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CHAPTER 3 

NUMERICAL EXAMPLES 

 

3.1 DYNAMIC ADJUSTMENT OF AGE DISTRIBUTION IN 

KNOWLEDGE WORKER MANAGEMENT 

The first problem is reconsidered here again.  The HRM policy for an age 

distribution is stated as follows.  For a given age distribution at present year P0 = 

{EA1(t0),…,EAj(t0),…,EANAge(t0)}, it is desired that the age distribution PNYear = {EA1 

(tNYear),…, EAj(tNYear),…,EANAge(tNYear)} in the next NYear years after the present year t0 

be close to the desired age distribution PD = {EA1
D
,…, EAj

D
,…,EANAge

D
} as much as 

possible.  The adjustment of the age distributions P0 to PNYear is achieved via the 

consecutive adjustment in the number of employees at various ages.  Accordingly, a 

mathematical expression which represents such a procedure can be given as 

 

     iAiAiA ttEtE
jjj

  11
 ;  i = 1,…,NYear  and   j = 1,…,NAge   (3.1) 

  0
0

iA tE    ; i                (3.2) 

11  jj AA    ; j                (3.3) 

and  11  ii tt    ; i                (3.4) 

 

, where EAj(ti)   and Aj(ti)  .  Note that (3.3) says the difference between the 

consecutive age group is equal to 1 year old.  The number of employees EAj(ti) is 

taken as percentage of total number of employees, i.e. 

 

  100
1




NAge

j

iAj tE  ; i     (3.5)
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This adjustment has to be decided and implemented by the HRM department and is 

the subject of the study in this paper.  When Aj(ti) equals to 0’s for all Aj’s and ti’s, (1) 

is just an age evolution for every passing year.  Consequently, (3.1) describes both the 

dynamics of age evolution and the process of the age-distribution adjustment.  

Equation (3.1) may be extended to the case of resignation.  However, it is beyond the 

scope of this study. 

According to the HRM policy for an age distribution above, the following 

optimization problem is formulated: 

 iAj t
Min


  
2

1





NAge

j

NYearAj

D

Aj tEEERR     ; i = 1,…,NYear 

and   j = 1,…,NAge          (3.6.1) 

 

, or  
 iAj t

Min


   
2

1





NAge

j

iAjAj

D

Aj tEEERR    ; i = 1,…,NYear 

and   j = 1,…,NAge      (3.6.2) 

, subject to           0iAj tE                 ; i and j    (3.7) 

 

and                100
1




NAge

j

iAj tE  ; i                   (3.8) 

 

where  

NAge  : The total number of age groups 

Nyear : The year that the adjustment in the age distribution is expected to meet the 

desired age distribution 

P0  : The age distribution at present year 

PNYear : The age distribution at the NYearth year after the present year  

PD  : The desired age distribution 

Aj   : The jth age group  

ti  : The ith year 

 EAj(ti) : The number of employees in the age group Aj at time ti 

EAj
D
 : The desired number of employees in the age group Aj 
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Aj(ti)  : The adjustment magnitude of the number of employees in the age group Aj 

at time ti   

  : The set of real numbers 

ERR  : The total discrepancy between PNYear and PD 

Aj(ti), i = 1,…,NYear and j = 1,…,NAge, are the variables to be optimally 

determined.   A set of inequality constraints (3.7) are required for the non-negativity 

of the number of employees at all times.  The 100-percentage criteria of the number of 

employees at all times, as given previously by (3.3), are preserved by a set of equality 

constraints (3.8).  The optimization problem considered here involves the dynamics of 

a system subjected to multiple constraints. 

