Chapter 3

Modelling the Stock and Bond Returns and Volatility

in South-East Asia

The risk plays an important role in portfolio and risk management, especially
with modern financial theory. Therefore, volatility has become a necessary tool for
financial institutions, government agencies, and investors to use while making
decisions for investments. Moreover, volatility information is also used to determine
the overall risk of a portfolio, to identify hedging strategies that make the portfolio
neutral with respect to market moves, and also used in derivatives trading and
valuation. Investors tend to move their funds from the markets that have high
volatility to the markets that have low volatility to reduce or diversify their portfolio
risk, while speculators do the opposite. Therefore, this chapter investigates the
volatility linkages or volatility spillovers between the markets and across the countries
because they are important for a variety of investment and risk management
decisions.

This chapter is a revised version from the original paper presented at the
Second Conference of The Thailand Econometric Society, Chiang Mai, Thailand in

Appendix A.
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Abstract

International investment is important for risk diversification and portfolio
management, especially in stock and bond markets. The paper investigates the
relationship of volatility across stock and bond markets in South-East Asia because
there are emerging markets in which investments are made. However, stock and bond
markets exist not only in emerging markets, but also in developed markets. Therefore,
an examination of the volatility spillovers in this region, namely Indonesia,
Philippines, Thailand, and Singapore, is important. The data from 1 April 2004 to 5
November 2008 is used to model the volatility. Univariate volatility, namely GARCH,
GJR, and EGARCH, and multivariate volatility, namely CCC, VARMA-GARCH,
VARMA-AGARCH and DCC are employed. The paper found that volatility and
asymmetric effects coefficients in variance equations are all significant only in the
long run, but some in the short run in univariate volatility models and GJR and
EGRACH are not superior to GARCH. For multivariate volatility, CCC shows the
constant conditional correlation in all series except Thai bond market and other
countries stock market whereas DCC shows the statistically significant time-varying
conditional correlations. The evidence of volatility spillovers and asymmetric effects
from VARMA-GARCH and VARMA-AGARCH models found that there are
volatility spillovers and asymmetric effects across South-East Asia financial markets
around 40% and 60% of pair of assets, respectively. The result also suggests that
modeling The Philippines financial markets by using VARMA-GARCH is better than

VARMA-AGARCH.
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3.1 Introduction

In portfolio management, the returns and risk are used as a tool in investment
strategies not only in stock markets, but also in bond markets. Many financial
institutions, government agencies, or investors are investing in the financial market.
They are not investing only in their own country, but also in other countries because
they may wish to decrease their portfolio volatility or diversify their portfolio risk.
However, investment across the markets and countries can increase or decrease
portfolio volatility depending on correlation or covariance, which is a key point in
portfolio and risk management.

The efficient portfolio relies on the correlation or covariance of a pair of assets
that may change over time. Therefore, much research in economics and finance is
trying to model the variance, covariance, and correlation of assets to construct an
efficient portfolio and adjust it over time if correlations change.

Many models have been developed to assess the characteristic of volatility.
Engle (1982) introduced the Autoregressive Conditional Heterscedasticity (ARCH) to
model the character of volatility. In 1986, Bollerslev generalized ARCH to the
Generalized Autoregressive Conditional Heterscedasticity (GARCH). However, both
of them assume that positive and negative shocks have the same impact on the
conditional variance. To accommodate differential impact on the conditional variance
between positive and negative shocks, Glosten et al. (1993) proposed the GJR model.
The EGARCH model, invented by Nelson (1991), separates the size and the sign
effects to capture asymmetric effect.

Multivariate volatility models are common in modelling the volatility. The

CCC model of Bollerslev (1990) assumes the conditional correlation coefficients of



23

the returns are time invariant and restricted for volatility spillovers between different
returns. Engle (2002) proposed the Dynamic Conditional Correlation (DCC) model to
allow correlation varying over time, but still not allow volatility spillovers. The
VARMA-GARCH model of Ling and McAleer (2003) and the VARMA-AGARCH
model of McAleer et al. (2009) are extended to capture the volatility spillovers, but
constant conditional correlation is maintained.

