VII

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENT	I
ABSTRACT	II
TABLE OF CONTENTS	VII
LIST OF TABLES	XIII
LIST OF FIGURES	XIV
ABBREVIATIONS	XVII
	7
I. INTRODUCTION	1
A. Basic knowledge on bilirubin	1
B. Clinical significances of bilirubin	3
C. The usefulness of serum bilirubin measurement	6
D. Classification of bilirubin fractions in serum	7
E. Methods for measurement of bilirubin fractions in serum	10
II. LITERATURE REVIEWS	14
A. Isolation of bilirubin oxidase from Myrothecium verrucaria	14
B. Progress studies on bilirubin oxidase production	15
C. Measurement of serum bilirubin by the enzymatic	15
method using the isolated bilirubin oxidase	
III. MATERIALS AND METHODS	19
A. Materials	19
1. Specimens	19
2. Microorganisms	19
3. Instruments	19
4. Chemicals and Reagents	20
B. Methods	21
Part I. Methods for cultivation of Myrothecium verrucaria	21
for bilirubin oxidase production	
[1.] Cultivation and identification of <i>Myrothecium</i> verrucaria	21
[2.] Growth characterization of Myrothecium verrucaria	21

VIII

[3.] Optimization conditions for bilirubin oxidase production by <i>Myrothecium verrucaria</i>	22
3.1 Optimization of incubation temperature for	22
bilirubin oxidase production	22
3.2 Optimization of cultivation time for bilirubin	22
oxidase production 3.3 Optimization of pH of the media for bilirubin oxidase production	23
Part II. Methods for analysis of protein and bilirubin oxidase	23
enzyme isolated from Myrothecium verrucaria	
[1.] Protein determination	23
[2.] Methods for determining bilirubin oxidase activity	23
Part III. Methods for purification, identification and	25
characterization of bilirubin oxidase from a	
culture filtrate of Myrothecium verrucaria	
[1.] Selection of the purification technique	25
1.1 Ammonium sulfate precipitation	25
1.2 Clarification by adsorption on activated charcoal	26
1.3 DEAE-Cellulose anion exchange chromatography	26
1.4 DEAE-Sepharose anion exchange chromatography	27
1.5 Comparison of purification techniques for	28
bilirubin oxidase enzyme preparation	
[2.] Identification of bilirubin oxidase enzyme by	28
Mini Prep cell electrophoresis	
[3.] Characterization of purified bilirubin oxidase enzyme	30
3.1 Molecular weight determination by gel filtration	30
3.2 Bilirubin oxidase kinetic studies	30
 3.3 Effect of metallic ion and compounds on bilirubin oxidase activity 	31
Part IV. Application and evaluation of bilirubin oxidase methods for the enzymatic determination of bilirubin in serum	32

[1.] The proposed enzymatic method developed for	32
total and conjugated bilirubin determination in	
serum on an automated chemistry analyzer	
1.1 Optimization of bilirubin oxidase concentration	32
for the oxidation reaction of bilirubin in serum	
1.2 Calibrators for total and conjugated bilirubin	32
determination, carried out on the Beckman	
Synchron CX5 autoanalyzer	
1.3 Method for automation of bilirubin fractions	32
in serum, using bilirubin oxidase isolated from	
Myrothecium verrucaria TISTR 3112 and	
TISTR 3225	
1.4 Reference method (Beckman Instruments,	33
Jendrassik-Grof procedures)	
[2.] Evaluation of the precision of bilirubin oxidase	33
method for total and conjugated bilirubin	
determination on a Beckman Synchron CX5 autoanalyzer	
[3.] Evaluation of the accuracy of bilirubin oxidase	35
method for total and conjugated bilirubin	
determination on a Beckman Synchron CX5	
autoanalyzer	
[4.] Evaluation of linearity of bilirubin oxidase	35
method for total and conjugated bilirubin	
determination on a Beckman Synchron CX5	
autoanalyzer	
[5.] The correlation of total and conjugated	36
bilirubin determination by bilirubin oxidase	
method with the reference method	
[6.] Interference of hemoglobin on bilirubin	36
oxidase method for determination of total	
and conjugated bilirubin in serum	
Part V. Statistical analysis	36
*	