The fitness function of a chromosome  F  is defined as 

 
 


O

F
1

    ; ∆ = {Aj(ti)| i = 1,…,NYear and j = 1,…,NAge} (3.9) 

, in which O(∆) is defined as 
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vk(∆)   : The violation magnitude of the kth constraint   

<vk(∆)> : The average of vk(∆) over the population 

ck   : The penalty parameter for the kth constraint defined at each generation 

NCon : The total number of constraints 

 F  : The fitness function 

   : The tolerance for the 100-percent criteria 

Following the adaptive penalty GA described previously, the penalty factor ck 

is given by 
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The equality constraint (3.8) is modified to be an inequality constraint 

 

 






100

100
1

NAge

j

iAj tE

  ; i                     (3.12) 

 

,where max(ERRinf (∆)) is the maximum of the objective function values for the 

current  population in the infeasible region. The tolerance  can be arbitrarily set but is 

normally a small value. 

Three cases of study are considered in this paper.  In all cases, the range of age 

groups includes the age from A1 = 25 years old to A35 = 59 years old.  This implies 

that the youngest age that will be taken into the organization is 25 and the employee 

retires from the organization after 59 years old.  NYear is equal to 5.  In other words, 

the desired age distribution is target at the next 5 years after this present year.  The 

present age distribution P0 and the desired age distribution P5 are shown in Figure 1.  

The tolerance for the 100-percent criteria  is set to be 0.01. 

 

 

Figure 3.1.  The present age distribution P0 and the desired age distribution P5 at 5 

years. 
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The first case is considered as follows.  The adjustment of the number of 

employees is performed specifically at the age groups A1 = 25, A11 = 35, A16 = 40, and 

A26 = 50.  The adjustments in these age groups are time-invariant.  That is, A1(ti) = 

A1, A11(ti) = A11, A16(ti) = A16, and A26(ti) = A26, whereas the other adjustments are 

equal to null.  Total number of constraints NCon is equal to 30. 

Ten simulations of GA, each of which evolves for 500 generations, are 

performed.  The population size is 100.  The best result from all simulations is taken 

as the adjustment magnitudes (see Figure 3.2) and is used to compute the age 

distribution at NYear = 5 (see Figure 3.3).  Figure 3.4 shows the evolution of the age 

distribution which indicates that the set of constraints (3.7) are not violated, i.e. the 

number of employees is greater or equal to zero.  It is noted that all adjustment values 

are discrete.  However, lines are connected between points in the figure in order to 

facilitate the visualization.   Table 3.1 reports the summation of the number of 

employees in each consecutive year.  It is clearly seen that the 100-percent criteria are 

satisfied under the prescribed tolerance. 

 

 

Figure 3.2. Adjustment magnitudes obtained from GA for study case 1. 
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A distinct discrepancy between the resulting age distribution and the desired 

one can be perceived in Figure 3.3.  This suggests that the adjustment at only 4 

specific age groups is not sufficient to alter the present age distribution to the desired 

one within the required time frame of 5 years.  A larger number of age groups may be 

necessary for accelerating the adjustment process of the age distribution.  

Corresponding to this notion, the following adjustments are introduced: Aj(ti) = Aj, 

where j = 1,…,35.  Thus, the adjustments are performed from the age of 25 years old 

to that of 59 years old.  Consequently, total number of constraints NCon is equal to 

185. 

 

 

 

Figure 3.3. Age distribution at NYear = 5 for study case 1. 

 



55 

 

 

 

Figure 3.4. Evolution of age distribution for study case 1. 

 

 

Table 3.1 : Summation of the number of employees in each year for study case 1. 

 

  


35

1j

iAj tE  

Present 100.00 

Year 1 100.67 

Year 2 100.85 

Year 3 100.52 

Year 4 99.69 

Year 5 99.87 
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In this second case, the number of simulations of GA, the number of 

generations, and the population size are the same as in the first case.  The best result 

from all simulations is taken as the adjustment magnitudes (see Figure 3.5) and is 

used to compute the age distribution at NYear = 5 (see Figure 3.6).  All the results are 

shown in Figures 3.6 and 3.7, respectively.  Figure 3.7 and Table 3.2 show that all the 

constraints are satisfied. 

 

 

Figure 3.5. Adjustment magnitudes obtained from GA for study case 2. 

 

 

Figure 3.6. Age distribution at NYear = 5 for study case 2. 
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Figure 3.7. Evolution of age distribution for study case 2. 

