
 

Chapter 4 

Modelling Stock Volatility in South-East Asia 

 

An efficient portfolio relies on the correlation or covariance of a pair of assets 

that may change over time. Investors can make decisions and manage their portfolios 

to weigh between the expected returns and risks. In recent years emerging stock 

markets have been of considerable interest to investors who have been attracted by the 

opportunities for further international portfolio diversification and the high expected 

rates of return offered. Stock markets in South-East Asia are attractive for 

international investors in many reasons such as the increasing in market capitalization 

and higher average returns.  

This chapter is a revised version from the original paper presented at the 

Second Conference of The Thailand Econometric Society, Chiang Mai, Thailand in 

Appendix B. 
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Abstract  

 

Stock returns and volatility are important for investment decision making and 

risk management. This paper evaluates the volatility linkages and spillovers across 

stock markets because investors tend to move their funds across markets to adjust 

portfolio risk and returns. The volatility spillovers in six countries, namely Indonesia, 

The Philippines, Thailand, and Singapore, are examined using daily returns of stock 

indices from 31 July 2000 to 12 November 2008.  The univariate volatility models 

suggest that Indonesia and Singapore markets have asymmetric effects in that positive 

and negative shocks have the same impact on conditional volatility. The multivariate 

volatility is used to determine the conditional correlation and spillover effects. CCC 

model found the constant conditional correlation, except in the correlation between 

Vietnam and Indonesia, and between Vietnam and Thailand. VARMA-GARCH and 

VARMA-AGARCH models show that the volatility spillovers are evident in 8 of 15 

for both models. Moreover, the numbers of cases that have significant and 

insignificant asymmetric effect do not differ much. Therefore, VARMA-AGARCH is 

not clearly superior to VARMA-GARCH. In addition, DCC shows significant time-

varying correlations. 
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4.1 Introduction 

Volatility is the key for portfolio and risk management, especially with 

modern financial theory. It has become an important tool for fund managers and 

investors to use while making decisions for investments. Fund managers and investors 

tend to move their funds from the markets that have high volatility to the markets that 

have low volatility. For example, they can move funds from one stock market to other 

stock markets if the volatility in the first stock market has increased. 

This behavior of fund managers and investors leads to increases or decreases 

in the volatility across the countries. Another cause that changes the volatility is the 

information that affects all markets and all countries simultaneously, such as the 

Asian financial crisis in 1997. This means there are volatility linkages and spillovers 

across the countries. Therefore, fund managers and investors can make decisions and 

manage their portfolio to weigh between the expected return and risk.  

Consequently, many models have been developed to capture the characteristic 

of volatility. Engle (1982) introduced the Autoregressive Conditional 

Heterscedasticity (ARCH) to model the character of volatility. In 1986, Bollerslev 

generalized ARCH to become Generalize Autoregressive Conditional 

Heterscedasticity (GARCH). However, both of them assume that positive and 

negative shocks have the same impact on the conditional variance. To accommodate 

differential impacts on the conditional variance between positive and negative shocks, 

Glosten et al. (1993) proposed the GJR model. The EGARCH model of Nelson 

(1991) can also capture asymmetric volatility. 

 The multivariate volatility models are common in modelling volatility. The 

CCC model of Bollerslev (1990) assumes that the conditional correlation coefficients 
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of the returns are time invariant and restricted for volatility spillovers among different 

returns. Engle (2002) proposed the Dynamic Conditional Correlation (DCC) model to 

allow correlation variance over time, but it still does not allow volatility spillovers. 

The VARMA-GARCH model of Ling and McAleer (2003) and the VARMA-

AGARCH model of McAleer et al. (2009) are extended to capture the volatility 

spillovers, but constant conditional correlation is maintained. 

This paper aims to examine the characteristic of volatility, the asymmetric 

effect of positive and negative shocks, and volatility spillovers across Southeast Asian 

stock markets to manage the portfolio risk and returns. 

 

4.2 Model Specifications 

A wide range of conditional volatility models are used to estimate the 

volatility and volatility spillovers with symmetric and asymmetric effects in financial 

markets. The univariate and multivariate conditional volatility models, namely 

GARCH, GJR, EGARCH, CCC, DCC, VARMA-GARCH and VARMA-AGARCH, 

are used in this paper to capture the characteristic of the volatility on financial market 

in South-East Asia. In 1982, Engle introduced the Autoregressive Conditional 

Heteroskedasticity (ARCH) that volatility is affected by positive shock and negative 

shock in the previous period in the same impact. After that many models are 

developed and extended continuously. 