Many papers have investigated volatility, especially volatility spillovers and
correlations across countries or markets, such as Fleming, Kirby, and Ostdiek (1998),
Izquierdo and Lafuente (2004), Gannon (2005), Steeley (2006), and da Veiga, Chan,
and McAleer (2008). In most cases, the authors of these papers found volatility
spillover across countries or markets.

This paper aims to investigate the volatility linkages and spillovers across
intra- and international bond and stock markets. The volatility spillovers, asymmetric
effects, and correlations in four countries (Indonesia, Philippines, Thailand, and

Singapore) are tested by using univariate volatility and multivariate volatility.

3.2 Model Specifications

A wide range of conditional volatility models are used to estimate the
volatility and volatility spillovers with symmetric and asymmetric effects in financial
markets. The univariate and multivariate conditional volatility models, namely
GARCH, GJR, EGARCH, CCC, DCC, VARMA-GARCH and VARMA-AGARCH,
are used in this paper to capture the characteristic of the volatility on financial market
in South-East Asia. In 1982, Engle introduced the Autoregressive Conditional

Heteroskedasticity (ARCH) that volatility is affected by positive shock and negative
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shock in the previous period in the same impact. After that many models are
developed and extended continuously.
3.2.1 GARCH
Bollerslev (1986) generalized ARCH (r) to the GARCH (r,s), model as

follows:
h, :w+2aigf_i +Z,th_j (3.1)
i=1 j=1

where @>0, ¢, >0fori=1,...r,and B; 20 for j =1,...;s, are sufficient to ensure
that the conditional variance, ht > 0. The «; represent the ARCH effects and j;

represent the GARCH effects.
GARCH (r,s) shows that the volatility is not only effected by shocks

but also effected by lag of itself. The model also assumes a positive shock (&, >0)
and negative shock (& <0) of equal magnitude have the same impact on the

conditional variance.
322 GJR

To accommodate differential impacts on the conditional variance

between positive and negative shocks of equal magnitude, Glosten et al. (1993)

proposed the following specification for hy:

r

htza)—l—Z(ai—l—}/il(gti))gtzi—l—iﬁjhlj (3.2)

i=1
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where I(g,_;) is an indicator function that takes value 1 if ¢ ;< 0 and O otherwise.
The impact of positive shocks and negative shocks on conditional variance is allowing
asymmetric impact. The expected value of y, is greater than zero that means the
negative shocks give higher impact than the positive shocks, «; +y; > ;. However,
it is not possible for leverage to be present in the GJR model, whereby negative
shocks increase volatility and positive shocks of equal magnitude decrease volatility.

Ifr=s=1 ©>0,0,20,0,+y,20,and £, >0 then it has sufficient
conditions to ensure that the conditional variance h; > 0. The short-run persistence of
positive (negative) shocks is given byal(a1+7l). When the conditional shocks, 7,
follow a symmetric distribution, the expected short-run persistence is o, +y,/2, and
the contribution of shocks to expected long-run persistence is o, +y,/2+ f,.

3.2.3 EGARCH
Nelson (1991) proposed the Exponential GARCH (EGARCH) model,
which assumes asymmetries between positive and negative shocks on conditional

volatility. The EGARCH model is given by:
Ioght:a)"'zai |77t—i|+zyint—i+2ﬁj Ioth' (3.3)
i=1 i=1 =1

In equation (3.3), |77t_i| and 7, , capture the size and sign effects of the

standardized shocks respectively. The expected value of y, is less than zero.

Therefore, the positive shock provides less volatility than the negative shock. This

mean (3.3) can allow asymmetric and leverage effects. As EGARCH also uses the
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logarithm of conditional volatility, there are no restrictions on the parameters in (3.3).
As the standardized shocks have finite moments, the moment conditions of (3.3) are

straightforward.

Lee and Hansen (1994) derived the log-moment condition for GARCH

(1,1) as

E(log(ayy’ + ) <0 (34)

This is important in deriving the statistical properties of the QMLE.