IV. RESULTS	37
Part I. Cultivation of <i>Myrothecium verrucaria</i> for bilirubin oxidase production	37
[1.] Cultivation and identification of Myrothecium verrucaria	37
[2.] The growth characteristics of <i>Myrothecium</i> verrucaria	37
[3.] Optimization conditions for bilirubin oxidase production by <i>Myrothecium verrucaria</i>	42
3.1 Optimization of cultivation temperature for bilirubin oxidase production	42
3.2 Optimization of cultivation time for bilirubin oxidase production	42
3.3 Optimization of pH of cultivation media for bilirubin oxidase production	45
Part II. Analytical methods for protein and bilirubin oxidase enzyme isolated from <i>Myrothecium verrucaria</i>	45
Part III. Purification, identification and characterization of bilirubin oxidase obtained from a culture filtrate of <i>Myrothecium verrucaria</i>	47
[1.] Selection of the purification technique 1.1 Purification of bilirubin oxidase by ammonium sulfate precipitation	47
1.2 Clarification of bilirubin oxidase in the culture filtrates by adsorption on activated charcoal	47
1.3 Purification of bilirubin oxidase on DEAE- Cellulose anion exchange chromatography	47
1.4 Purification of bilirubin oxidase on DEAE- Sepharose anion exchange chromatography	51
1.5 Comparison of yield recoveries of bilirubin oxidase purified by different methods	51
[2.] Identification of purified bilirubin oxidase separated from a culture filtrate of <i>Myrothecium verrucaria</i>	55

[3.] Characterization of bilirubin oxidase purified from culture filtrates of <i>Myrothecium verrucaria</i>	55
3.1 Molecular weight determination of a purified	55
bilirubin oxidase	
3.2 Bilirubin oxidase kinetics	59
3.3 Effect of metallic ion and compounds on	59
bilirubin oxidase activity	
Part IV. Application and evaluation of bilirubin oxidase	63
for the enzymatic determination of bilirubin	0.5
in serum	
[1.] The proposed enzymatic method developed for total	63
and conjugated bilirubin determination in serum on	05
an automated chemistry analyzer	
1.1 Proposed parameter for total bilirubin	63
determination	0.5
1.2 Proposed parameter for conjugated bilirubin	64
determination	
[2.] Evaluation of the precision of total and conjugated	64
bilirubin determination using bilirubin oxidase	
method	
[3.] Evaluation of the accuracy of total and conjugated	66
bilirubin determination by bilirubin oxidase	
method	
[4.] Linearity of total and conjugated bilirubin	66
determination by bilirubin oxidase method	
[5.] The correlation of bilirubin oxidase method	66
for total and conjugated bilirubin determination	
with the reference method	
[6.] Hemoglobin interfering effect on total and	75
conjugated bilirubin determination by bilirubin	
oxidase method	
. DISCUSSION	~~
. Discossion	77
I. SUMMARY	83
	0.5

XII

REFERENCES	84
APPENDIX	91
CURRICULUM VITAE	103

XIII

LIST OF TABLES

TABLE		PAGE
1. Optimization condition studies		34
using bilirubin oxidase enzyma Synchron CX5 autoanalyzer	tic method in a Beckman	
2. Growth characteristics of <i>Myro</i>	othecium verrucaria	41
TISTR 3112 and TISTR 3225		1
3. Purification of bilirubin oxidas		
precipitation, following by ads	orption on activated charcoal	48
4. Clarification of bilirubin oxidation on activated charcoal	se by adsorption	49
5. Comparisons of yield recoveries	es of bilirubin oxidase	54
purified by different methods		~~
6. Analytical performances of the		65
total and conjugated bilirubin of		
Beckman Synchron CX5 autoa		
7. The accuracy of total bilirubin	\\ /	69
enzymatic bilirubin oxidase me		
8. The accuracy of conjugated bil		70
using enzymatic bilirubin oxida	ase method	

XIV

LIST OF FIGURES

FIGURE		PAGE
1. Schematic representation of hen and bilirubin metabolism	ne degradation	2
 Photochemical reaction cycle for showing Z = E isomerization and disruption (or formation) of intra hydrogen bonds 	d concomitant amolecular	8
3. Structures of bilirubin glucuroni	ides	9
4. Macroscopic appearance of <i>Myr verrucaria</i> TISTR 3112 cultivat 14 days. Upper view of colonies dextrose agar plate	ted at 25 °C for	38
5. Macroscopic appearance of <i>Myr verrucaria</i> TISTR 3112 cultivat 14 days. Under view of colonies dextrose agar plate	ed at 25 °C for	38
6. Macroscopic appearance of <i>Myr verrucaria</i> TISTR 3225 cultivat 14 days. Upper view of colonies dextrose agar plate	ed at 25 °C for	39
7. Macroscopic appearance of <i>Myr verrucaria</i> TISTR 3225 cultivat 14 days. Under view of colonies dextrose agar plate	ed at 25 °C for	39
8. Microscopic appearances of <i>Mys verrucaria</i> (x400)	rothecium	40
9. Rate of growth of microorganism dextrose agar	ns on potato	41
10. Effect of cultivation temperature of <i>Myrothecium verrucaria</i> TIST TISTR 3225	-	43
11. Effect of cultivation temperature productions by <i>Myrothecium ver</i> 3112 and TISTR 3225		43

