
 

Chapter 3 

Modelling the Stock and Bond Returns and Volatility  

in South-East Asia 

 

The risk plays an important role in portfolio and risk management, especially 

with modern financial theory. Therefore, volatility has become a necessary tool for 

financial institutions, government agencies, and investors to use while making 

decisions for investments. Moreover, volatility information is also used to determine 

the overall risk of a portfolio, to identify hedging strategies that make the portfolio 

neutral with respect to market moves, and also used in derivatives trading and 

valuation. Investors tend to move their funds from the markets that have high 

volatility to the markets that have low volatility to reduce or diversify their portfolio 

risk, while speculators do the opposite. Therefore, this chapter investigates the 

volatility linkages or volatility spillovers between the markets and across the countries 

because they are important for a variety of investment and risk management 

decisions. 

This chapter is a revised version from the original paper presented at the 

Second Conference of The Thailand Econometric Society, Chiang Mai, Thailand in 

Appendix A. 
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Abstract  

 

International investment is important for risk diversification and portfolio 

management, especially in stock and bond markets. The paper investigates the 

relationship of volatility across stock and bond markets in South-East Asia because 

there are emerging markets in which investments are made. However, stock and bond 

markets exist not only in emerging markets, but also in developed markets. Therefore, 

an examination of the volatility spillovers in this region, namely Indonesia, 

Philippines, Thailand, and Singapore, is important. The data from 1 April 2004 to 5 

November 2008 is used to model the volatility. Univariate volatility, namely GARCH, 

GJR, and EGARCH, and multivariate volatility, namely CCC, VARMA-GARCH, 

VARMA-AGARCH and DCC are employed. The paper found that volatility and 

asymmetric effects coefficients in variance equations are all significant only in the 

long run, but some in the short run in univariate volatility models and GJR and 

EGRACH are not superior to GARCH. For multivariate volatility, CCC shows the 

constant conditional correlation in all series except Thai bond market and other 

countries stock market whereas DCC shows the statistically significant time-varying 

conditional correlations. The evidence of volatility spillovers and asymmetric effects 

from VARMA-GARCH and VARMA-AGARCH models found that there are 

volatility spillovers and asymmetric effects across South-East Asia financial markets 

around 40% and 60% of pair of assets, respectively. The result also suggests that 

modeling The Philippines financial markets by using VARMA-GARCH is better than 

VARMA-AGARCH. 
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3.1 Introduction 

In portfolio management, the returns and risk are used as a tool in investment 

strategies not only in stock markets, but also in bond markets. Many financial 

institutions, government agencies, or investors are investing in the financial market. 

They are not investing only in their own country, but also in other countries because 

they may wish to decrease their portfolio volatility or diversify their portfolio risk. 

However, investment across the markets and countries can increase or decrease 

portfolio volatility depending on correlation or covariance, which is a key point in 

portfolio and risk management. 

The efficient portfolio relies on the correlation or covariance of a pair of assets 

that may change over time. Therefore, much research in economics and finance is 

trying to model the variance, covariance, and correlation of assets to construct an 

efficient portfolio and adjust it over time if correlations change. 

Many models have been developed to assess the characteristic of volatility. 

Engle (1982) introduced the Autoregressive Conditional Heterscedasticity (ARCH) to 

model the character of volatility. In 1986, Bollerslev generalized ARCH to the 

Generalized Autoregressive Conditional Heterscedasticity (GARCH). However, both 

of them assume that positive and negative shocks have the same impact on the 

conditional variance. To accommodate differential impact on the conditional variance 

between positive and negative shocks, Glosten et al. (1993) proposed the GJR model. 

The EGARCH model, invented by Nelson (1991), separates the size and the sign 

effects to capture asymmetric effect.  

Multivariate volatility models are common in modelling the volatility. The 

CCC model of Bollerslev (1990) assumes the conditional correlation coefficients of 
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the returns are time invariant and restricted for volatility spillovers between different 

returns. Engle (2002) proposed the Dynamic Conditional Correlation (DCC) model to 

allow correlation varying over time, but still not allow volatility spillovers. The 

VARMA-GARCH model of Ling and McAleer (2003) and the VARMA-AGARCH 

model of McAleer et al. (2009) are extended to capture the volatility spillovers, but 

constant conditional correlation is maintained. 

Many papers have investigated volatility, especially volatility spillovers and 

correlations across countries or markets, such as Fleming, Kirby, and Ostdiek (1998), 

Izquierdo and Lafuente (2004), Gannon (2005), Steeley (2006), and da Veiga, Chan, 

and McAleer (2008). In most cases, the authors of these papers found volatility 

spillover across countries or markets. 