McAleer et al. (2007) established the log-moment condition for GJR(1,1) as

Elog((es + 7,1 (m, ) + B)) <O (3.5)

The respective log-moment conditions can be satisfied even when

a, + f, <1 (that is, in the absence of second moments of the unconditional shocks of

the GARCH(1,1) model), and when o, +y/2+ <1 (that is, in the absence of

second moments of the unconditional shocks of the GJR(1,1) model).
3.24 VARMA-GARCH
The VARMA-GARCH model of Ling and McAleer (2003) assumes
symmetry in the effects of positive and negative shocks of equal magnitude on

conditional volatility. Let the vector of returns on m (>2) financial assets be given by:

Yt = E(Y'[ | F'[fl)+gt (3.6)
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& =Dy, (3.7)

H, =a’+zpﬁ<§t—k +ZBIHI—I (3.8)

whereH, = (h,,...h,)", @=(@,...®,), D, =diag(h};?), 7 =)
& =(¢4,.65), Acand B are mxm matrices with typical elements ¢; and £,
respectively, forij=1,....m, I(7,) = diag(I(7,)) isan mxm matrix, and F; is the past

information available to time t. Spillover effects are given in the conditional volatility
for each asset in the portfolio, specifically where A and B, are not diagonal matrices.
For the VARMA-GARCH model, the matrix of conditional correlations is given by
E(nm7)=T.
3.25 VARMA-AGARCH
An extension of the VARMA-GARCH model is the VARMA-
AGARCH model of McAleer et al. (2009), which assume asymmetric impacts of

positive and negative shocks of equal magnitude, and is given by

H =o+) Aé, +ch|t—k§t—k +ZBIHt—I (3.9)
k=1

r
k=1 1=1

where Cx are mxm matrices for k =1,...,r and I; = diag(lss,...,Imt), SO that

| 0,6,>0
|Le, <0
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From equation (3.9) if m = 1, the model reduces to the asymmetric
univariate GARCH or GJR. If C, = 0 for all k it reduces to VARMA-GARCH.
3.26 CCC
If the model given by equation (3.9) is restricted so that Cx = 0 for all
k, with A¢ and B, being diagonal matrics for all k,I, then VARMA-AGARCH reduces

to:
h, = + Zaigi,t—k + Zﬂihi,t—l (3.10)
k=1 1=1

which is the constant conditional correlation (CCC) model of Bolerslev (1990). The
CCC model also assumes that the matrix of conditional correlations is given

by E(rn)) =T". As given in equation (3.10), the CCC model does not have volatility

spillover effects across different financial assets. Moreover, CCC also does not allow
conditional correlation coefficients of the returns to vary over time.
3.2.7 DCC

Engle (2002) proposed the Dynamic Conditional Correlation (DCC)
model. The DCC model allow for two-stage estimation of the conditional covariance
matrix. In the first stage, univariate volatility models have been estimated and obtain
h; of each of assets. Second stage, asset returns are transformed by the estimated
standard deviations from the first state, then used to estimate the parameters of DCC.

The DCC model can be written as follows:

Y IF.0(0Q) t=1..T (3.11)
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Q =D[,D, (3.12)
where D, =diag(h;?,...,.h%?)is a diagonal matrix of conditional variances, with m

asset returns, and F; is the information set available to time t. The conditional variance

is assumed to follow a univariate GARCH model, as follows:
hy, =, + Zai,k‘gi,t—k + Zﬂi,lhi,t—l (3.13)
k=1 1=1

when the univariate volatility models have been estimated, the standardized residuals,

n =Yl \/h_,t , are used to estimate the dynamic conditional correlations, as follows:

Q=0-4-4,)S+dn ., +4,Q, (3.14)

I, ={(diag(Q) | Q {(diag (Q)**}, (3.15)

where S is the unconditional correlation matrix of the & and equation (3.15) is used to
standardize the matrix estimated in (3.14) to satisfy the definition of a correlation

matrix.

3.3  Data and Estimation
The data that is used to estimate for univariate and multivariate GARCH
models is the daily returns of stock and bond indexes of four countries in Southeast

Asia, namely Indonesia, Philippines, Thailand, and Singapore. The sample ranges
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from 1 April 2004 to 5 November 2008 with 905 observations. All data is obtained
from DataStream, Reuters, and the Thai Bond Market Association. The stock and
bond returns and their variable names are summarized in Table 3.1.