4.2.1 GARCH 

Bollerslev (1986) generalized ARCH(r) to the GARCH (r,s), model as 

follows: 
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= + +∑ ∑      (4.1) 

 

where 0,ω > 0iα ≥ for i = 1,…,r, and 0jβ ≥  for j = 1,…,s, are sufficient to ensure 

that the conditional variance, ht > 0. The iα  represent the ARCH effects and jβ  

represent the GARCH effects. 

GARCH (r,s) shows that the volatility is not only effected by shocks 

but also effected by lag of itself. The model also assumes a positive shock ( 0tε > ) 

and negative shock ( 0tε < ) of equal magnitude have the same impact on the 

conditional variance. 

4.2.2 GJR 

To accommodate differential impacts on the conditional variance 

between positive and negative shocks of equal magnitude, Glosten et al. (1993) 

proposed the following specification for ht: 

 

( ) 2

1 1

( )
r s

t i i t i t i j t j
i j

h I hω α γ ε ε β− − −
= =

= + + +∑ ∑    (4.2) 

 

where ( )t iI ε −  is an indicator function that takes value 1 if t iε − < 0 and 0 otherwise. 

The impact of positive shocks and negative shocks on conditional variance is allowing 

asymmetric impact. The expected value of iγ  is greater than zero that means the 

negative shocks give higher impact than the positive shocks, j j jα γ α+ > . 
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If r = s = 1, 0ω > , 1 0α ≥ , 1 1 0α γ+ ≥ ,and 1 0β ≥  then it has sufficient 

conditions to ensure that the conditional variance ht  > 0. The short-run persistence of 

positive (negative) shocks is given by ( )1 1 1α α γ+ . When the conditional shocks, tη , 

follow a symmetric distribution, the expected short-run persistence is 1 1 / 2α γ+ , and 

the contribution of shocks to expected long-run persistence is 1 1 1/ 2α γ β+ + . 

4.2.3 EGARCH 

Nelson (1991) proposed the Exponential GARCH (EGARCH) model, 

which assumes asymmetries between positive and negative shocks on conditional 

volatility. The EGARCH model is given by: 

 

1 1 1
log log

r r s

t i t i i t i j t j
i i j

h hω α η γ η β− − −
= = =

= + + +∑ ∑ ∑   (4.3) 

 

In equation (4.3), t iη −  and t iη − capture the size and sign effects of the 

standardized shocks respectively. The expected value of iγ  is less than zero. 

Therefore, the positive shock provides less volatility than the negative shock. This 

mean (4.3) can allow asymmetric and leverage effects. As EGARCH also uses the 

logarithm of conditional volatility, there are no restrictions on the parameters in (4.3). 

As the standardized shocks have finite moments, the moment conditions of (4.3) are 

straightforward. 

Lee and Hansen (1994) derived the log-moment condition for GARCH 

(1,1) as 
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2
1 1(log( )) 0tE αη β+ <       (4.4) 

 

This is important in deriving the statistical properties of the QMLE. 

McAleer et al. (2007) established the log-moment condition for GJR(1,1) as 

 

2
1 1 1(log(( ( )) )) 0t tE Iα γ η η β+ + <     (4.5) 

 

The respective log-moment conditions can be satisfied even when 

1 1 1α β+ <  (that is, in the absence of second moments of the unconditional shocks of 

the GARCH(1,1) model), and when 1 1/ 2 1α γ β+ + <  (that is, in the absence of 

second moments of the unconditional shocks of the GJR(1,1) model). 

4.2.4 VARMA-GARCH 

The VARMA-GARCH model of Ling and McAleer (2003) assumes 

symmetry in the effects of positive and negative shocks of equal magnitude on 

conditional volatility. Let the vector of returns on m (≥ 2) financial assets be given by: 

 

1( | )−= +t t t tY E Y F ε       (4.6) 

=t t tDε η        (4.7) 

1 1

r s

t k t k l t l
k l

H A B Hω ε − −
= =

= + +∑ ∑r     (4.8) 

 

where 1/ 2
1 1 , 1( ,..., ) , ( ,..., ) , ( ), ( ,..., ) ,t t mt m t i t t t mtH h h D diag hω ω ω η η η′ ′ ′= = = =

2 2
1( ,..., ) ,′=

r
t t mt kAε ε ε and lB  are ×m m  matrices with typical elements ijα  and ijβ , 
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respectively, for i,j = 1,…,m, I( tη ) = diag(I( itη )) is an ×m m  matrix, and Ft is the past 

information available to time t. Spillover effects are given in the conditional volatility 

for each asset in the portfolio, specifically where kA  and lB  are not diagonal matrices. 