This paper aims to investigate the volatility linkages and spillovers across 

intra- and international bond and stock markets. The volatility spillovers, asymmetric 

effects, and correlations in four countries (Indonesia, Philippines, Thailand, and 

Singapore) are tested by using univariate volatility and multivariate volatility. 

 

3.2 Model Specifications 

A wide range of conditional volatility models are used to estimate the 

volatility and volatility spillovers with symmetric and asymmetric effects in financial 

markets. The univariate and multivariate conditional volatility models, namely 

GARCH, GJR, EGARCH, CCC, DCC, VARMA-GARCH and VARMA-AGARCH, 

are used in this paper to capture the characteristic of the volatility on financial market 

in South-East Asia. In 1982, Engle introduced the Autoregressive Conditional 

Heteroskedasticity (ARCH) that volatility is affected by positive shock and negative 
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shock in the previous period in the same impact. After that many models are 

developed and extended continuously. 

3.2.1 GARCH 

Bollerslev (1986) generalized ARCH (r) to the GARCH (r,s), model as 

follows: 
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i j
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= =

= + +∑ ∑      (3.1) 

 

where 0,ω > 0iα ≥ for i = 1,…,r, and 0jβ ≥  for j = 1,…,s, are sufficient to ensure 

that the conditional variance, ht > 0. The iα  represent the ARCH effects and jβ  

represent the GARCH effects. 

GARCH (r,s) shows that the volatility is not only effected by shocks 

but also effected by lag of itself. The model also assumes a positive shock ( 0tε > ) 

and negative shock ( 0tε < ) of equal magnitude have the same impact on the 

conditional variance. 

3.2.2 GJR 

To accommodate differential impacts on the conditional variance 

between positive and negative shocks of equal magnitude, Glosten et al. (1993) 

proposed the following specification for ht: 
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where ( )t iI ε −  is an indicator function that takes value 1 if t iε − < 0 and 0 otherwise. 

The impact of positive shocks and negative shocks on conditional variance is allowing 

asymmetric impact. The expected value of iγ  is greater than zero that means the 

negative shocks give higher impact than the positive shocks, j j jα γ α+ > . However, 

it is not possible for leverage to be present in the GJR model, whereby negative 

shocks increase volatility and positive shocks of equal magnitude decrease volatility. 

If r = s = 1, 0ω > , 1 0α ≥ , 1 1 0α γ+ ≥ ,and 1 0β ≥  then it has sufficient 

conditions to ensure that the conditional variance ht  > 0. The short-run persistence of 

positive (negative) shocks is given by ( )1 1 1α α γ+ . When the conditional shocks, tη , 

follow a symmetric distribution, the expected short-run persistence is 1 1 / 2α γ+ , and 

the contribution of shocks to expected long-run persistence is 1 1 1/ 2α γ β+ + . 

3.2.3 EGARCH 

Nelson (1991) proposed the Exponential GARCH (EGARCH) model, 

which assumes asymmetries between positive and negative shocks on conditional 

volatility. The EGARCH model is given by: 

 

1 1 1

log log
r r s

t i t i i t i j t j
i i j

h hω α η γ η β− − −
= = =

= + + +∑ ∑ ∑   (3.3) 

 

In equation (3.3), t iη −  and t iη − capture the size and sign effects of the 

standardized shocks respectively. The expected value of iγ  is less than zero. 

Therefore, the positive shock provides less volatility than the negative shock. This 

mean (3.3) can allow asymmetric and leverage effects. As EGARCH also uses the 
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logarithm of conditional volatility, there are no restrictions on the parameters in (3.3). 

As the standardized shocks have finite moments, the moment conditions of (3.3) are 

straightforward. 

Lee and Hansen (1994) derived the log-moment condition for GARCH 

(1,1) as 

 

2
1 1(log( )) 0tE αη β+ <       (3.4) 

 

This is important in deriving the statistical properties of the QMLE. 

McAleer et al. (2007) established the log-moment condition for GJR(1,1) as 

 

2
1 1 1(log(( ( )) )) 0t tE Iα γ η η β+ + <     (3.5) 

 

The respective log-moment conditions can be satisfied even when 

1 1 1α β+ <  (that is, in the absence of second moments of the unconditional shocks of 

the GARCH(1,1) model), and when 1 1/ 2 1α γ β+ + <  (that is, in the absence of 

second moments of the unconditional shocks of the GJR(1,1) model). 