XV

12.	Effect of cultivation times on growths of	44
	Myrothecium verrucaria TISTR 3112 and	
12	TISTR 3225	
13.	Effect of cultivation times on BOX productions	44
	by Myrothecium verrucaria TISTR 3112 and	
1 4	TISTR 3225	
14.	Effect of pH of cultivation media on growths	46
	of Myrothecium verrucaria TISTR 3112 and	
	TISTR 3225	
15.	Effect of pH of cultivation media on BOX	46
	productions by Myrothecium verrucaria TISTR	
	3112 and TISTR 3225	
16.	Purification of bilirubin oxidase from a culture	50
	filtrate of Myrothecium verrucaria by DEAE-	
	Cellulose column chromatography	
17.	Elution profiles of protein purified from culture	52
	filtrates of Myrothecium verrucaria TISTR	
	3112 and TISTR 3225 by DEAE-Sepharose	
	column chromatography	
18.	Demonstration of bilirubin oxidase enzyme elution	53
	as compared with its protein elution pattern. The	
	purification of bilirubin oxidase from culture filtrates	
	of Myrothecium verrucaria TISTR 3112 and TISTR	
	3225 were performed on DEAE-Sepharose column	
	chromatography	
19.	Elution profiles of bilirubin oxidase from separated	56
	culture filtrates of Myrothecium verrucaria TISTR	
• •	3112 and TISTR 3225 by Mini Prep cell electrophoresis	
20.	The elution curves of bilirubin oxidase and molecular	57
	weight enzyme markers obtained from applying of	
	purified enzyme on Sephadex G-100 gel filtration	
0 1	column	
21.	Estimation of the molecular weight of bilirubin oxidase	58
0.0	on Sephadex G-100 gel filtration chromatography	
22.	Lineweaver-Burk plot for BOX assayed in 0.1 mol/L	60
	Tris-SDS buffer, pH 8.0 (total bilirubin determination)	

XVI

23.	Lineweaver-Burk plot for BOX assayed in 0.1 mol/L	61
	Lactic acid buffer, pH 3.7 (conjugated bilirubin	
	Determination)	
24.	Effect of metallic ion and compounds on the bilirubin oxidase activity	62
25.	The quality control chart showing intra- and inter-	67
	assay precisions of total bilirubin determination using the bilirubin oxidase method	
26.	The quality control chart showing intra- and inter-	68
	assay precisions of conjugated bilirubin determination	
	using the bilirubin oxidase method	
27.	Linearity of total bilirubin determination by BOX	71
	method	
28.	Linearity of conjugated bilirubin determination by	72
	BOX method	
29.	Comparison of total bilirubin values in serum	73
	determined by the BOX and reference methods	
30.	Comparison of conjugated bilirubin values in serum	74
	determined by the BOX and reference methods	
31.	Interference by hemoglobin in determination of	76
	total and conjugated bilirubin using bilirubin	=
	oxidase method	

XVII

ABBREVIATIONS

BOX bilirubin oxidase

BSA bovine serum albumin

CaCl₂ calcium chloride

cm centimeter

CO carbon monoxide CV coefficient of variation

DBIL direct bilirubin
DEAE diethylaminoethyl

dL deciliter g gram

Hb hemoglobin

hr hour kDa kilodalton

L liter

mg milligram minute mL milliliter

MW molecular weight NaCl sodium chloride Na₂CO₃ sodium carbonate

NADPH nicotinamide adenine dinucleotide phosphate

(reduced form)

NaHCO₃ sodium bicarbonate NaOH sodium hydroxide (NH₄)₂SO₄ ammonium sulfate

nm nanometer No number

OCV optimal condition variation

PDA potato dextrose agar
PDB potato dextrose broth
r correlation coefficient
RCV routine condition variation
rpm revolution per minute

SD standard deviation

XVIII

SDS sodium dodecyl sulfate

TEMED N, N, N', N'- tetramethylethylenediamine

TISTR Thailand Institute of Scientific and Technological

Research

UDP uridine 5'- diphosphate

U/L unit per liter V voltage

W/V weight per volume

ZnSO₄ zinc sulfate

 α alpha β beta

°C degree celsius

δ delta

E extinction coefficient

 γ gamma μL microliter μm micrometer

μmol/L micromole per liter

ε molar absorptivity

% percentage