 

 

Table 3.2 : Summation of the number of employees in each year for study case 2. 

  


35

1j

iAj tE  

Present 100.00 

Year 1 100.83 

Year 2 100.63 

Year 3 100.81 

Year 4 99.58 

Year 5 99.98 

 



58 

 

The comparison between both cases of study show that the adjustment process 

to the age distribution can be significantly improved when the adjustment of the 

number of employees is applied simultaneously on all age groups under a given time 

frame.  However, the adjustment process according to the second case of study is 

rather hypothetical in that every age group is modified.  Instead, a limited number of 

age groups should be considered.  In the third case of study, the following adjustments 

are introduced: Aj(ti) = Aj, where j = 1,…,31.  Thus, the adjustments are performed 

from the age of 25 years old to 55 years old.  The corresponding total number of 

constraints NCon is equal to 165.  GA is then employed to search for the optimal 

adjustment magnitudes.  The number of simulations of GA, the number of 

generations, and the population size are the same as in the first case.   Figures 3.8 to 

3.10 show the numerical results for the third case of study. 

 

 

Figure 3.8. Adjustment magnitudes obtained from GA for study case 3. 
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Figure 3.9. Age distribution at NYear = 5 for study case 3. 

 

 

 

 

 

Figure 3.10. Evolution of age distribution for study case 3. 
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The performance of each respective HR planning scheme, i.e. the adjustment 

process, can be visualized using Figures 11 to 13, in which the histogram of the 

absolute deviation of the computed age distribution and the desire one are depicted, 

respectively.  The histograms confirm that the second and third adjustment processes 

lead to better age distributions than that in the first case of study.  There is no distinct 

difference in the absolute deviation magnitude between the second and the third case.  

In addition, the absolute deviation in those two cases lies in the lower order of 

magnitude when compared with the first case study.  The absolute deviation 

magnitude in the two cases, i.e. second and third ones, is distributed mainly in the 

range of 0-1 % while the one in the first case is found the range of 0-4%.  In this 

regard, the adjustment process with the adjustment magnitudes applied at a spectrum 

of age group is an alternative when the rapid convergence to the desired age 

distribution within a limited time frame is desired. 

 

 

 

Figure 3.11. Histogram of absolute deviation for study case 1. 
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Figure 3.12. Histogram of absolute deviation for study case 2. 

 

 

 

Figure 3.13. Histogram of absolute deviation for study case 3. 



62 

 

3.2 OPTIMAL LONG-TERM PLANNING OF KNOWLEDGE WORKERS 

The long-term planning of knowledge workers is revisited again here.   The 

optimization problem is formulated as follows: 

Minimize     



NYear

i

ii DWSW,O
1

2
DS   (i = 1,...,NYear) (3.12) 

where, 

S : Vector of supplied knowledge workers in the ith year SWi 

D : Vector of demanded knowledge workers in the ith year DWi  

SWi : Supplied knowledge workers in the ith year 

DWi : Demanded knowledge workers in the ith year 

NYear : Total number of years to be considered in the planning 

, where    TNYeari SWSWSW 1S    (3.13) 

 TNYeari DWDWDW 1D   (3.14) 

 

Subject to:    ii TBUTC  DS,0      (3.15) 

TBUi : Upper bound of total budget available in the ith year 

TCi : Total cost in the ith year  

The evolution of the students at respective academic year in each year is: 

 

1-1 12 iii STST       (3.16) 

1-2 23 iii STST       (3.17) 

1-3 34 iii STST       (3.18) 

1-4 4iii STG       (3.19) 

 

ST1i : number of first academic-year students attending the universities in the ith year 

ST2i : number of second academic-year students in the ith year 

ST3i : number of third academic-year students in the ith year 

ST4i : number of fourth academic-year students in the ith year 

G     : number of graduates from the university in the ith year 
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i1 : percentage of the first academic-year students that pass to the second year in the 

ith year 

i2 : percentage of the second academic-year students that pass to the third year in the 

ith year 

i3 : percentage of the third academic-year students that pass to the fourth year in the 

ith year 

i4 : percentage of the fourth academic-year students that graduate from the university 

in the ith year 

The supply is described by 

 

iiiii RTWRWGSWSW  1    (3.20) 