3.2.4 VARMA-GARCH 

The VARMA-GARCH model of Ling and McAleer (2003) assumes 

symmetry in the effects of positive and negative shocks of equal magnitude on 

conditional volatility. Let the vector of returns on m (≥ 2) financial assets be given by: 

 

1( | )−= +t t t tY E Y F ε       (3.6) 
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=t t tDε η        (3.7) 
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where 1/ 2
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2 2
1( ,..., ) ,′=

r
t t mt kAε ε ε and lB  are ×m m  matrices with typical elements ijα  and ijβ , 

respectively, for i,j = 1,…,m, I( tη ) = diag(I( itη )) is an ×m m  matrix, and Ft is the past 

information available to time t. Spillover effects are given in the conditional volatility 

for each asset in the portfolio, specifically where kA  and lB  are not diagonal matrices. 

For the VARMA-GARCH model, the matrix of conditional correlations is given by 

( )′ = Γt tE ηη . 

3.2.5 VARMA-AGARCH 

An extension of the VARMA-GARCH model is the VARMA-

AGARCH model of McAleer et al. (2009), which assume asymmetric impacts of 

positive and negative shocks of equal magnitude, and is given by 
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where Ck are ×m m  matrices for k = 1,…,r  and It = diag(I1t,…,Imt), so that 
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From equation (3.9) if m = 1, the model reduces to the asymmetric 

univariate GARCH or GJR. If Ck = 0 for all k it reduces to VARMA-GARCH.  

3.2.6 CCC 

If the model given by equation (3.9) is restricted so that Ck = 0 for all 

k, with Ak and Bl being diagonal matrics for all k,l, then VARMA-AGARCH reduces 

to: 

 

, ,
1 1

r s

it i i i t k i i t l
k l
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= =

= + +∑ ∑     (3.10) 

 

which is the constant conditional correlation (CCC) model of Bolerslev (1990). The 

CCC model also assumes that the matrix of conditional correlations is given 

by ( )′ = Γt tE ηη . As given in equation (3.10), the CCC model does not have volatility 

spillover effects across different financial assets. Moreover, CCC also does not allow 

conditional correlation coefficients of the returns to vary over time. 

3.2.7 DCC 

Engle (2002) proposed the Dynamic Conditional Correlation (DCC) 

model. The DCC model allow for two-stage estimation of the conditional covariance 

matrix. In the first stage, univariate volatility models have been estimated and obtain 

ht of each of assets. Second stage, asset returns are transformed by the estimated 

standard deviations from the first state, then used to estimate the parameters of DCC. 

The DCC model can be written as follows: 

 

1| (0, ), 1,...,− =�t t ty F Q t T      (3.11) 
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,= Γt t t tQ D D        (3.12) 

 

where 1/ 2 1/ 2
1( ,..., )t t mtD diag h h= is a diagonal matrix of conditional variances, with m 

asset returns, and Ft is the information set available to time t. The conditional variance 

is assumed to follow a univariate GARCH model, as follows: 

 

, , , ,
1 1

r s

it i i k i t k i l i t l
k l

h hω α ε β− −
= =

= + +∑ ∑     (3.13) 

 

when the univariate volatility models have been estimated, the standardized residuals, 

/=
it it ity hη , are used to estimate the dynamic conditional correlations, as follows: 

 

1 2 1 1 1 2 1(1 ) − − −′= − − + +t t t tQ S Qφ φ φη η φ     (3.14) 

{ } { }1/ 2 1/ 2( ( ) ( ( ) ,− −Γ =t t t tdiag Q Q diag Q    (3.15) 

 

where S is the unconditional correlation matrix of theε  and equation (3.15) is used to 

standardize the matrix estimated in (3.14) to satisfy the definition of a correlation 

matrix. 

 

3.3 Data and Estimation 

The data that is used to estimate for univariate and multivariate GARCH 

models is the daily returns of stock and bond indexes of four countries in Southeast 

Asia, namely Indonesia, Philippines, Thailand, and Singapore. The sample ranges 
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from 1 April 2004 to 5 November 2008 with 905 observations. All data is obtained 

from DataStream, Reuters, and the Thai Bond Market Association. The stock and 

bond returns and their variable names are summarized in Table 3.1.  

The returns of market i at time t are calculated as follows: 

 

, , , 1log( / )−=i t i t i tR P P        (3.16) 

 

where Pi,t and Pi,t-1 are the closing prices of market i at days t and t-1, respectively. 

Each stock and bond price index is denominated in the local currency.  

Stationarity of the data will be tested by using the Augmented Dickey-Fuller 

(ADF) test. The test is given as follows:  

 

1
1

− −
=

Δ = + + + Δ +∑
p

t t i t i t
i

y t y yα β θ φ ε      (3.17) 

 

The null hypothesis is θ  = 0, if the null hypothesis is rejected, it means that 

the series yt is stationary. The estimated values of θ  and t-statistic of all returns are 

significant less than zero at 1% level, as shown in Table 3.2. The plots of the daily 

returns for all series are shown in Figure 3.1. Figure 3.1 also shows that all returns 

have a constant mean, but a time-varying variance. 

