TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENT	iii
ENGLISH ABSTRACT	iv
THAI ABSTRACT	vi
TABLE OF CONTENTS	viii
LIST OF TABLES	xii
LIST OF FIGURES	xiii
ABBREVIATIONS AND SYMBOLS	xv
CHAPTER I INTRODUCTION	
1.1 Hemoglobin	1
1.1.1 Hemoglobin structure	1
1.1.2 Hemoglobin synthesis	3
1.1.2.1 Heme Synthesis	3
1.1.2.2 Globin synthesis	4
1.1.3 Globin genes	5
1.1.3.1 Globin genes cluster	6
1.1.4 Thalassemia and hemoglobinopathies	8

1.1.5 Distribution of thalassemia and hemoglobinopathies across the world	8
1.1.6 Alpha (α) thalassemia	9
1.1.7 Alpha (α)-hemoglobinopathies	10
1.1.8 Beta (β) thalassemia	10
1.1.9 Beta (β)-hemoglobinopathies	11
1.1.10 Molecular defects in β-thalassemia	12
1.1.10.1 Nondeletional mutants	12
1.1.10.2 Deletional β-thalassemia	14
1.1.11 Common β-thalassemia mutations in Thailand	24
1.1.12 Clinical classification of the β-thalassemias	25
1.1.13 Pathophysiology	26
1.1.14 Complication of β -thalassemia	27
1.1.15 Iron overload	27
1.1.16 Hereditary hemochromatosis (HH)	29
1.1.17 Zinc protoporphyrin (ZPP)	33
1.1.18 ZPP, Hereditary Hemochromatosis (HH) and iron overload in β -	34
thalassemia (review literature)	
1.1.19 Objectives	36
CHAPTER II MATERIALS AND METHODS	
2.1 Subjects	37
2.2 Laboratory investigations	37
2.2.1 Hematological investigation	37
2.2.1.1 Complete Blood Count (CBC)	37
2.2.1.2 Determination of zinc protoporphyrin (ZPP) levels	38
2.2.1.3 Determination of influence of bilirubin on ZPP levels	39
2.2.1.4 Hb identification by high performance liquid chromatography	39
(HPLC)	

2.2.1.5 Iron studies	40
A. Serum Iron (SI)	40
B. Total Iron Binding Capacity (TIBC)	41
C. Transferrin Saturation (TS)	42
2.2.1.6 Determination of blood lead levels	42
2.2.2 DNA analysis	43
2.2.2.1 DNA preparation from buffy coat	43
2.2.2.2 DNA preparation from Chelex TM	44
2.2.2.3 Survey for the HFE gene polymorphism	45
2.2.2.4 Detection of β-thalassemia mutations	49
2.3 Statistical analysis	50
CHAPTER III RESULTS	
3.1 Investigation of polymorphism in HFE gene	51
3.2 Effect of bilirubin on ZPP levels determined by hematofluorometric technique	51
3.3 Basic red blood cell parameters of the subjects	53
3.4 Hemoglobin identification	54
3.5 Zinc protoporphyrin (ZPP) levels	56
3.6 Iron parameters	56
3.7 Comparison of ZPP levels	57
3.8 Comparison of SI, TIBC and TS levels	57
3.9 Relationship of ZPP with SI, TIBC and TS levels	60
3.10 Blood lead levels	65
vright [©] by Chiang Mai Univers	
CHAPTER IV DISCUSSION	6,6
CHAPTER V CONCLUSION	e 70
CUADTED IT DEFEDENCES	71

CHAPTER VII API	PENDIX		79
APPENDIX A	List of chemicals		79
APPENDIX B I	ist of instruments		81
APPENDIX C	Reagents preparation		82
APPENDIX D	The data of the patients with β -thalassemia/HbE analyz	ed in	84
	the present study		
APPENDIX E T	The data of the patients with homozygous β-		87
t	halassemiaanalyzed in the present study		
APPENDIX F	The data of the patients with homozygous β-		89
1 14 / 4	thalassemiaanalyzed in the present study		
CURRICULUM VII	TAE		91