For the VARMA-GARCH model, the matrix of conditional correlations is given by 

( )′ = Γt tE ηη . 

4.2.5 VARMA-AGARCH 

An extension of the VARMA-GARCH model is the VARMA-

AGARCH model of McAleer et al. (2009), which assume asymmetric impacts of 

positive and negative shocks of equal magnitude, and is given by 

 

1 1 1

r r s

t k t k k t k t k l t l
k k l

H A C I B Hω ε ε− − − −
= = =

= + + +∑ ∑ ∑r r   (4.9) 

 

where Ck are ×m m  matrices for k = 1,…,r  and It = diag(I1t,…,Imt), so that 

,

,

0, 0
1, 0

>⎧⎪= ⎨ ≤⎪⎩

k t

k t

I
ε

ε
. 

From equation (4.9) if m = 1, the model reduces to the asymmetric 

univariate GARCH or GJR. If Ck = 0 for all k it reduces to VARMA-GARCH.  

4.2.6 CCC 

If the model given by equation (4.9) is restricted so that Ck = 0 for all 

k, with Ak and Bl being diagonal matrics for all k,l, then VARMA-AGARCH reduces 

to: 
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which is the constant conditional correlation (CCC) model of Bolerslev (1990). The 

CCC model also assumes that the matrix of conditional correlations is given 

by ( )′ = Γt tE ηη . As given in equation (4.10), the CCC model does not have volatility 

spillover effects across different financial assets. Moreover, CCC also does not allow 

conditional correlation coefficients of the returns to vary over time. 

4.2.7 DCC 

Engle (2002) proposed the Dynamic Conditional Correlation (DCC) 

model. The DCC model allow for two-stage estimation of the conditional covariance 

matrix. In the first stage, univariate volatility models have been estimated and obtain 

ht of each of assets. Second stage, asset returns are transformed by the estimated 

standard deviations from the first state, then used to estimate the parameters of DCC. 

The DCC model can be written as follows: 

 

1| (0, ), 1,...,− =�t t ty F Q t T      (4.11) 

,= Γt t t tQ D D        (4.12) 

 

where 1/ 2 1/ 2
1( ,..., )t t mtD diag h h= is a diagonal matrix of conditional variances, with m 

asset returns, and Ft is the information set available to time t. The conditional variance 

is assumed to follow a univariate GARCH model, as follows: 
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when the univariate volatility models have been estimated, the standardized residuals, 

/=
it it ity hη , are used to estimate the dynamic conditional correlations, as follows: 

 

1 2 1 1 1 2 1(1 ) − − −′= − − + +t t t tQ S Qφ φ φη η φ     (4.14) 

{ } { }1/ 2 1/ 2( ( ) ( ( ) ,− −Γ =t t t tdiag Q Q diag Q    (4.15) 

 

where S is the unconditional correlation matrix of theε  and equation (4.15) is used to 

standardize the matrix estimated in (4.14) to satisfy the definition of a correlation 

matrix. 

 

4.3 Data and Estimation 

The data used to estimate univariate and multivariate GARCH models is the 

daily returns of stock indices of six countries in Southeast Asia, namely Indonesia, 

Malaysia, The Philippines, Thailand, Singapore, and Vietnam. The sample ranges 

from 31 July 2000 to 12 November 2008 with 1,529 observations. All data was 

obtained from Reuters. The stock returns and their variable names are summarized in 

Table 4.1.  

The returns of market i at time t are calculated as follows: 

 

, , , 1log( / )−=i t i t i tR P P        (4.16) 



 56

where Pi,t and Pi,t-1 are the closing prices of market i at days t and t-1, respectively. 

Each stock price index is denominated in the local currency. The plots of the daily 

returns for all series are shown in Figure 4.1. Figure 4.1 shows that all returns have 

constant mean, but the time-varying variance.  

The stationarity of the data will be tested by using the Augmented Dickey-

Fuller (ADF) test. The test is given as follows: 

 

 1
1

− −
=

Δ = + + + Δ +∑
p

t t i t i t
i

y t y yα β θ φ ε     (4.17) 

 

The null hypothesis is θ  = 0. If the null hypothesis is rejected, it means that the series 

yt is stationary. The estimated values of θ  and t-statistic of all returns are significant 

if less than zero at 1% level, as shown in Table 4.2. 