 

3.4 Empirical Results 

The univariate GARCH(1,1), GJR(1,1), and EGARCH(1,1) are estimated to 

determine the coefficient of conditional mean equations and conditional variance 
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equations, with three types of conditional mean equations. The results are given in 

Tables 3.3–3.5. From Tables 3.3–3.5, coefficients in variance equations are all 

significant in the long run, but some are also significant in the short run. The GJR and 

EGARCH models show that about half of them, especially in stock markets, have 

asymmetric effects of positive and negative shocks on conditional variance. 

Moreover, many empirical evidences suggest that the changes in volatility are 

correlated with the variation in the term structure of interest. 

We can see multivariate volatility with CCC-GARCH (1,1) in Table 3.6. As 

shown, the estimated correlation yields the constant conditional correlation (range 

from -0.1775 to 0.5634), except correlation between the Thai government bond 

market and other countries’ stock markets. Therefore, Thai government bonds should 

be an asset in the portfolio to reduce the portfolio risk because they have no 

correlation with other assets. Moreover, the correlation between the Singapore 

government bond market and other financial markets, except the Thai bond market, 

are all negative. This means that including the Singapore government bonds in a 

portfolio can diversify portfolio risk efficiently. 

The results of VARMA-GARCH and VARMA-AGARCH for each pair of 

assets are estimated. We can summarize the number of volatility spillovers and 

number of asymmetric effects in VARMA-GARCH and VARMA-AGARCH models 

as shown in Table 3.7. The results show the volatility spillovers are evident in 12 of 

28 and 10 of 28 cases for VARMA-GARCH and VARMA-AGARCH, respectively. 

Asymmetric effects are significant in 17 of 28 cases and the most insignificant 

coefficients (8 of 11 cases) are the pair of Philippines financial markets and the others 
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markets. This suggests that the VARMA-GARCH model is better than the VARMA-

AGARCH model in investigating the volatility of Philippines’ financial markets.  

Based on pairs of stock market assets, VARMA-AGARCH shows that there 

are no volatility spillovers between the Indonesian stock market and the others stock 

markets. However, two out of three pairs show asymmetric effects. 

According to pairs of assets in the bond market, the results suggest that they 

have no volatility spillovers for the Thai bond market based on VARMA-GARCH 

and VARMA-AGARCH models. This means that the volatility of the Thai bond 

market neither affects the volatility of other bond markets, nor is affected by the 

volatility of other bond markets. 

Table 3.7 also reports that, for VARMA-GARCH, the Thai stock market and 

the other bond markets have volatility spillovers to each other, whereas VARMA-

AGARCH gives the results contradictorily. However, the parameters of asymmetric 

effects, three of four pairs of assets, are not significant. The results of VARMA-

AGARCH for Thailand are quite similar to the results of VARMA-GARCH for the 

Indonesian stock market, which reports no volatility spillovers between the 

Indonesian stock market and the other countries’ bond markets. 

The DCC-GARCH(1,1), allowing correlation varying overtime, are shown in 

Table 3.8. The value of parameter φ̂ 1 and φ̂ 2 are significantly different from zero, 

which clearly means that the conditional correlations vary over time, or constant 

condition correlations do not hold. However, the value of parameter φ̂ 1 and φ̂ 2 are 

approach to zero and one, respectively. Therefore, the conditional correlations are 

very tiny change over time, which means that consideration in time-varying 

conditional correlation is not necessary in practice. 
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3.5 Concluding Remarks 

The paper estimated three models for univariate volatility, namely 

GARCH(1,1), GJR(1,1), and EGARCH(1,1), on stock and bond markets in Southeast 

Asian countries. The evidence of volatility and asymmetric effects shows that 

coefficients in variance equations are all significant in the long run, but some are also 

significant in the short run. GJR and EGARCH are not clearly superior to GARCH. 

For multivariate volatility, CCC, VARMA-GARCH, VARMA-AGARCH and 

DCC are employed to capture the characteristic of volatility. CCC suggests that 

including Thai government bonds in portfolios is likely preferable to other assets, 

except Singaporean government bonds, which can diversify portfolio risk efficiently. 

