TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENT	iii
ENGLISH ABSTRACT	iv
THAI ABSTRACT	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xiii
LIST OF FIGURES	×iv
ABBREVIATION AND SYMBOLS	xvi
CHAPTER I INTRODUCTION	
1.1 Hemoglobin	1
1.2 Hemoglobin synthesis throughout human life	2
1.3 Globin genes	4
1.3.1 α-globin gene cluster	4
1.3.2 β-globin gene cluster	5
1.4 Thalassemia and Hemoglobinopathies	6
1.5 Common types of thalassemia and hemoglobinopathies	7
1.5.1 α-thalassemia	7
1.5.2 α-hemoglobinopathies	10
1.5.3 β-thalassemia	10
1.5.4 β-hemoglobinopathies	11

1.6 The molecular defects of β-thalassemia	11
1.6.1 Point mutations	11
1.6.2 Deletions	11
1.7 Clinical classification of β-thalassemia	20
1.7.1 β-thalassemia minor or thalassemia trait or	20
heterozygous β-thalassemia	
1.7.2 β-thalassemia intermedia	20
1.7.3 β-thalassemia major	21
1.8 Distribution and frequency of β-thalassemia	21
1.9 Making diagnosis of β-thalassemia/ hemoglobinopathies	22
1.9.1Laboratory Investigations of β-thalassemia	23
1.9.1 Screening Tests	23
1.9.2 Diagnostic Tests	23
a) Hemoglobin (Hb) studies	23
b) DNA analysis	24
1.10 Prenatal diagnosis of β-thalassemia	26
1.11 Background of the study	27
1.12 Objectives	29
CHAPTER II METERIALS AND METHODS	
2.1 Subjects	30
2.1.1 Optimization of Amplification Refractory Mutation	30
System (ARMS)-PCR technique	rsit
2.1.2 Assessment of application potential of ARMS-PCR technique	30
for the β-thalassemia heterozygote screenning	
2.1.3 Assessment of application potential of ARMS-PCR technique	31
for HbE screenning	

2.1.4 Assessment of application potential of ARMS-PCR technique	31
in prenatal diagnosis of β-thalassemia	
2.2 Hematological studies	
2.2.1 Two-minute Erythrocyte Osmotic Fragility Test (2-min OF)	31
2.2.2 Hemoglobin identification by high performance liquid	32
chromatography (HPLC)	
2.3 DNA analysis	33
2.3.1 Genomic DNA extraction from whole blood	33
2.3.2 Genomic DNA extraction from CVS	34
2.2.3 Determination of α-thalassemia-1 (SEA) genotype	34
2.4 Amplification Refractory Mutation System (ARMS)-PCR for	36
detecting β-thalassemia mutations	
2.4.1 Single ARMS-PCR reaction mix	40
2.4.2 Multiplex ARMS-PCR reaction mix	40
2.5 Optimization of ARMS-PCR	41
2.5.1 Optimization of annealing temperature for single ARMS-PCR	41
2.5.2 Titration of primers for single ARMS-PCR	41
2.5.3 Optimization of multiplex ARMS-PCR	41
2.5.3.1 Optimization of dNTP and MgCl ₂ concentrations	42
2.5.3.2 Optimization of the amount of β -specific common primer	42
2.6 Evaluation of the optimal numbers of white blood cells for ARMS-PCR	43
2.7 Assessment of application potential of ARMS-PCR technique	43
for the β-thalassemia heterozygote screenning	
2.8 Assessment of application potential of ARMS-PCR technique for	43
HbE screenning Q n f S F e S e F V	
2.9 Assessment of application potential of ARMS-PCR for prenatal diagnosis (PND)	44

2.10 Nucleotide sequencing of β -globin gene exons	44
2.10.1 Amplification of the β -globin gene exons	44
2.10.2 Nucleotide sequencing	46
CHAPTER III RESULTS	
3.1 Optimization of single ARMS-PCR	48
3.1.1 Optimization of annealing temperature	48
3.1.2 Titration of primer quantities used in single ARMS-PCR	49
3.2 Final evaluation of single ARMS-PCR for detection of β-thalassemia mutations	52
3.3 Optimization of multiplex ARMS-PCR	58
3.3.1 Optimization of dNTP concentration	58
3.3.2 Optimization of MgCl ₂ concentration	59
3.3.3 Optimization of the amount of β -specific common primer	60
3.4 Final evaluation of multiplex ARMS-PCR for detection	61
of β-thalassemia mutations	
3.5 Evaluation of the optimal numbers of white blood cells for ARMS-PCR	66
3.6 Assessment of application potential of ARMS for β-thalassemia	68
heterozygote screening	
3.7 Assessment of application potential of ARMS-PCR technique	69
for Hb E screening	
3.8 Assessment of application potential of ARMS-PCR	69
for prenatal diagnosis (PND)	
3.8.1 PND for β-thalassemia major	69
3.8.2 PND for β-thalassemia/Hb E disease	70
3.8.3 PND for β-thalassemia/Hb E disease by DNA analysis from CVS	70

