TABLE OF CONTENTS

	Page
APPROVAL PAGE	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	oiv
LIST OF TABLES	x
LIST OF ILLUSTRATIONS	xi
ABBREVIATIONS	xiv
CHAPTER I: INTRODUCTION	1305
CHAPTER II: LITERATURE REVIEWS	5
1. Virology	5
2. Viral growth cycle	6
3. Host immune response	8
4. Immune evasion of HCMV	11/
5. Persistence and latency	12
6. Pathology	12
7. Epidemiology	13
8. Laboratory diagnosis	15
9. Trends in laboratory diagnosis of Cytomegalovirus infection	21 _ 121
10. Development of PCR technique for HCMV detection	22
11. Prevention of contamination in PCR process	Ur28versit
CHAPTER III: RESEARCH DESIGN, MATERIALS AND METHODS	31
1. Research design	e $_{31}$ V e
2. Materials and methods	34
2.1 Subjects	34
2.2 Oligonucleotide primers and probe	35

2.3 Specimen collection and preparation	36	
2.4 Cloning of the HCMV MIE gene fragment	38	
2.5 Preparation of standard DNA control	42	
2.6 Quantitation of the DNA controls	44	
2.7 Dot blot hybridization technique	46	
2.8 Optimization of the nested PCR and duplex PCR condition	48	
2.9 The HCMV DNA detection in the clinical specimens by the	52	
optimized duplex PCR		
2.10 Data analysis	52	
CHAPTER IV: RESULTS		
1. Preparation of standard controls		
2. Determination of conventional PCR assay sensitivity		
3. Optimization of the PCR conditions		
4. Detection of HCMV DNA in patients		
4.1 Retinitis patients		
4.2 Renal transplant patients	78 85	
CHAPTER V: DISCUSSION AND CONCLUSION	90	
REFERENCES	98	
APPENDIX 110		
CIRRICULUM VITAE	117	
	11/	

ลิขสิทธิมหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

Table 9081216	Page
1 Vertical transmission of human CMV infection.	2
2 Rates of HCMV infection and disease in kidney and liver transplant patients	, 0 03
according to type of infection.	
3 Immunogenic proteins of HCMV.	10
4 Interpretation of laboratory tests for HCMV infection and immunity.	20
5 HCMV MIE PCR Primers and oligonucleotide probe information.	35
6 The conditions of conventional and optimized nested PCR for amplification	76
of the HCMV MIE gene fragment and beta-globin gene	
7 The results of HCMV DNA detection by conventional and optimized duplex	83
nested PCR in HCMV suspected retinitis patients	
8 Comparison of positive results in conjunctival scraping, aqueous and vitreou	ıs 84
humor samples after HCMV DNA detection by conventional and optimized	A
duplex nested PCR.	

ลิขสิทธิมหาวิทยาลัยเชียงใหม Copyright[©] by Chiang Mai University All rights reserved

LIST OF ILLUSTRATIONS

Figure		Page	
1	HCMV genome structure	6	
2	Human cytomegalovirus genome structure. The HCMV MIE gene is		
	located between 165-178 kbp of EcoRI fragment. It is composed of		
	4 exon region (Exon1, Exon2, Exon3, and Exon4).		
3	The schematic diagram of the research design in this study.	33	
4	Structure of the human eye	34	
5	The locations of primers (FP, RP, NFP, NRP) and probe on HCMV MIE	36	
	gene.		
6	The amplification of the HCMV MIE gene fragment by the conventional	54	
	first round PCR.		
7	The amplification of the HCMV MIE gene fragment by the conventional	55	
	second round PCR.		
8	The amplification of HCMV MIE gene fragment from colonies of	56	
	transformed E. coli by the conventional first round PCR.		
9	The circular plasmid with the HCMV MIE gene fragment insert was purified	57	
	by miniprep technique.		
10	The amplification of the HCMV MIE gene fragment from miniprep plasmid	58	
	DNA by the conventional first round PCR.		
11	The amplification of a beta-globin gene from 1 to 500 ng of human genomic	60	
	DNA controls by the conventional PCR assay.		
12	The sensitivity of the conventional first round PCR assay.	61	
13	The sensitivity of the conventional second round PCR assay.	62	
14	The amplification of 10 ⁶ copies of the HCMV MIE gene fragment	64	
	(351 bp) in the presence of various MgCl ₂ concentrations by the first		
	round PCR		