The evidence of volatility spillovers and asymmetric effects from VARMA-GARCH 

and VARMA-AGARCH models shows that there are volatility spillovers and 

asymmetric effects across Southeast Asian financial markets around 40% and 60% of 

pairs of assets, respectively. The result suggests that the VARMA-GARCH model is 

better than the VARMA-AGARCH model for modelling the volatility of Philippine 

financial markets. It also shows that they have no volatility spillovers for the 

Indonesian stock market and the other stock markets as the Thai bond market and the 

other bond markets. The DCC model shows the statistically significant overall time-

varying conditional correlations. However, the conditional correlations are very tiny 

change over time, which means that consideration in time-varying conditional 

correlation is not necessary in practice. 
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Table 3.1  Summary of Variable Names 

Variables Index Names 

indos Jakarta Stock Exchange Index 

phils Philippine SE Comp. Index 

thais Stock Exchange of Thailand Index 

sings FTSE STI 

indob Citigroup Indonesia Government Bond Total Return Index 

philb Citigroup Philippines Government Bond Total Return Index 

thaib Thailand Government Bond Total Return Index 

singb JP Morgan Singapore Government Bond Total Return Index 
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Table 3.2  ADF test of a Unit Root in the Returns 

Returns Coefficient t-statistic 
indos -0.8209 -19.9447 
phils -0.9322 -20.3689 
thais -0.8653 -19.4268 
sings -0.9851 -21.2993 
indob -1.1143 -23.5271 
philb -0.9094 -19.6288 
thaib -0.6396 -17.0120 
singb -0.9460 -20.7826 
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Table 3.3  Univariate GARCH (1,1) 
 Mean equation  Variance equation  AIC SC  C AR(1) MA(1)  ω α β  

indos 0.00159  8.75E-06 0.1407 0.8412 -5.5462 -5.5249
 3.2166  1.9516 4.4415 22.4578
 0.00162 0.1763 8.33E-06 0.1393 0.8424 -5.5693 -5.5428
 2.7596 4.6470 1.9114 4.3267 21.6090
 0.00163 0.0312 0.1497 8.19E-06 0.1394 0.8431 -5.5677 -5.5358
 2.8283 0.1533 0.7479 1.9076 4.3308 21.7705

phils 0.00105  3.84E-05 0.2025 0.6724 -5.4952 -5.4739
 2.2604  2.3849 2.8702 7.6035
 0.00104 0.0598 3.96E-05 0.2037 0.6655 -5.4959 -5.4693
 2.1123 1.5308 2.4334 2.9079 7.4884
 0.00098 0.6735 -0.6323 3.87E-05 0.2036 0.6696 -5.4953 5.4634
 1.8710 2.8813 -2.5812 2.3741 2.8675 7.4596

thais 0.00068  3.61E-05 0.1173 0.7345 -5.6052 -5.5839
 1.6360  0.9799 2.4142 5.5438
 0.00067 0.15186 3.80E-05 0.1301 0.7135 -5.6208 -5.5942
 1.3599 3.4804 0.9773 2.9008 4.9375
 0.00067 0.1489 0.0030 3.79E-05 0.1302 0.7136 -5.6186 -5.5867
 1.3552 0.7393 0.0144 0.9726 2.9016 4.9077

sings 0.00096  2.44E-06 0.1328 0.8623 -6.2196 -6.1984
 3.1588  1.8406 5.1753 35.4656
 0.00097 -0.0317 2.43E-06 0.1329 0.8622 -6.2185 -6.1919
 3.3416 -0.8736 1.8440 5.1219 35.5601
 0.00100 0.8533 -0.8817 2.43E-06 0.1325 0.8623 -6.2190 -6.1871
 4.1952 6.3959 -7.3624 2.4760 5.0906 37.8438
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Table 3.3  (Continued)  
 Mean equation  Variance equation  AIC SC  C AR(1) MA(1)  ω α β  

indob 0.00048  6.26E-07 0.1178 0.8741 -8.2848 -8.2635
 5.0560  2.0237 2.0990 31.4239
 0.00045 0.1180 5.58E-07 0.1107 0.8824 -8.2930 -8.2664
 4.4070 2.1785 2.2494 1.9097 35.6374
 .00045 -0.0604 0.1803 5.57E-07 0.1097 0.8830 -8.2914 -8.2595
 4.4938 -0.1592 0.4975 3.4240 1.9552 32.6421

philb 0.00062  4.77E-07 0.1301 0.8682 -8.2521 -8.2309
 4.8064  2.2097 2.7292 31.7528
 0.00062 0.0857 4.78E-07 0.1288 0.8680 -8.2562 -8.2296
 4.5259 2.0435 1.9574 2.6043 39.7056
 0.00062 0.2971 -0.2094 4.76E-07 0.1283 0.8684 -8.2546 -8.2227
 4.4645 0.6924 -0.4786 2.2779 2.6728 31.0896