The returns of market i at time t are calculated as follows:
R =log(P,/P,,) (3.16)

where Pi; and P;j.; are the closing prices of market i at days t and t-1, respectively.
Each stock and bond price index is denominated in the local currency.
Stationarity of the data will be tested by using the Augmented Dickey-Fuller

(ADF) test. The test is given as follows:

P
AY, = a+ pt+ 0y, + Z¢,Ayt_i +é (3.17)

i=1

The null hypothesis is ¢ = 0, if the null hypothesis is rejected, it means that
the series y; is stationary. The estimated values of ¢ and t-statistic of all returns are
significant less than zero at 1% level, as shown in Table 3.2. The plots of the daily
returns for all series are shown in Figure 3.1. Figure 3.1 also shows that all returns

have a constant mean, but a time-varying variance.

3.4  Empirical Results
The univariate GARCH(1,1), GJR(1,1), and EGARCH(1,1) are estimated to

determine the coefficient of conditional mean equations and conditional variance
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equations, with three types of conditional mean equations. The results are given in
Tables 3.3-3.5. From Tables 3.3-3.5, coefficients in variance equations are all
significant in the long run, but some are also significant in the short run. The GJR and
EGARCH models show that about half of them, especially in stock markets, have
asymmetric effects of positive and negative shocks on conditional variance.
Moreover, many empirical evidences suggest that the changes in volatility are
correlated with the variation in the term structure of interest.

We can see multivariate volatility with CCC-GARCH (1,1) in Table 3.6. As
shown, the estimated correlation yields the constant conditional correlation (range
from -0.1775 to 0.5634), except correlation between the Thai government bond
market and other countries’ stock markets. Therefore, Thai government bonds should
be an asset in the portfolio to reduce the portfolio risk because they have no
correlation with other assets. Moreover, the correlation between the Singapore
government bond market and other financial markets, except the Thai bond market,
are all negative. This means that including the Singapore government bonds in a
portfolio can diversify portfolio risk efficiently.

The results of VARMA-GARCH and VARMA-AGARCH for each pair of
assets are estimated. We can summarize the number of volatility spillovers and
number of asymmetric effects in VARMA-GARCH and VARMA-AGARCH models
as shown in Table 3.7. The results show the volatility spillovers are evident in 12 of
28 and 10 of 28 cases for VARMA-GARCH and VARMA-AGARCH, respectively.
Asymmetric effects are significant in 17 of 28 cases and the most insignificant

coefficients (8 of 11 cases) are the pair of Philippines financial markets and the others
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markets. This suggests that the VARMA-GARCH model is better than the VARMA-
AGARCH model in investigating the volatility of Philippines’ financial markets.

Based on pairs of stock market assets, VARMA-AGARCH shows that there
are no volatility spillovers between the Indonesian stock market and the others stock
markets. However, two out of three pairs show asymmetric effects.

According to pairs of assets in the bond market, the results suggest that they
have no volatility spillovers for the Thai bond market based on VARMA-GARCH
and VARMA-AGARCH models. This means that the volatility of the Thai bond
market neither affects the volatility of other bond markets, nor is affected by the
volatility of other bond markets.

Table 3.7 also reports that, for VARMA-GARCH, the Thai stock market and
the other bond markets have volatility spillovers to each other, whereas VARMA-
AGARCH gives the results contradictorily. However, the parameters of asymmetric
effects, three of four pairs of assets, are not significant. The results of VARMA-
AGARCH for Thailand are quite similar to the results of VARMA-GARCH for the
Indonesian stock market, which reports no volatility spillovers between the
Indonesian stock market and the other countries’ bond markets.

The DCC-GARCH(1,1), allowing correlation varying overtime, are shown in
Table 3.8. The value of parameter 431 and 432 are significantly different from zero,
which clearly means that the conditional correlations vary over time, or constant
condition correlations do not hold. However, the value of parameter ¢31 and 4132 are

approach to zero and one, respectively. Therefore, the conditional correlations are
very tiny change over time, which means that consideration in time-varying

conditional correlation is not necessary in practice.
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3.5  Concluding Remarks

The paper estimated three models for univariate volatility, namely
GARCH(1,1), GJR(1,1), and EGARCHY(1,1), on stock and bond markets in Southeast
Asian countries. The evidence of volatility and asymmetric effects shows that
coefficients in variance equations are all significant in the long run, but some are also
significant in the short run. GJR and EGARCH are not clearly superior to GARCH.