15	The amplification of the HCMV MIE gene fragment (170 bp) in the	64
	presence of various MgCl ₂ concentrations by the second round PCR.	
16	Comparison in the first round HCMV MIE gene (10 ⁶ copies) amplification	65
	efficiency after adding various dNTP concentrations.	
17	Comparison in the second round HCMV MIE gene (10 ⁶ copies) amplification	66
	efficiency after adding various dNTP concentrations.	
18	The amplification of a ten-fold concentration of 0.1 to 10 ⁷ copies of the	67
	HCMV MIE gene fragment by the optimized first round PCR.	
19	The amplification of a ten-fold concentration of 0.1 to 10 ⁷ copies of the	68
	HCMV MIE gene fragment by the optimized second round PCR.	
20	The detection of optimized second round PCR product of 1 to 10 ⁷ HCMV	69
	DNA by dot blot hybridization.	
21	The amplification of 50 ng human genomic DNA combined to 10 ⁴ , 10 ⁵ and	71
	10 ⁶ copies of HCMV MIE gene fragment in the optimized first round duplex	
	PCR.	
22	The amplification of 100 ng human genomic DNA combined with ten-fold	72
	concentration of 1 to 10 ⁷ copies of HCMV MIE gene fragment in the optimized	
	first round duplex PCR.	
23	The amplification of 500 ng of human genomic DNA combined with	73
	a ten-fold concentration of 1 to 10 ⁸ copies of the HCMV MIE gene	
	fragment in the optimized first round duplex PCR.	
24	The optimized first round PCR amplification of 1, 10, 20, 30, 40 and 50 ng	74
	beta-globin gene in the presence of 10 ⁵ HCMV MIE gene fragment.	
25	PCR products achieved when different primer concentration of beta-globin	1 ₇₅ Versit
	gene and HCMV MIE gene primers were used in the duplex PCR assay.	
26	The amplification of a ten-fold concentration of 1 to 10^7 copies of the HCMV	77
	MIE gene fragment by the optimized second round duplex nested PCR.	
27	The amplification of HCMV DNA in ocular samples by the first round	79
	of conventional PCR.	

28	The amplification of HCMV DNA in ocular samples by the second round	
	of conventional PCR.	
29	The amplification of HCMV DNA in ocular samples by the optimized first	81
	round duplex nested PCR.	
30	The amplification of HCMV DNA in ocular samples by the optimized	82
	second round duplex nested PCR.	
31	Comparison of the positive results of HCMV DNA amplification in ocular	84
	samples by the conventional and optimized duplex nested PCR.	
32	Percentage of HCMV DNA positive specimens in plasma and PBMCs at	88
	2 week intervals after transplantation.	
33	The amplification of HCMV DNA from PBMCs and plasma samples in	89
	transplantation patients by the optimized first round duplex nested PCR.	
34	The amplification of HCMV DNA from PBMCs (lane1-6) and plasma	89
	samples (lane 7-9) in transplantation patients by the optimized second	
	round duplex nested PCR.	

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

ABBREVIATIONS

α	alpha
β 9/8/2	beta
γ	gamma
°C	degree celsius
μΙ	microliter
A	adenine
С	cytosine
G	guanine
T	thymine
dATP	deoxyadenosine triphosphate
dCTP	deoxycytosine triphosphate
dGTP	deoxyguanine triphosphate
DNA	deoxyribonucleic acid
dNTP	deoxyribonucleotide triphosphate
dTTP	deoxythymine triphosphate
ELISA	enzyme linked immunosorbent assay
IgA	immunoglobulin A
IgG	immunoglobulin G
IgM	immunoglobulin M
Kb	kilobasepair
LB medium	Luria-Bertani medium
M	molarity
mg O	milligram e S e M V
$MgCl_2$	magnesium chloride
min	minute

milliliter

millimolar

ml

mM

mRNA messenger ribonucleic acid MW molecular weight N normality nanogram ng nm nanometer O.D. Optical Density **PBMC** peripheral blood mononuclear cells **PCR** Polymerase Chain Reaction pmol picomole RNA ribonucleic acid Tag Thermus aquaticus

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved