
 

Chapter 2 

Methodology and Model Specifications 

 

This dissertation employs the univariate and multivariate GARCH models to 

estimate and forecast volatility and volatility spillovers with symmetric and 

asymmetric effects in financial markets.  First, the returns of market i at time t are 

calculated as follows: 
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where Pi,t and Pi,t-1 are the closing prices of market i for days t and t-1, respectively.  

Second, stationary of the data are tested by using the Augmented Dickey-

Fuller (ADF) test, which is given as follows: 
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The null hypothesis is θ  = 0 which, if rejected, means that the series yt is stationary.   

Third, a wide range of conditional volatility models have been used to 

estimate and forecast volatility and volatility spillovers with symmetric and 

asymmetric effects in financial markets. Univariate and multivariate conditional 

volatility models, namely GARCH, GJR, EGARCH, CCC, DCC, VARMA-GARCH 
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and VARMA-AGARCH, are used in this dissertation to capture the volatility in 

financial markets in South-East Asian countries.  

 

2.1 GARCH 

Engle (1982) introduced the Autoregressive Conditional Heteroskedasticity 

(ARCH) model that volatility is affected symmetrically by positive and negative 

shocks of equal magnitude from previous periods. Bollerslev (1986) generalized 

ARCH(r) to the GARCH(r,s) model, as follows: 
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where 0,ω > 0iα ≥ for i = 1,…,r, and 0jβ ≥  for j = 1,…,s, are sufficient to ensure 

that the conditional variance, ht > 0. The iα  represent the ARCH effects and jβ  

represent the GARCH effects. 

GARCH(r,s) shows that the volatility is not only effected by shocks but also 

by its own past. The model also assumes positive shocks ( 0tε > ) and negative shocks 

( 0tε < ) of equal magnitude have the same impact on the conditional variance. 

 

2.2 GJR 

In order to accommodate differential impacts on the conditional variance of 

positive and negative shocks of equal magnitude, Glosten et al. (1993) proposed the 

following specification for ht: 
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where ( )t iI ε −  is an indicator function that takes the value 1 if t iε − < 0 and 0 otherwise. 

The impact of positive shocks and negative shocks on conditional variance allows for 

an asymmetric impact. The expected value of iγ  is positive, such that negative shocks 

have a higher impact on volatility than do positive shocks of equal magnitude. It is not 

possible for leverage to be present in the GJR model, whereby negative shocks 

increase volatility and positive shocks of equal magnitude decrease volatility. 

If r = s = 1, 0ω > , 1 0α ≥ , 1 1 0α γ+ ≥  and 1 0β ≥  are sufficient conditions to 

ensure that the conditional variance ht > 0. The short run persistence of positive 

(negative) shocks is given by 1α  ( )1 1α γ+ . When the conditional shocks, tη , follow a 

symmetric distribution, the short run persistence is 1 1 / 2α γ+ , and the contribution of 

shocks to long run persistence is 1 1 1/ 2α γ β+ + . 

 

2.3 EGARCH 

Nelson (1991) proposed the Exponential GARCH (EGARCH) model, which 

incorporates asymmetries between positive and negative shocks on conditional 

volatility. The EGARCH model is given by: 
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In equation (2.5), t iη −  and t iη − capture the size and sign effects, respectively, of the 

standardized shocks. If iγ  is less than zero, positive shocks will have a smaller effect 

on volatility than will negative shocks of equal magnitude. Moreover, (2.5) can allow 

for asymmetric and leverage effects if 0γ <  andγ α γ< < −  exist. As EGARCH uses 

the logarithm of conditional volatility, there are no restrictions on the parameters in 

(2.5). As the standardized shocks are assumed to have finite moments, the moment 

conditions of (2.5) are entirely straightforward. 

Lee and Hansen (1994) derived the log-moment condition for GARCH(1,1) as 

 

2
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This is important in deriving the statistical properties of the QMLE. McAleer et al. 

(2007) established the log-moment condition for GJR(1,1) as 

 

2
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The respective log-moment conditions can be satisfied even when 1 1 1α β+ <  

(that is, in the absence of second moments of the unconditional shocks of the 

GARCH(1,1) model), and when 1 1/ 2 1α γ β+ + <  (that is, in the absence of second 

moments of the unconditional shocks of the GJR(1,1) model). 
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2.4 VARMA-GARCH 

The VARMA-GARCH model of Ling and McAleer (2003) assumes symmetry 

in the effects of positive and negative shocks of equal magnitude on conditional 

volatility. Let the vector of returns on m (≥ 2) financial assets be given by: 
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where 1( ,..., ) ,t t mtH h h ′= 1( ,..., ) ,mω ω ω ′= 1/ 2
,( ),t i tD diag h= 1( ,..., ) ,t t mtη η η ′=

2 2
1( ,..., ) ,t t mtε ε ε ′=

r
kA and lB  are ×m m  matrices with typical elements ijα  and ijβ , 

respectively, for i,j = 1,…,m, I( tη ) = diag(I( itη )) is an ×m m  matrix, and Ft is the past 

information available to time t. Spillover effects are given in the conditional volatility 

for each asset in the portfolio, specifically where kA  and lB  are not diagonal matrices. 

For the VARMA-GARCH model, the matrix of conditional correlations is given by 

( )′ = Γt tE ηη . 

 

2.5 VARMA-AGARCH 

An extension of the VARMA-GARCH model is the VARMA-AGARCH 

model of McAleer et al. (2009), which assumes asymmetric impacts of positive and 

negative shocks of equal magnitude, and is given by 
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where Ck are ×m m  matrices for k = 1,…,r  and It = diag(I1t,…,Imt), so that 
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From equation (2.11), if m = 1, the model reduces to the asymmetric 

univariate GARCH, or GJR. If Ck = 0 for all k, the model reduces to VARMA-

GARCH.  

 

2.6 CCC 

If the model given by equation (2.11) is restricted so that Ck = 0 for all k, with 

Ak and Bl being diagonal matrices for all k, l, then VARMA-AGARCH reduces to 
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which is the constant conditional correlation (CCC) model of Bollerslev (1990), for 

which the matrix of conditional correlations is given by ( )′ = Γt tE ηη . As given in 

equation (2.12), the CCC model does not have volatility spillover effects across 

different financial assets, and does not allow conditional correlation coefficients of the 

returns to vary over time. 
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2.7 DCC 

Engle (2002) proposed the Dynamic Conditional Correlation (DCC) model, 

which allows for two-stage estimation of the conditional covariance matrix. In the 

first stage, univariate volatility models are estimated to obtain the conditional 

volatility, ht, of each asset. At the second stage, asset returns are transformed by the 

estimated standard deviations from the first stage, and are then used to estimate the 

parameters of DCC. The DCC model can be written as: 
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where 1/ 2 1/ 2
1( ,..., )t t mtD diag h h= is a diagonal matrix of conditional variances, with m 

asset returns, and Ft is the information set available at time t. The conditional variance 

is assumed to follow a univariate GARCH model, as follows: 
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when the univariate volatility models have been estimated, the standardized residuals, 

/=
it it ity hη , are used to estimate the dynamic conditional correlations, as follows: 

 

1 2 1 1 1 2 1(1 ) − − −′= − − + +t t t tQ S Qφ φ φη η φ      (2.16) 

{ } { }1/ 2 1/ 2( ( ) ( ( ) ,− −Γ =t t t tdiag Q Q diag Q     (2.17) 
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where S is the unconditional correlation matrix of the returns shocks, and equation 

(2.17) is used to standardize the matrix estimated in (2.16) to satisfy the definition of 

a correlation matrix.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