For multivariate volatility, CCC, VARMA-GARCH, VARMA-AGARCH and
DCC are employed to capture the characteristic of volatility. CCC suggests that
including Thai government bonds in portfolios is likely preferable to other assets,
except Singaporean government bonds, which can diversify portfolio risk efficiently.
The evidence of volatility spillovers and asymmetric effects from VARMA-GARCH
and VARMA-AGARCH models shows that there are volatility spillovers and
asymmetric effects across Southeast Asian financial markets around 40% and 60% of
pairs of assets, respectively. The result suggests that the VARMA-GARCH model is
better than the VARMA-AGARCH model for modelling the volatility of Philippine
financial markets. It also shows that they have no volatility spillovers for the
Indonesian stock market and the other stock markets as the Thai bond market and the
other bond markets. The DCC model shows the statistically significant overall time-
varying conditional correlations. However, the conditional correlations are very tiny
change over time, which means that consideration in time-varying conditional

correlation is not necessary in practice.
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Table 3.1 Summary of Variable Names

Variables Index Names

indos Jakarta Stock Exchange Index

phils Philippine SE Comp. Index

thais Stock Exchange of Thailand Index

sings FTSE STI

indob Citigroup Indonesia Government Bond Total Return Index
philb Citigroup Philippines Government Bond Total Return Index
thaib Thailand Government Bond Total Return Index

singb

JP Morgan Singapore Government Bond Total Return Index
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Table 3.2 ADF test of a Unit Root in the Returns

Returns Coefficient t-statistic
indos -0.8209 -19.9447
phils -0.9322 -20.3689
thais -0.8653 -19.4268
sings -0.9851 -21.2993
indob -1.1143 -23.5271
philb -0.9094 -19.6288
thaib -0.6396 -17.0120
singb -0.9460 -20.7826




Table 3.3 Univariate GARCH (1,1)
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Mean equation

Variance equation

C AR(D) MA(L) ® o B 2K SC
indos  0.00159 8.75E-06  0.1407  0.8412 55462  -5.5249
3.2166 1.9516  4.4415  22.4578
0.00162  0.1763 8.33E-06 01393  0.8424 55693  -5.5428
27596 4.6470 1.9114  4.3267  21.6090
000163  0.0312  0.1497 8.19E-06 01394  0.8431 ‘55677 -5.5358
28283  0.533  0.7479 1.9076  4.3308  21.7705
phils 0.00105 3.84E-05 02025  0.6724 -5.4952  -5.4739
2.2604 23849  2.8702  7.6035
0.00104  0.0598 3.96E-05 02037  0.6655 -5.4959  -5.4603
21123 15308 24334 29079  7.4884
0.00098 06735  -0.6323 3.87E-05 02036  0.6696 -5.4953  5.4634
1.8710  2.8813  -2.5812 23741  2.8675  7.4596
thais 0.00068 361E-05 01173  0.7345 -5.6052  -5.5839
1.6360 09799 24142 55438
0.00067  0.15186 3.80E-05 01301  0.7135 '5.6208  -5.5942
1.3599  3.4804 09773 2.9008  4.9375
0.00067  0.1489  0.0030 379E-05 01302  0.7136 -5.6186  -55867
1.3552  0.7393  0.0144 09726  2.9016  4.9077
sings 0.00096 244E-06 01328  0.8623 -6.2196  -6.1984
3.1588 1.8406 51753  35.4656
0.00097  -0.0317 243E-06 01329  0.8622 -6.2185  -6.1919
3.3416  -0.8736 1.8440 51219 355601
0.00100  0.8533  -0.8817 243E-06 01325  0.8623 -6.2100  -6.1871
41952 63959  -7.3624 24760 50906  37.8438




Table 3.3 (Continued)

Mean equation

Variance equation

C AR(D) MA(L) ® o B 2K SC

indob  0.00048 6.26E-07 01178  0.8741 -8.2848  -8.2635
5.0560 20237  2.0990  31.4239

