG	32
	5.7 Clinical values of urinary MA and NAG	32
	determinationms.	
	5.8 Reference values	33
6. DISCUSSION	ON	53
7. REFERENC	CES	60
8. APPENDIX		68
9. CURRICUI	LUM VITAE	77

LIST OF TABLES

TABI	LE	PAGE
1.	Precision of methods used for	34
	serum glucose, BUN, creatinine and	
	fructosamine determinations. (n=10)	
2.	Precision of the NAG activity determination	34
	using CNP-NAG as substrate. (n=10)	
3.	Precision of the urinary microalbumin determination	35
	with bromphenol blue (BPB) method. (n=10)	
4.	Reference ranges for urinary NAG activity,	35
	MA and serum fructosamine	
	in 100 healthy adults	
5.	Analytical recovery (%) of standard NAG	36
	(64.52 U/I) activity added into urine sample.(Average	
	of 4 determinations)	
6.	Analytical recovery (%) of standard MA (100 mg/dl)	36
	added into urine sample.(Average of 4 determinations)	
7 0	Sensitivity, specificity of urinary MA (cut-off 2.97	37
	mg/gm creat.), and NAG activity (cut-off 32.4 U/gm cre	at.)
8.	Positive and negative predictive values of	37
	urinary MA (cut-off 2.97 mg/gm creat.), NAG activity	
	(cut-off 32.4 U/gm creat.) in diabetics at different	
	prevalences	
9.	Sensitivity, specificity of urinary MA (cut-off 3.48	38
	mg/gm creat.), and NAG activity (cut-off 37.2 U/gm creat.)	eat.)
	in diabetics (using ROC curve for cut-off level determi	nation).
10.	Positive and negative predictive value of	38
	urinary MA (cut-off 3.48 mg/gm creat.), NAG activity	
	(cut-off 37.2 U/gm creat.) in diabetics at different	
	prevalences (using ROC curve for cut-off	
	level determination).	

LIST OF FIGURES

FIGURE		PAGE
1. Distribution of gluco	ose and fructosamine in	39
	petween-run (B) precision stu	dies.
2. Distribution of BUN		40
within-run (A) and b	petween-run (B) precision stu	idies.
3. Distribution of norm	nal and high levels MA in	41
within-run (A) and b	petween-run (B) precision stu	idies.
4. Distribution of norm	nal and high levels of NAG ac	ctivity in 42
	petween-run (B) precision stu	
	standard human albumin.	43
6. Calibration curve of	f standard NAG.	43
7. Stability of bromphe	enol blue reagent. (n=4)	44
8. Stability of CNP-NA	AG reagent. (n=4)	45
Correlation of MA a	and NAG activity in	45
diabetics. (n=220)		
	and NAG activity in patients	45
with diabetic nephr	ropathy. (n=14)	
_	an HbA _{1C} in diabetics. (n=22	20) 46
11. Correlation of NAC	G and HbA _{IC} in diabetics. (n	=220) 46
12. Correlation of MA	an HbA _{1C} in patients with	47
diabetic nephropath	hy. (n=14)	
13. Correlation of NAC	G activity an HbA _{IC}	47
in patients with dia	abetic nephropathy. (n=14)	
14. Correlation of MA	and fructosamine in	48
diabetics. (n=220)		
15. Correlation of NA	G activity and fructosamine is	n 48
diabetics. (n=220)		
16. Correlation of MA	and fructosamine	49
in patients with dia	abetic nephropathy. (n=14)	
——————————————————————————————————————	G activity and fructosamine	49
in patients with dia	abetic nephropathy. (n=14)	
19. Correlation of fruc	ctosamine and HbA _{1C}	50
in diabetics. (n=22		
20. Distribution of NA		51
control group (n=1	100) and diabetics (n=220).	

20. Distribution of MA in normal	51
control group (n=100) and diabetics (n=220).	
21. Receiver operating characteristics curve	52
(ROC curve) of MA level in diabetics. (n=220)	
23. Receiver operating characteristics curve	52
(ROC curve) of MA level in diabetics. (n=220)	

xiv

ABBREVIATIONS

α-KG Alpha ketoglutarate

°C Degree Celcius

%CV Percentage coefficient of variation

BPB Bromphenol blue

CHD Coronary heart disease

CNP-NAG 2-Chloro-4-nitrophenyl-N-acetyl-β-D- glucosaminide

DKA Diabetic ketoacidosis

DM Diabetes mellitus

DMF 1-Deoxy-1-morpholinofructose

DN Diabetic nephropathy

ESRD End stage renal disease

G-6-P Glucose-6-phosphate

G-Hb Glycosylated hemoglobin

GLDH Glutamate dehydrogenase

gm. Gram

gm creat. Gram creatinine

Hb Hemoglobin

HLA Human Lenkocyte Antigens

IDDM Insulin-dependent diabetes mellitus

MA Microalbumin

NADH Nicotinamide adenine dinucleotide

NAG N-Acetyl-β-D-glucosaminidase

NBT Nitroblue tetrazoliun

NHHC Non-ketotic hyperglycemic hyperrosmotic coma

NIDDM Non-insulin-dependent diabetes mellitus

r Coefficient of correlation

ROC Receiver operating characteristics

U/I Unit per litre