 

In this optimization problem, the supplied knowledge workers in the ith year, i.e. SWi 

(i = 1,...,NYear) are the design variables to be determined.  The knowledge workers 

who resign and are retired from the work system in each year are given by 

1 iRWii SWRW       (3.21) 

1 iRTWii SWRTW       (3.22) 

in which, 

αRWi : percentage of RWi with respect to SWi-1 

αRTWi : percentage of RTWi with respect to SWi-1 

RWi : number of knowledge workers resigning from the work system in the ith year 

RTWi : number of knowledge workers retiring from the work system in the ith year  

The annual cost incurred by the education is  

iiiiiiiii STFTCOSTSTTCOSTSTSCOSTSTFCOSTTC 4321  (3.23) 

where 

 FCOSTi : cost for educating a first year student in the ith year 

SCOSTi : cost for educating a second year student in the ith year 

TCOSTi : cost for educating a third year student in the ith year  

FTCOSTi : cost for educating a fourth year student in the ith year  

Finally, the initial conditions are 
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o0 SWSW        (3.24) 

o0 11 STST        (3.25) 

o0 22 STST        (3.26) 

o0 33 STST        (3.27) 

o0 44 STST        (3.28) 

 

in which 

SWo : Supplied knowledge workers in the starting year 

ST1o : number of first academic-year students in the starting year 

ST2o: number of second academic-year students in the starting year 

ST3o: number of third academic-year students in the starting year 

ST4o: number of fourth academic-year students in the starting year 

 

It should be noted that the number of the first academic-year students 

attending the universities in respective years is the variable to be determine, i.e. ST1i 

(i = 1,…,NYear). 

 

According to the adaptive penalty GA used, the fitness function F(S) is 

defined as 
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j
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The adaptive penalty scheme is given by 
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inf
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where max(O
inf

(S,D)) is the maximum of the objective function values in the current  

population in the infeasible region, vj(S,D)  is the violation magnitude of the jth 

constraint.  <vj(S,D)> is the average of vj(S,D) over the current population.  kj is the 

penalty parameter for the jth constraint defined at each generation.  The violation 

magnitude is defined as 

 

 
   



 


0

0  ; jjjj
j

TBUTCTBUTC
v

DS,DS,
DS,   (3.31) 

 

The following information is used in the numerical examples.  The evolution 

of the DWi : demanded knowledge workers is given in Figure 3.14. 

 

Figure 3.14. Demand of knowledge workers. 
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The development of the cost for each academic year is shown in Figure 3.15. 

 

 

Figure 3.15.  Costs for educating students at each respective academic-year. 

 

 

The passing rate is shown in Figure 3.16. 

 

 

Figure 3.16. Passing rate. 
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Figure 3.17 and Figure 3.18 display the resigning rate and retiring rate, 

respectively.  The upper bound of total budget available in each year is given in 

Figure 6.  The initial conditions are as follow: ST1o = 3909, ST2o = 3788, ST3o = 

3492, ST4o = 3173, and SWo = 10000.  The total number of year is equal to 10, i.e. 

NYear = 10. 

 

 

Figure 3.17. Resigning rate. 

 

 

 

Figure 3.18. Retiring rate. 
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Figure 3.19. The upper bound of total budget available in each year. 

 

 

GA is employed with the following parameters. The GA search uses a 

population size of 100. The number of generations used in the search is 100. A two-

point crossover is utilized with a crossover rate of 0.8. The mutation rate is taken as 

0.002. Figure 3.20 shows the solution of the optimization problem. 

 

 

Figure 3.20.  The optimal number of the first academic-year students that can be 

supported. 
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3.3 OPTIMAL DESIGN OF APPOINTMENT SYSTEM FOR 

OUTPATIENT SERVICE 

The optimal design of doctor appointment system is considered here again.  