0.00045  0.1180 558E-07 01107  0.8824 -8.2930 -8.2664
44070  2.1785 22494 19097  35.6374

00045  -0.0604  0.1803 557E-07  0.1097  0.8830 -8.2914  -8.2505
44938  -0.1592  0.4975 3.4240  1.9552  32.6421

philb 0.00062 477E-07 01301  0.8682 -8.2521  -8.2309
4.8064 22097 27292 317528

0.00062  0.0857 478E-07 01288  0.8680 -8.2562  -8.2296
45259  2.0435 1.9574  2.6043  39.7056

0.00062 02971  -0.2094 476E-07  0.1283  0.8684 -8.2546  -8.2227
44645  0.6924  -0.4786 22779  2.6728  31.0896

thaib 0.00024 261E-07 03182  0.6796 -0.7493  -9.7280
5.5157 16127  3.9047  13.1649

0.00025  0.4084 1.74E-07 02352  0.7531 -0.8770  -9.8504
3.1662  9.5046 1.3478  3.8007  15.6648

0.00024 04856  -0.0947 169E-07 02288  0.7595 -0.8754  -9.8435
29821  5.2058  -0.9978 1.3701  3.8397  17.9382

singb  -0.00031 7.74E-07  0.0828  0.9053 -7.3361  -7.3149
-1.6568 1.8030  3.5560  33.0925

-0.00030  0.0413 7.44E-07  0.0817  0.9068 -7.3343  -7.3077
15416 1.1951 16915  3.5376  33.3517

-0.00030  -0.0672  0.1072 7.44E-07  0.0818  0.9068 73322 -7.3003
15531 -0.1241  0.1976 1.6617  3.5367  33.0044

Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.

(2) Entries in bold are significant at the 95% level.



Table 3.4 Univariate GJR (1,1)
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Mean equation

Variance equation

AIC

SC

C AR(L)  MA(D) ® o Y B

indos  0.00160 6.13E-05  -0.1008  0.4848  0.5858 55736 -5.5471
3.9596 517774  -57712 52675  11.8346
0.00079  0.1636 527E-05  -0.1174 04963  0.6544 55066  -5.5647
15234  12.2672 3475637  -4.9839 64511  16.2607
0.00075 02767  -0.1164 527E-05  -0.1166 04985  0.6582 55043  -55571
13450 13212 -0.5642 328.0517  -5.2213  6.1371  16.6691

phils  0.00074 403E-05 00846 01765  0.6835 55055  -5.4789
1.6155 25271  1.0845  1.6876  7.2836
0.00064  0.0764 426E-05 00753 01982  0.6721 55081  -5.4762
1.2847  1.9989 25706  1.0045 17818  6.9558
0.00057  0.4482  -0.3717 416E-05 00745 02001  0.6765 55073  -5.4701
10761 15918  -1.2902 25212  1.0075 17755  6.9594

thais  0.00027 3.47E-05  -0.0294 02333  0.7551 -5.6432  -5.6166
0.6650 17447  -0.3541  2.3890  11.6881
6.02E-05  0.1288 353E-05  -0.0217 02436  0.7423 -5.6554  -5.6235
01285  3.1938 15544  -0.2218  1.8372  9.7420
7.75E-05 00401  0.0931 355E-05  -0.0215 02472  0.7393 5.6534  -5.6161
0.1685  0.1543  0.3452 15212 -0.2197  1.8347  9.3234

sings  0.00061 3.65E-06 00386  0.1566  0.8610 6.2311  -6.2046
2.0204 26803  1.3748  3.6668  33.2861
0.00064  -0.0291 3.66E-06 00401 01557  0.8594 -6.2300  -6.1981
22152 -0.7904 26855 14218  3.5787  32.8635
0.00067  0.3876  -0.4236 3.65E-06 00416  0.1512  0.8598 -6.2282  -6.1910
23440 05303  -0.5886 26792 14778 35360  32.8415




Table 3.4 (Continued)
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Mean equation

Variance equation

C AR(1) MA(1) ® o Y B AlC >C

indob 0.00031 5.73E-07 0.0175 0.1856 0.8839 -8.3442 -8.3176
3.2236 3.7314 0.6645 1.7019 41.1949

0.00025 0.1341 5.28E-07 0.0105 0.1847 0.8919 -8.3550 -8.3231
2.1734 2.2415 2.3655 0.4335 1.5594 41.8992

0.00025 0.1789 -0.0447 5.30E-07 0.0105 0.1866 0.8914 -8.3529 -8.3156
2.0138 0.5481 -0.1398 1.9692 0.4234 1.7700 32.8010

philb 0.00043 8.02E-07 0.0347 0.1791 0.8491 -8.2843 -8.2577
3.5832 4.8247 0.9249 1.4422 23.9217

