CHAPTER VI ## **CONCLUSIONS** Artificial saliva contamination had the effect of a significant decrease in the mean shear bond strength values of a conventional adhesive system (TransbondTM XT), but did not affect the mean shear bond strength values of moisture-resistant adhesive systems (TransbondTM Plus Color Change, Beauty Ortho Bond[®], and Assure[®]). The mean shear bond strength of TransbondTM XT under non-contaminated conditions (11.70 \pm 3.14 MPa) was significantly superior to that of the other systems under non-contaminated or artificial saliva-contaminated conditions (p < 0.05), whereas the mean shear bond strength of TransbondTM XT under artificial saliva-contaminated conditions (7.24 \pm 1.86 MPa), TransbondTM PLUS Color Change under non-contaminated and artificial saliva-contaminated conditions (7.37 \pm 1.59 and 6.44 \pm 1.40 MPa, respectively), Beauty Ortho Bond[®] under non-contaminated and artificial saliva-contaminated conditions (6.28 \pm 2.05 and 6.66 \pm 2.01 MPa, respectively) and Assure[®] under non-contaminated and artificial saliva-contaminated conditions (6.74 \pm 1.61 and 7.28 \pm 1.06 MPa, respectively) were not significantly different. ## **Suggestions for further studies** 1. For more practical and reliable information, clinical trials should be conducted. 2. Some other moisture-resistant adhesives, e.g. cyanoacrylate, should be included in studies comparing the bond strength. 3. Contamination during various stages of the bonding process should be considered in detail.