The arrival time of each consultation case is classified into two types.   For the first 

consultation case, the arrival time is related to the appointment time as follows: 

 

ijiij tA        (3.32) 

 

where 
ij  is the time deviating from the appointment time ti.   The deviation time can 

be random and thus treated as a random variable.   The punctuality of an appointed 

patient is interpreted from the condition 

 















arrival late0

arrival punctual0

arrivalearly 0

ij     (3.33.1) 

 

When considering that the earliness or waiting prior to appointment time is not 

a consequence of the appointment system as in [Cayirli and Veral 2003], then ij   is 

defined as 

 









arrival late0

arrival punctual andearly 0
ij    (3.33.2) 

 

For the second consultation case, the arrival time is given by 

 

ijijij TLEFA       (3.34) 

 

where EFij is the ending service time after the first consultation and TLij is the time 

required for the laboratory tests of that patient, respectively.   The ending service time 

after the first consultation can be computed from Eq. (3.36). 

The starting service time  ijB  is obtained from 
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  
jiijij E,AmaxB 1   ; 

jNPi ,...,2   (3.35.1) 

and 

 
111 t,AmaxB jj       (3.35.2) 

 

which reflects the fact that the first patient to each doctor can have the healthcare 

service only after the starting office hour. 

The ending service time of each consultation case, i.e. first or second 

consultation, is defined as 

 

ijijij LBE        (3.36) 

 

Lij is equal to zero if the ith-block patient under the jth doctor is absent or no-show.   

In addition, when the patient under consideration requires the second consultation and 

Eij corresponds to the ending service time after the first consultation, then Eij is further 

used as EFij for the computation of the arrival time for the corresponding second 

consultation case.   That is 

 

ijij EEF        (3.37) 

 

for its used in Eq. (3.33).   It should be noted that the length of service time Lij is 

separated into two cases in all mathematical expressions.   In the first consultation 

case, the length of service time for the first consultation L1ij must be used for Lij, i.e. 

setting 

 

ijij LL 1       (3.38.1) 
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The second consultation case fixes the length of service time for the second 

consultation L2ij for Lij 

 

ijij LL 2       (3.38.2) 

 

Next the relevant performance indices will be defined.   First, the waiting time 

Wij of the ith-block of consultation case (either first or second) under the jth doctor is  

 

 
ijijij AB,maxW  0      (3.39) 

 

The total waiting time corresponding to the service from the jth doctor Wj is  

 





jNP

i

ijj WW
1

      (3.40) 

The total waiting time in the appointment system WT is thus 

 





nD

j

jT WW
1

      (3.41) 

 

The average waiting time of a patient WA is  

 

T

DP

A W
nN

W
1

      (3.42) 

where 





nD

j

jP NPN
1

      (3.43) 

 

The overtime of the jth doctor OTj is obtained from 

 

 fjNPj tE,maxOT
j
 0     (3.44) 
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where ENP,j is the ending service time of the last consultation case under the jth 

doctor.   The definition of the jth-doctor overtime implies that there is no overtime if 

the doctor finishes the work before the office hour. 

The total overtime in the appointment system OTT is 

 





nD

j

jT OTOT
1

     (3.45) 

 

The average overtime for a doctor OTA is 

 

T

D

A OT
n

OT
1

      (3.46) 

 

The jth doctor idle time incurred just before the arrival of the ith-block of consultation 

case (either first or second)  is 

 

  
jiijij EA,maxIT 10   ; jNPi ,...,2   (3.47.1) 

 

and 

 

 
111 0 tA,maxIT jj       (3.47.2) 

 

The total idle time of the jth doctor ITj is 
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The inclusion of the overtime term into the computation of the total idle time suggests 

that the free time of the doctor before the end of the office hour be considered as an 

idle time as well. 