0.00042 0.0579 7.83E-07 0.0386 0.1742 0.8488 -8.2858 8.2538
3.0301 1.4101 2.1483 0.8696 1.4945 28.2659

0.00041 0.3565 -0.2947 7.78E-07 0.0385 0.1743 0.8493 -8.2842 -8.2470
3.3027 0.6740 -0.5472 0.9364 0.8481 1.1681 11.5565

thaib 0.00023 2.64E-07 0.2480 0.1033 0.6877 -9.7518 -9.7252
5.0874 2.0320 3.8518 0.9835 13.4129

0.00019 0.4051 1.75E-07 0.1676 0.1126 0.7583 -9.8819 -9.8500
2.6451 8.7827 1.4430 2.4909 0.9943 20.1370

0.00019 0.4583 -0.0651 1.72E-07 0.1656 0.1093 0.7622 -9.8801 -9.8428
2.5446 4.6168 -0.6744 1.5164 2.4418 0.9517 19.0666

singb  -0.00026 1.14E-06 0.1070 -0.0473 0.8938 -7.3365 -7.3100
-1.3529 2.0731 3.1530 -1.3771 29.8199

-0.00025 0.0406 1.10E-06 0.1060 -0.0471 0.8955 -7.3346 -7.3027
-1.2321 1.1869 1.8896 3.1930 -1.3750 29.9882

-0.00025 -0.0671 0.1061 1.10E-06 0.1060 -0.0468 0.8953 -7.3324 -7.2952
-1.2498 -0.1225 0.1933 1.8954 3.1806 -1.3624 30.0174

Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.

(2) Entries in bold are significant at the 95% level.
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Mean equation

Variance equation

C AR(1) MA(1) ® o Y B AlC SC

indos 0.00120 -0.8018 02452  -0.1109  0.9260 55610  -5.5345
2.7516 -3.0615  3.3850  -2.2150  33.4643

0.00077  0.2021 -0.9073 02217  -0.1618  0.9118 55924  -5.5605
12810 55047 -3.1912  2.8047  -2.8331  30.9296

0.00076 02291  -0.0279 -0.9073 02212  -0.1627  0.9118 55902  -5.5530
1.2342 13433  -0.1621 -3.1832  2.8017  -2.8176  30.8660

thais 0.00024 11519  0.0913  -0.2094  0.8727 ‘5.6659  -5.6393
0.5684 27823 09382  -1.9726  15.6802

-261E-05  0.1202 11411  0.079  -0.2221  0.8731 ‘56779  -5.6460
-0.0552  2.9889 27070 07420  -1.8286  15.3463

-121E-05 00675  0.0552 11475  0.0812  -0.2224  0.8724 ‘5.6758  -5.6385
-0.0258 02576  0.2045 26322 07626  -1.8342  14.8891

sings 0.00057 -0.4369  0.2008  -0.1125  0.9684 -6.2357  -6.2001
1.9702 37979  4.6541  -3.8029  87.5987

0.00061  -0.0345 -0.4416 02041  -0.1104  0.9682 -6.2347  -6.2027
2.1804  -0.9891 -3.8271 47035  -3.7500  87.1849

0.00063  -0.8563 0.838586 -0.4431 02032  -0.1120  0.9680 -6.2336  -6.1963
22287  -3.3402 3.088216 -3.8131 46617  -3.7874  86.3531

phils 0.00064 17398 03629  -0.1278  0.8231 55075  -5.4809
1.4782 27310 30552  -1.8129  11.5848

0.00055  0.0726 17671 03635  -0.1360  0.8201 55102  -5.4783
11386  1.8619 28155  3.1256  -1.8389  11.7343

0.00044  0.9976  -0.9974 13457  0.1040  -0.0406  0.8481 ‘54441  -5.4069
0.1542  77.2508  -79.9912 -0.9303 09390  -05513  5.0605




Table 3.5 (Continued)
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Mean equation