thaib 0.00024  2.61E-07 0.3182 0.6796 -9.7493 -9.7280
 5.5157  1.6127 3.9047 13.1649
 0.00025 0.4084 1.74E-07 0.2352 0.7531 -9.8770 -9.8504
 3.1662 9.5046 1.3478 3.8007 15.6648
 0.00024 0.4856 -0.0947 1.69E-07 0.2288 0.7595 -9.8754 -9.8435
 2.9821 5.2058 -0.9978 1.3701 3.8397 17.9382

singb -0.00031  7.74E-07 0.0828 0.9053 -7.3361 -7.3149
 -1.6568  1.8030 3.5560 33.0925
 -0.00030 0.0413 7.44E-07 0.0817 0.9068 -7.3343 -7.3077
 -1.5416 1.1951 1.6915 3.5376 33.3517
 -0.00030 -0.0672 0.1072 7.44E-07 0.0818 0.9068 -7.3322 -7.3003
 -1.5531 -0.1241 0.1976 1.6617 3.5367 33.0944

Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.  

(2) Entries in bold are significant at the 95% level. 
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Table 3.4  Univariate GJR (1,1) 
 Mean equation Variance equation AIC SC  C AR(1) MA(1)  ω α γ β  

indos 0.00160  6.13E-05 -0.1008 0.4848 0.5858 -5.5736 -5.5471
 3.9596  51.7774 -5.7712 5.2675 11.8346
 0.00079 0.1636 5.27E-05 -0.1174 0.4963 0.6544 -5.5966 -5.5647
 1.5234 12.2672 347.5637 -4.9839 6.4511 16.2607
 0.00075 0.2767 -0.1164 5.27E-05 -0.1166 0.4985 0.6582 -5.5943 -5.5571
 1.3450 1.3212 -0.5642 328.0517 -5.2213 6.1371 16.6691

phils 0.00074  4.03E-05 0.0846 0.1765 0.6835 -5.5055 -5.4789
 1.6155  2.5271 1.0845 1.6876 7.2836
 0.00064 0.0764 4.26E-05 0.0753 0.1982 0.6721 -5.5081 -5.4762
 1.2847 1.9989 2.5706 1.0045 1.7818 6.9558 
 0.00057 0.4482 -0.3717 4.16E-05 0.0745 0.2001 0.6765 -5.5073 -5.4701
 1.0761 1.5918 -1.2902 2.5212 1.0075 1.7755 6.9594

thais 0.00027  3.47E-05 -0.0294 0.2333 0.7551 -5.6432 -5.6166
 0.6650  1.7447 -0.3541 2.3890 11.6881
 6.02E-05 0.1288 3.53E-05 -0.0217 0.2436 0.7423 -5.6554 -5.6235
 0.1285 3.1938 1.5544 -0.2218 1.8372 9.7420
 7.75E-05 0.0401 0.0931 3.55E-05 -0.0215 0.2472 0.7393 -5.6534 -5.6161
 0.1685 0.1543 0.3452 1.5212 -0.2197 1.8347 9.3234

sings 0.00061  3.65E-06 0.0386 0.1566 0.8610 -6.2311 -6.2046
 2.0204  2.6803 1.3748 3.6668 33.2861
 0.00064 -0.0291 3.66E-06 0.0401 0.1557 0.8594 -6.2300 -6.1981
 2.2152 -0.7904 2.6855 1.4218 3.5787 32.8635
 0.00067 0.3876 -0.4236 3.65E-06 0.0416 0.1512 0.8598 -6.2282 -6.1910
 2.3440 0.5303 -0.5886 2.6792 1.4778 3.5360 32.8415
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Table 3.4  (Continued) 
 Mean equation Variance equation AIC SC  C AR(1) MA(1)  ω α γ β  

indob 0.00031  5.73E-07 0.0175 0.1856 0.8839 -8.3442 -8.3176
 3.2236  3.7314 0.6645 1.7019 41.1949
 0.00025 0.1341 5.28E-07 0.0105 0.1847 0.8919 -8.3550 -8.3231
 2.1734 2.2415 2.3655 0.4335 1.5594 41.8992
 0.00025 0.1789 -0.0447 5.30E-07 0.0105 0.1866 0.8914 -8.3529 -8.3156
 2.0138 0.5481 -0.1398 1.9692 0.4234 1.7700 32.8010

philb 0.00043  8.02E-07 0.0347 0.1791 0.8491 -8.2843 -8.2577
 3.5832  4.8247 0.9249 1.4422 23.9217
 0.00042 0.0579 7.83E-07 0.0386 0.1742 0.8488 -8.2858 8.2538
 3.0301 1.4101 2.1483 0.8696 1.4945 28.2659
 0.00041 0.3565 -0.2947 7.78E-07 0.0385 0.1743 0.8493 -8.2842 -8.2470
 3.3027 0.6740 -0.5472 0.9364 0.8481 1.1681 11.5565