 

4.4 Empirical Results 

The univariate methods (namely, GARCH (1,1), GJR (1,1), and EGARCH 

(1,1)) are estimated to determine the coefficient of conditional mean equations and 

condition variance equations, with three types of conditional mean equations. The 

results are given in Tables 4.3-4.5. As shown in Table 4.3, coefficients in variance 

equations are all significant in the short and long runs. Asymmetric effects of positive 

and negative shocks on conditional volatility in GJR and EGARCH are significant 

only in Indonesia and Singapore, while the rest are insignificant. Therefore, 

asymmetric models of univariate volatility are preferred to GARCH in the cases of 

Indonesia and Singapore. 
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As CCC-GARCH (1,1) shows in Table 4.6 for multivariate volatility, we can 

see that the estimated correlation yields the constant conditional correlation, except 

with correlation between Vietnam and Indonesia, and between Vietnam and Thailand. 

Moreover, the correlation between Vietnam and Malaysia is negative. This means a 

portfolio which is constructed from the assets in Vietnamese and Malaysian stock 

markets can diversify portfolio risk efficiently. 

The VARMA-GARCH and VARMA-AGARCH models are used to determine 

the linkages and spillovers across countries because they can estimate time-varying 

volatility, and also test for volatility spillovers and asymmetric effects of positive and 

negative shocks. The results of VARMA-GARCH and VARMA-AGARCH for each 

pair of assets are estimated. Then, we summarize the number of volatility spillovers 

and number of asymmetric effects in VARMA-GARCH and VARMA-AGARCH 

models in Table 4.7. The results show the volatility spillovers are evident in 8 of 15 

for both models. Asymmetric effects are not significant in 6 of 15 cases, which mean 

that positive and negative shocks have the same impact on conditional volatility. 

However, 60% of cases are statistically significant. We can conclude that overall 

VARMA-AGARCH is not clearly superior to VARMA-GARCH. For the Indonesian 

market, the results of VARMA-GARCH found that there is no volatility spillover 

between the Indonesian market and the other markets. On the other hand, VARMA-

AGARCH gives better results to show that volatility spillovers and asymmetric 

effects exist in most cases for Indonesia. Therefore, the VARMA-AGARCH is 

superior to VARMA-GARCH even though overall it does not seem to be. 

The DCC-GARCH(1,1) estimate and t-ratio are shown in Table 4.8. The value 

of parameter φ̂ 1 and φ̂ 2 is significantly different from zero, which clearly means that 
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the conditional correlations in overall are time-varying, or that constant condition 

correlations do not hold. Furthermore, the short-run and long-run persistence of 

shocks to conditional correlations is statistically significant. However, the value of 

parameter φ̂ 1 and φ̂ 2 are approach to zero and one, respectively. Therefore, the 

conditional correlations are very tiny change over time, which means that 

consideration in time-varying conditional correlation is not necessary in practice. 

 

4.5 Concluding Remarks 

The paper estimates the conditional volatility of Southeast Asian countries 

(Indonesia, Malaysia, The Philippines, Thailand, Singapore, and Vietnam) using 

univariate and multivariate volatility models. The univariate volatility models suggest 

that negative shocks in Indonesia and Singapore make that stock market more volatile 

than positive shock.  

For multivariate volatility, CCC provided the constant conditional correlation, 

except correlation between Vietnam and Indonesia, and Vietnam and Thailand. 

Correlation between Vietnam and Malaysia is only negative. This means that portfolio 

managers can diversify risk efficiently if they invest in Vietnamese and Malaysian 

stock. The VARMA-GARCH and VARMA-AGARCH models show that the 

volatility spillovers are evident in 8 of 15 for both models. Asymmetric effects are 

insignificant in 6 of 15 cases, which means that positive and negative shocks have the 

same impact on conditional volatility. However, the numbers of cases that are 

significant or insignificant are not very different, so VARMA-AGARCH is not clearly 

superior to VARMA-GARCH. The evidence of the DCC model shows the statistically 

significant time-varying conditional correlations. 
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Table 4.1  Summary of Variable Names 

Variables Index Names 

indos Jakarta Stock Exchange Index 

malas Kuala Lumpur Comp. Price Index 

phils Philippine SE Comp. Index 

thais Stock Exchange of Thailand Index 

sings FTSE STI 

viets Vietnam Stock Exchange Index 
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Table 4.2  ADF Test of a Unit Root in the Returns 

 Returns Coefficient t-statistic 
indos -0.8435 -25.6478 
malas -0.8572 -25.2510 
phils -0.9341 -26.5831 
sings -0.9388 -26.2514 
thais -0.8801 -25.7109 
viets -0.7467 -24.1369 
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Table 4.3  Univariate GARCH (1,1) 
 