Variance equation

C AR(1) MA(1) ® o Y B AlC SC

indob 0.00078 -0.4458  0.2026  -0.1347 09715 -8.2896  -8.2631
4.1634 -1.0816 24350  -1.8443  27.8703

0.00072  0.1265 -0.4034  0.1708  -0.1493  0.9735 -8.2964  -8.2645
3.6520  2.2845 -1.0414 27406  -1.8861  29.0994

0.00060  -0.2290  0.3853 -0.4270  0.1664  -0.1448  0.9708 -8.2974  -8.2602
32353  -0.8817  1.3614 -1.0827  2.8885  -1.8850  28.0739

philb 0.00056 -0.6098  0.1670  -0.1554  0.9549 82786  -8.2520
3.6421 -35869  2.0413  -2.3139  65.4667

0.00060  0.0594 05976  0.1750  -0.1562  0.9567 -8.2802  -8.2483
3.1648  1.0011 -3.6806 22054  -2.2415  67.8028

0.00058 05586  -0.4843 05970  0.1790  -0.1642  0.9570 -8.2808  -8.2436
29046  1.7535  -1.5084 35299 23661  -2.2114  64.8746

thaib 0.00024 16188 05224  -0.0464  0.9006 -9.7718  -9.7453
4.9891 42943 59168  -0.9016  33.7635

0.00019  0.3842 11472 03960  -0.0549  0.9317 -0.8643  -9.8840
2.6652  8.3494 35151 47755  -0.9044  41.2655

0.00019  0.3906  -0.0077 -1.1545 03978  -0.0547  0.9312 -0.8940  -9.8568
26802  3.4190  -0.0704 -35293 47818  -0.8912  41.1367

singb -0.00027 -0.4127  0.1911 00403 09737 73276 -7.3011
-1.3900 21468 44041 16484  55.1679

-0.00026  0.0379 -0.3988  0.1881 00398  0.9749 73252 -7.2933
-1.2541  1.0837 21027 43902 16044 559244

-0.00029  0.6442  -0.6357 -0.4098  0.1905  0.0407  0.9740 73226  -7.2853
14350 07430  -0.7284 21336 43860 16282  55.2070

Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.

(2) Entries in bold are significant at the 95% level.
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Table 3.6 Constant Conditional Correlation between Returns in CCC-GARCH(1,1)

Returns indos phils thais sings indob philb thaib
phils 0.3916
11.7978
thais 0.4641  0.3254
18.0797 10.1285
sings 0.5634 0.3963  0.4674
18.7840 12.2588 16.9134
indob 0.1134  0.1407 0.1352  0.1219
3.4451 4.2084 4.0705 4.2852
philb 0.1327 01631 0.1561 0.1371  0.4485
2.8370  3.7403 43675 3.1652 12.0181
thaib 0.0131 0.0560 0.1505 0.0626  0.0821  0.0882
0.3393 1.3539 21052 15581  2.3388 22775
singb -0.1775 -0.0749  -0.1502 -0.1934 -0.0991 -0.1195 -0.0094
-5.2379 -24717 45711 -6.2245 -3.1282 -3.4832  0.2593

Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and

Woodridge robust t-ratios.

(2) Entries in bold are significant at the 95% level.
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Table 3.7 Summary of Volatility Spillovers and Asymmetric Effect of Negative and

Positive Shocks

Number of volatility spillovers Number of
VARMA-GARCH VARMA-AGARCH asymmetric effects

Pairs of assets

Stock-Stock
indos_phils
indos_thais
indos_sings
phils_thais
phils_sings
thais_sings

Stock-Bond
indos_indob
indos_philb
indos_thaib
indos_singb
phils_indob
phils_philb
phils_thaib
phils_singb
thais_indob
thais_philb
thais_thaib
thais_singb
sings_indob
sings_philb
sings_thaib
sings_singb

Bond-Bond
indob_philb
indob_thaib
indob_singb
philb_thaib
philb_singb
thaib_singb
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Table 3.8 DCC-GARCH(1,1) Estimates

Parameter Estimates Estimates in the Q; Equation
é1 0.0033
4.2238
> 0.9846
223.7337

Note: The two entries for each parameter are their respective estimate and

Bollerslev and Woodridge robust t-ratios.
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Figure 3.1 Daily Returns for All series