 

The total idle time in the appointment system ITT is 

 





nD

j

jT ITIT
1

      (3.49) 

 

The average idle time for a doctor ITA is 

 

T

D

A IT
n

IT
1

       (3.50) 

 

It should be noted that the performance indices as defined above can be combined in a 

various ways to establish the performance functions of the appointment system.   As 

an example, the performance of an appointment system is measured through the 

expected total cost of appointment system E[CT] as defined by 

 

       TITTOTTWT ITEcOTEcWEcCE    (3.51) 

 

where cW, cOT, and cIT is the cost per time unit associated to WT, OTT, and ITT, 

respectively.   The symbol E[f(X)] denotes the expectation of a function f(X).   A 

comprehensive collection of performance measures used in the literature can be found 

in [Cayirli and Veral 2003].   

 The optimal design of this appointment system is defined as follows: 

 

 
        
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

          (3.52) 

 

Subject to 

501  Dn      (3.53) 
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0block t      (3.54) 

   WNpatientDA t,nWE  
50block   (3.55) 

   OTNpatientDA t,nOTE  
50block   (3.56) 

   ITNpatientDA t,nITE  
50block   (3.57) 

 

where W, OT, and IT are the thresholds of the average waiting time of a patient, the 

average overtime for a doctor, and the average idle time for a doctor, respectively.   It 

should be noted that all expectations are conditional on a fixed number of patients 

Npatient equal to 50. 

 

The objective of the design is to determine the number of doctors nD and the 

appointment interval tblock such that the expected total cost of appointment system 

E[CT] is minimized under the constraints.   The design variables that minimize the 

objective function and at the same time satisfy the constraints will be referred to as 

the optimal number of doctors 


Dn  and the optimal appointment interval 

blockt .   The 

expectation of total cost and other variables like WT, OTT, and ITT signify that these 

are random variables.   This is because WT, OTT, and ITT are the functions of the 

random variables shown in Table 3.3.   cW, cOT, and cIT are set equal to 100, 600, and, 

300, respectively. 

 

The appointment system of this exemplified outpatient department assumes 

that the total number of outpatients receiving the service is equal to 50.   The absence 

or no-show probability of each patient pabs is equal to 0.20.   The probability that an 

appointed patient will have laboratory tests plab is equal to 0.40.   The ending time of 

the office hour tf  is equal to 180.   The length of service time for the 1st-consultation 

L1ij, the length of service time for the 2nd-consultation L2ij, the time required for the 

laboratory tests TLij, and the time deviating from the appointment time ij are treated 

as independent random variables whose distribution and associated parameters are 

given in Table 1. 
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Table 3.3 : Definition of random variables in the numerical example. 

 

Random Variable Distribution (minutes) 

Length of Service Time for The 1
st
-consultation (L1ij) Uniform(10,20) 

Length of Service Time for The 2
nd

-consultation (L2ij) Uniform(7,12) 

Time Required For The Laboratory Tests (TLij) Triangular(10,20,30) 

Time Deviating From The Appointment Time (ij) Uniform(0,10) 

 

GAs is used for determining 


Dn  and 

blockt .   Since it is the minimization 

problem, the fitness function (23) is defined as 

 

 
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t,nt,nvkt,nCE

t,nt,nCE

t,nF
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j
NpatientDjjNpatientDT
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



 

          (3.58)

 

 

in which E[CT(nD,tblock)] follows the objective function (27).   The penalty functions, 

according to the constraints (30) to (32), are respectively 

 

       




 

 


otherwise ;0

0 ;
50block50block

50block1
WNpatientDAWNpatientDA

NpatientD

t,nWEt,nWE
t,nv




          (3.59) 

 

       




 

 


otherwise ;0

0 ;
50block50block

50block2
OTNpatientDAOTNpatientDA

NpatientD

t,nOTEt,nOTE
t,nv




          (3.60) 
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       




 

 


otherwise ;0

0 ;
50block50block

50block3
ITNpatientDAITNpatientDA

NpatientD

t,nITEt,nITE
t,nv




          (3.61) 

 

The values of the thresholds are given in Table 3.4.    

Table 3.4 : Threshold values in case of deterministic number of patients. 