thaib 0.00023  2.64E-07 0.2480 0.1033 0.6877 -9.7518 -9.7252
 5.0874  2.0320 3.8518 0.9835 13.4129
 0.00019 0.4051 1.75E-07 0.1676 0.1126 0.7583 -9.8819 -9.8500
 2.6451 8.7827 1.4430 2.4909 0.9943 20.1370
 0.00019 0.4583 -0.0651 1.72E-07 0.1656 0.1093 0.7622 -9.8801 -9.8428
 2.5446 4.6168 -0.6744 1.5164 2.4418 0.9517 19.0666

singb -0.00026  1.14E-06 0.1070 -0.0473 0.8938 -7.3365 -7.3100
 -1.3529  2.0731 3.1530 -1.3771 29.8199
 -0.00025 0.0406 1.10E-06 0.1060 -0.0471 0.8955 -7.3346 -7.3027
 -1.2321 1.1869 1.8896 3.1930 -1.3750 29.9882
 -0.00025 -0.0671 0.1061 1.10E-06 0.1060 -0.0468 0.8953 -7.3324 -7.2952
 -1.2498 -0.1225 0.1933 1.8954 3.1806 -1.3624 30.0174

Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.  

(2) Entries in bold are significant at the 95% level. 
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Table 3.5  Univariate EGARCH (1,1) 
 Mean equation  Variance equation  AIC SC  C AR(1) MA(1)  ω α γ β  
indos 0.00120  -0.8018 0.2452 -0.1109 0.9260 -5.5610 -5.5345
 2.7516  -3.0615 3.3850 -2.2150 33.4643
 0.00077 0.2021 -0.9073 0.2217 -0.1618 0.9118 -5.5924 -5.5605
 1.2810 5.5047 -3.1912 2.8047 -2.8331 30.9296
 0.00076 0.2291 -0.0279 -0.9073 0.2212 -0.1627 0.9118 -5.5902 -5.5530
 1.2342 1.3433 -0.1621 -3.1832 2.8017 -2.8176 30.8660
thais 0.00024  -1.1519 0.0913 -0.2094 0.8727 -5.6659 -5.6393
 0.5684  -2.7823 0.9382 -1.9726 15.6802

 -2.61E-05 0.1202 -1.1411 0.0796 -0.2221 0.8731 -5.6779 -5.6460
 -0.0552 2.9889 -2.7070 0.7420 -1.8286 15.3463
 -1.21E-05 0.0675 0.0552 -1.1475 0.0812 -0.2224 0.8724 -5.6758 -5.6385

 -0.0258 0.2576 0.2045 -2.6322 0.7626 -1.8342 14.8891
sings 0.00057  -0.4369 0.2008 -0.1125 0.9684 -6.2357 -6.2091
 1.9702  -3.7979 4.6541 -3.8029 87.5987
 0.00061 -0.0345 -0.4416 0.2041 -0.1104 0.9682 -6.2347 -6.2027
 2.1804 -0.9891 -3.8271 4.7035 -3.7500 87.1849
 0.00063 -0.8563 0.838586 -0.4431 0.2032 -0.1120 0.9680 -6.2336 -6.1963
 2.2287 -3.3402 3.088216 -3.8131 4.6617 -3.7874 86.3531
phils 0.00064  -1.7398 0.3629 -0.1278 0.8231 -5.5075 -5.4809
 1.4782  -2.7310 3.0552 -1.8129 11.5848
 0.00055 0.0726 -1.7671 0.3635 -0.1360 0.8201 -5.5102 -5.4783
 1.1386 1.8619 -2.8155 3.1256 -1.8389 11.7343
 0.00044 0.9976 -0.9974 -1.3457 0.1040 -0.0406 0.8481 -5.4441 -5.4069
 0.1542 77.2508 -79.9912 -0.9303 0.9390 -0.5513 5.0605
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Table 3.5  (Continued) 
 Mean equation  Variance equation  AIC SC  C AR(1) MA(1)  ω α γ β  
indob 0.00078  -0.4458 0.2026 -0.1347 0.9715 -8.2896 -8.2631
 4.1634  -1.0816 2.4350 -1.8443 27.8703
 0.00072 0.1265 -0.4034 0.1708 -0.1493 0.9735 -8.2964 -8.2645
 3.6520 2.2845 -1.0414 2.7406 -1.8861 29.0994
 0.00060 -0.2290 0.3853 -0.4270 0.1664 -0.1448 0.9708 -8.2974 -8.2602
 3.2353 -0.8817 1.3614 -1.0827 2.8885 -1.8850 28.0739
philb 0.00056  -0.6098 0.1670 -0.1554 0.9549 -8.2786 -8.2520
 3.6421  -3.5869 2.0413 -2.3139 65.4667
 0.00060 0.0594 -0.5976 0.1750 -0.1562 0.9567 -8.2802 -8.2483
 3.1648 1.0011 -3.6806 2.2054 -2.2415 67.8028
 0.00058 0.5586 -0.4843 -0.5970 0.1790 -0.1642 0.9570 -8.2808 -8.2436
 2.9046 1.7535 -1.5084 -3.5299 2.3661 -2.2114 64.8746
thaib 0.00024  -1.6188 0.5224 -0.0464 0.9006 -9.7718 -9.7453
 4.9891  -4.2943 5.9168 -0.9016 33.7635
 0.00019 0.3842 -1.1472 0.3960 -0.0549 0.9317 -9.8643 -9.8840
 2.6652 8.3494 -3.5151 4.7755 -0.9044 41.2655
 0.00019 0.3906 -0.0077 -1.1545 0.3978 -0.0547 0.9312 -9.8940 -9.8568
 2.6802 3.4190 -0.0704 -3.5293 4.7818 -0.8912 41.1367
singb -0.00027  -0.4127 0.1911 0.0403 0.9737 -7.3276 -7.3011
 -1.3900  -2.1468 4.4041 1.6484 55.1679
 -0.00026 0.0379 -0.3988 0.1881 0.0398 0.9749 -7.3252 -7.2933
 -1.2541 1.0837 -2.1027 4.3902 1.6044 55.9244
 -0.00029 0.6442 -0.6357 -0.4098 0.1905 0.0407 0.9740 -7.3226 -7.2853
 -1.4350 0.7430 -0.7284 -2.1336 4.3860 1.6282 55.2070
Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.  