LIST OF TABLES

TABLE		PAGE
1.1	Normal hemoglobin types in human at different developmental stages	3
1.2	Point mutations and frameshifts causing (silent β-thalassemia)	15
1.3	β-thalassemia mutations in Thailand	24
3.1	Basic hematological data of the subjects analysed in the study	54
3.2	Comparison of red blood cell parameters	54
3.3	Hemoglobin types and their relative quantities in different types of subjects.	55
3.4	Genotypes of β-thalassemia diseases in the studied subjects.	55
3.5	ZPP, SI, TIBC and TS levels in the cohort of subjects analysed in the	56
	thesis. The values are expressed in mean ± SD	
3.6	Comparison of ZPP, SI, TIBC and TS levels in the studied subjects.	57

LIST OF FIGURES

FIGURE		PAGE
1.1	The hemoglobin molecule	2
		2
1.2	Changes in biosynthesis of globin chains during development	2
1.3	Heme biosynthetic pathway	4
1.4	Schematic representation of α and β -globin gene clusters and	7
	combinations of globin genes to form functional hemoglobin	
	molecules	
2.1 (A)	Schematic representation of the DNA segment of the HFE gene	47
2.1 (B)	Mbo I digested PCR products run on 3.0% agarose gel	47
2.2 (A)	Schematic representation of the DNA segment of the HFE gene	48
2.2 (B)	Rsa I digested PCR products run on 3.0% agarose gel	48
2.3	PCR products of multiplex ARMS-PCR to detect cd 41/42(-TTCT)	50
	and cd 17 (A-T) in b-globin gene and run on 2% agarose gel	
3.1	Comparison of ZPP levels between unwashed (A) and washed (B)	52
	blood samples among individuals with high total Bilirubin (TB)	
3.2	Comparison of ZPP levels between unwashed (A) and washed (B)	52
	blood samples among individuals with normal total Bilirubin (TB)	
3.3	Relationship of ZPP levels and total bilirubin (TB) levels in all	53
	samples	
3.4	Comparison of ZPP levels in non-thalassemia (A), β-thalassemia/HbE	58
	disease (B) and homozygous β -thalassemia (C)	
3.5	Comparison of SI levels in non-thalassemia (A), β-thalassemia/HbE	58
	disease (B) and homozygous β-thalassemia (C)	
3.6	Comparison TIBC levels in non-thalassemia (A), β-thalassemia/HbE	59
	disease (B) and homozygous β-thalassemia (C)	

3.7	Comparison of TS in non-thalassemia (A), β-thalassemia/HbE	59
	disease (B) and homozygous β-thalassemia (C)	
3.8	Relationship of ZPP and SI levels in non -thalassemic individuals	61
3.9	Relationship of ZPP and SI levels in patients with β -thalassemia /Hb	61
	E disease	
3.10	Relationship of ZPP and SI levels in patients with homozygous β -	62
	thalassemia	
3.11	Relationship of ZPP and TIBC levels in non-thalassemic individuals	62
3.12	Relationship of ZPP and TIBC levels in patients with β-	63
	thalassemia/Hb E disease	
3.13	Relationship of ZPP and TIBC levels in patients with homozygous β -	63
	thalassemia	
3.14	Relationship of ZPP and TS levels in non-thalassemic individuals	64
3.15	Relationship of ZPP and TS levels in patients with β -thalassemia/Hb	64
	E disease	
3.16	Relationship of ZPP and TS levels in patients with homozygous β-	65
	thalassemia	
	C) mas	
	141 IINIVERS	

ABBREVIATIONS AND SYMBOLS

α alpha

β beta

bp base pairs

BSA bovine serum albumin

CBC complete blood count

⁰C degree celsius

 δ codon delta

dNTPs deoxynuclotide triphosphates

DNA deoxyribonucleic acid

DW distilled water

ε epsilon

EDTA ethylenediamine tetraacetic acid

EP erythrocyte porphyrin

γ gamma

Hb hemoglobin

HbCS hemoglobin Constant Spring

HbE hemoglobin E
HbF hemoglobin F

HH hereditary hemochromatosis

HPLC high performance liquid

chromatography

IVS intervening sequence

Kb kilobase

KCl potassium chloride

LIC liver iron concentration

LCR locus control regiion magnesium chloride $MgCl_2$ μl microlitre micromolar μM ml millilitre millimolar mMminute min nanogram ng NSS normal saline solution optical density OD % percent **PCR** polymerase chain reaction Ψ pseudo θ theta SI serum iron TIBC total iron binding capacity TS transferrin saturation UTR untranslated region zeta **ZPP** zinc protoporphyrin