CHAPTER IV DISCUSSION	76
CHAPTER V CONCLUSION	81
CHAPTER IV REFERENCES	82
CHAPTER VII APPENDIX	90
Appendix A: List of chemicals	91
Appendix B: List of instruments	92
Appendix C: Reagent preparations	93
Appendix D: Raw data in β-thalassemia	95
heterozygote screening	
Appendix E: Raw data in Hb E screening	100
Appendix F: Raw data in PND cases at risk β-thalassemia	· 103
CURRICULUM VITAE	108

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF TABLES

TABLE 981818	PAGE
1.1 Hemoglobin types in human	3
1.2 Summary of some molecular defects causing β-thalassemia	14
1.3 Identification criterion for high risk couples of β-thalassemia and	28
hemoglobinopathies	
3.1 Effects of WBC counts and WBC numbers on success of ARMS-PCR	68

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved

LIST OF FIGURES

FIC	GURE NSIELLE	PAGE
1.1	Model of hemoglobin A $(\alpha_2\beta_2)$, a view of the subunit contacts	1
	and the heme pocket.	
1.2	Schematic representation of the pattern of synthesis of the different	3
	globin chains at various stages of development	
1.3	Localization and organization of $\alpha\text{-}$ and $\beta\text{-}\text{globin}$ genes clusters	5
1.3	Extent of various deletions in the α -globin gene cluster associated with	8
	α - thalassemia (α -thal 1 and α -thal 2)	
1.5	Model of unequal crossover events in the α-globin gene cluster	9
	resulting in α -thalassemia-2 deletions and reciprocal triple α gene clusters	í
1.6	Deletions of the β -globin gene and flanking DNA associated with $\beta^{\text{o}}\text{-thalasser}$	mia 13
1.7	Distribution of β-thalassemia across the world	22
2.1	Schematic representation of location of primers for detection of	34
	α-thalassemia –1 (SEA) type	
2.2	Agarose gel electrophoresis for detection of α-thalassemia –1 (SEA) type	35
2.3	Model of primers localization of the single ARMS-PCR ((A) and (B))	37
2.4	Model of primer location of multiplex ARMS-PCR	38
2.5	Model of primer locations of direct nucleotide sequencing of β -globin gene	45
3.1	The amplified products of codons 41/42 generated from the	49
	single ARMS-PCR at different annealing temperature (59°C – 69°C).	
3.2	Titration of primer concentration used in single ARMS-PCR of condon 17	50
3.3	Titration of primer concentration used in single ARMS-PCR of condons 41/42	50
3 /	Titration of primer concentration used in single ARMS-PCR of condons 71/72	51

3.5 Titration of primer concentration used in single ARMS-PCR of HbE	51
3.7 Detection of codon 17 by single ARMS-PCR	53
3.8 Detection of codon 41/42 by single ARMS-PCR	54
3.9 Detection of codon 71/72 by single ARMS-PCR	55
3.10 Detection of Hb E by single ARMS-PCR.	56
3.11 Detection of IVS I-nt 1 G-T by single ARMS-PCR	57
3.12 The result of dNTP concentration titration in multiplex ARMS-PCR	58
3.13 The result of MgCl ₂ concentration titration in multiplex ARMS-PCR	59
3.14 The result of titration for optimal concentration of common primer	60
3.15 The results of multiplex ARMS for detection of codons 41/42 and cod	on 17. 62
3.16 The results of multiplex ARMS for detection of codon 17and Hb E	63
3.17 The results of multiplex ARMS for detection of codons 41/42 and Hb	E 64
3.18 The results of multiplex ARMS for detection of codons 41/42,	65
codon 17 and codons 71/72	
3.19 The results of evaluation of the optimal numbers of white blood cells	67
for single ARMS-PCR (A) and multiplex ARMS-PCR (B)	
3.20 The results of multiplex ARMS-PCR for detection at codons 17,	71
41/42 and 71/72 in PND cases	
3.21 (A) The Hb types of fetal blood identified by HPLC in	72
β-thalassemia major case	
(B) The Hb types of fetal blood identified by HPLC in	73
normal case	
3.22 (A) Direct nucleotide sequencing results and	74
(B) HPLC result of Hb Tak and Hb E	75

ABBREVIATIONS AND SYMBOLS

α Alpha

ASO allele specific oligonucleotide

β beta

bp base pairs

°C degree celsius

δ delta

dNTPs deoxynuclotide triphosphates

DNA deoxyribonucleic acid

DW distilled water

ε epsilon

EtOH ethyl alcohol

EDTA ethylenediamine tetraacetic acid

gamma

γ

Hb hemoglobin

HbCs hemoglobin Constant Spring

HbE hemoglobin E

HPLC high performance liquid chromatography

IVS intervening sequence

Kb kilobase

LCR locus control region

MgCl₂ magnesium chloride

Mg⁺⁺ magnesium ion

μI microlitre

μM micromolar

ml millilitre

mM millimolar

min minute

SEA southeast asian

ng nanogram

OD optical density

% percent

PBS phosphate buffered saline

NSS normal saline solution

PCR polymerase chain reaction

KCL potassium chloride

ψ pseudo

NaOAc sodium acetate

TSR template suppression reagent

θ theta

UTR untranslated region

ζ zeta

RDB reverse dot-blot

Cd codon

CVS chorionic villi sampling

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright[©] by Chiang Mai University All rights reserved