(2) Entries in bold are significant at the 95% level. 
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Table 3.6  Constant Conditional Correlation between Returns in CCC-GARCH(1,1) 

Returns indos phils thais sings indob philb thaib 
phils 0.3916   

 11.7978   
thais 0.4641 0.3254   

 18.0797 10.1285   
sings 0.5634 0.3963 0.4674   

 18.7840 12.2588 16.9134   
indob 0.1134 0.1407 0.1352 0.1219   

 3.4451 4.2084 4.0705 4.2852   
philb 0.1327 0.1631 0.1561 0.1371 0.4485  

 2.8370 3.7403 4.3675 3.1652 12.0181  
thaib 0.0131 0.0560 0.1505 0.0626 0.0821 0.0882 

 0.3393 1.3539 2.1052 1.5581 2.3388 2.2775 
singb -0.1775 -0.0749 -0.1502 -0.1934 -0.0991 -0.1195 -0.0094

 -5.2379 -2.4717 -4.5711 -6.2245 -3.1282 -3.4832 0.2593
Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and 

Woodridge robust t-ratios.  

(2) Entries in bold are significant at the 95% level. 
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Table 3.7  Summary of Volatility Spillovers and Asymmetric Effect of Negative and 

Positive Shocks 

Pairs of assets Number of volatility spillovers Number of 
asymmetric effects VARMA-GARCH VARMA-AGARCH 

Stock-Stock    
indos_phils 1 0 1 
indos_thais 1 0 1 
indos_sings 0 0 0 
phils_thais 0 2 1 
phils_sings 2 0 0 
thais_sings 2 1 1 

Stock-Bond    
indos_indob 1 0 1 
indos_philb 0 0 0 
indos_thaib 0 0 1 
indos_singb 0 2 1 
phils_indob 0 1 1 
phils_philb 0 0 0 
phils_thaib 1 1 0 
phils_singb 0 0 0 
thais_indob 2 0 1 
thais_philb 2 0 0 
thais_thaib 2 0 0 
thais_singb 2 0 0 
sings_indob 1 1 1 
sings_philb 0 1 0 
sings_thaib 0 0 1 
sings_singb 0 0 1 

Bond-Bond    
indob_philb 0 2 1 
indob_thaib 0 0 1 
indob_singb 0 2 1 
philb_thaib 0 0 0 
philb_singb 2 1 1 
thaib_singb 0 0 1 
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Table 3.8  DCC-GARCH(1,1) Estimates 

Parameter Estimates Estimates in the Qt Equation 
φ̂ 1 0.0033 

 4.2238 
φ̂ 2 0.9846 

 223.7337 
Note: The two entries for each parameter are their respective estimate and  

Bollerslev and Woodridge robust t-ratios.  
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Figure 3.1  Daily Returns for All series 

 