 

Parameter Magnitude (minutes) 

W 5 

OT 30 

IT 30 

 

It should be noted that the fitness function involves the expected values.   The 

relevant expected values appear in the objective function and the constraints.   This 

means that there must be the computation of the expected values for each individual 

of the chromosome population considered in the successive generations of the search.   

Monte Carlo Simulation (MCS) is run for each individual chromosome to obtain its 

corresponding value of the fitness function.   A sample of all random variables is 

generated according to their probabilistic descriptions and the evaluation of the 

required expected values is carried out for each chromosome.   The execution of MCS 

for each individual of the chromosome population would be very time consuming and 

inefficient for a considerable sample size.  A more efficient solution to this problem 

follows from the consideration that the potential chromosomes appear a large number 

of times in the successive generations during the GA search whereas the less potential 

solutions are gradually eliminated.   Only a limited sample size is therefore necessary 

for MCS.   The MCS sample size for the evaluation of the expected values in this 

example is thus set equal to 20. 
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GAs search employs the population size of 50.   The number of generations 

used in the search is 50.   A two-point crossover is utilized with the crossover rate of 

0.80.  The mutation rate is taken as 0.002. 

 

Figure 3.21 shows the search history.   The optimal number of doctors 


Dn  is 

equal to 5.   The optimal appointment interval 

blockt  is equal to 14 minutes.   The 

distributions of chromosomes at various generations are shown in Figure 3.22. 

 

 

Figure 3.21. The history of the average fitness of the feasible chromosomes in case of 

deterministic number of patients. 
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(a) 

 

(b) 

 

(c) 

 

Figure 3.22. The distributions of chromosomes at various generations:  

(a) – Starting Generation, (b) – 20th Generation, and (c) – 50th Generation. 
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Figure 3.23. Verification of the optimal design from GA search in case of 

deterministic number of patients. 

 

 

The results obtained from GAs have been verified with the simulation.   The 

verification is shown in Figure 3.23.   It should be noted that there are only 5 feasible 

solutions among all possible combinations.   All 5 feasible solutions belong to the 

case of 5 doctors.   The solutions are classified as feasible when they satisfy all the 

constraints.   It should be noted that the constraints in this numerical example are 

complicated and can be obtained in terms of numerical values only.   Nevertheless, 

the optimization result shows that the employed method of constraint handling 

effectively performs to obtain the optimal solution.   
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3.4 DISCUSSIONS 

Although complicate mathematical models are formulated herein, the following 

technical aspects should be noted.  First, it is shown here that GA reveals satisfactory 

performance in context of dynamic systems or time-variant problems where the 

objective function in general can be an implicit function of the variables to be 

optimized.  Second, the total number of variables to be optimized can be higher than 

that considered in the numerical examples, when non-constant adjustment magnitudes 

are considered for respective age groups.  Third, the utilized adaptive penalty scheme 

works satisfactorily for sufficiently large numbers of constraints.  Interestingly, the 

number of constraints is relatively high when compared with many other optimization 

problems.  Such a large number of constraints are attributed by the dynamic aspect of 

the problem, from which the constraints are imposed at every time step.  Yet, there are 

many constraints at each time step.  Total number of constraints is even dramatically 

increased when the number of time steps becomes high.  Since the constraints that are 

considered herein are limited to those relevant to the age only, it is expectable that the 

number of constraints becomes extremely high in practical HRM.  Other kinds of 

constraint include the financial constraints, performance constraints, merit constraints, 

etc.  Therefore, constraint handling is a critical issue in the application of GA to 

HRM.  Third, the adjustment magnitudes that are used in the determination of the age 

distribution are selected from the best GA solution. There are other GA solutions that 

yield the same order of total discrepancy magnitude (ERR).  In other words, there are 

other alternative sets of adjustment magnitudes.  The number of alternative sets can be 

filtered out down to a smaller number of sets by imposing additional constraints.  

With respect to other possible alternative sets, HR planning for HRM is a multi-modal 

optimization.  Therefore, GA for multi-modal optimization is required when several 

alternative sets of the adjustment magnitudes are desired.  Such a case is out of the 

scope of this research and thus will not be addressed further. 

 