 Mean equation  Variance equation  AIC SC  C AR(1) MA(1)  ω α β  
indos 0.0014  1.81E-06 0.1296 0.8134 -5.4558 -5.4507
 3.8427  2.6543 3.8135 17.3384
 0.0015 0.1430 1.69E-06 0.1249 0.8205 -5.4705 -5.4640
 3.3335 4.8499 2.6716 3.9559 18.3939
 0.0014 0.1808 -0.0386 1.69E-05 0.1249 0.8204 -5.4692 -5.4483
 3.3121 0.9630 0.2045 2.6798 3.9660 18.4340
malas 0.0004  6.54E-07 0.1163 0.8935 -6.5223 -6.5084
 2.5132  2.2647 6.2337 68.3310
 0.0004 0.139 4.47E-07 0.0925 0.9141 -6.5365 -6.5191
 1.9538 3.9705 1.7428 6.2644 73.7371
 0.0003 0.4778 -0.3526 4.00E-07 0.0858 0.9199 -6.5376 -6.5166
 1.7322 2.6853 -1.8609 2.2067 5.9967 88.8074
phils 0.0003  2.93E-05 0.2061 0.7129 -5.4926 -5.4786
 1.0193  3.2261 3.8770 13.7358
 0.0004 0.0795 3.01E-05 0.2074 0.7080 -5.4954 -5.4779
 0.9915 2.5959 3.3581 3.9051 13.8951
 0.0003 0.4888 -0.4065 3.14E-05 0.2159 0.6959 -5.4954 -5.4745
 0.8266 1.7726 -1.4412 3.5461 3.8799 13.7583
thais 0.0010  2.72E-05 0.1112 0.7929 -5.4715 -5.4576
 2.7028  1.3314 2.7011 13.1301
 0.0010 0.1283 2.82E-05 0.1167 0.7827 -5.4833 -5.4658
 2.4370 3.7622 1.3910 2.7499 12.9605
 0.0010 0.0858 0.0427 2.79E-05 0.1162 0.7840 -5.4820 -5.4610
 2.4598 0.4193 0.2040 1.3896 2.7607 13.1086
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Table 4.3  (Continued)  
   
 Mean equation  Variance equation  AIC SC  C AR(1) MA(1)  ω α β  
sings 0.0007  2.34E-06 0.1196 0.8803 -5.9478 -5.9338
 2.7517  1.9354 4.0187 34.0953
 0.0007 -0.0190 2.31E-06 0.1188 0.8809 -5.9472 -5.9298
 2.8099 -0.6842 1.9290 3.9582 33.9351
 0.0007 -0.1676 0.1489 2.31E-06 0.1187 0.8811 -5.9460 -5.9250
 2.7951 -0.1151 0.1018 1.9264 3.9577 33.9443
viets 5.91E-05  3.80E-06 0.4298 0.6871 -5.5085 -5.4945
 0.2281  2.8483 5.4381 16.3879
 9.28E-05 0.2831 4.10E-06 0.4003 0.7021 -5.5674 -5.5499
 0.2444 7.8533 3.0184 6.0897 20.1821
 9.27E-05 0.2774 0.0063 4.10E-06 0.4002 0.7021 -5.5661 -5.5451
 0.2445 2.5729 0.0512 3.0182 6.1451 20.1756
Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.  

(2) Entries in bold are significant at the 95% level. 
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Table 4.4  Univariate GJR (1,1) 
 
 Mean equation  Variance equation  AIC SC  C AR(1) MA(1)  ω α γ β  
indos 0.0012     4.50E-05 0.0295 0.2172 0.6907  -5.4722 -5.4547 
 3.1681     4.0283 0.9356 3.2513 10.7198    
 0.0010 0.1519   3.14E-05 0.0250 0.1815 0.7637  -5.4881 -5.4672 
 2.2358 5.1435   3.1101 0.7874 2.7809 12.3098    
 0.0009 0.3069 -0.1591  3.12E-05 0.0238 0.1841 0.7645  -5.4872 -5.4628 
 2.0573 1.7806 -0.8939  3.1429 0.7367 2.7976 12.4962    
malas 0.0003     1.03E-06 0.0969 0.0814 0.8716  -6.5305 -6.5130 
 1.6160     3.2141 3.5141 1.4761 59.7811    
 0.0003 0.1290   9.37E-07 0.0904 0.0825 0.8773  -6.5437 -6.5227 
 1.2046 3.8024   3.0964 3.2849 1.4478 65.8644    
 0.0002 0.4882 -0.3659  8.87E-07 0.0840 0.0833 0.8824  -6.5447 -6.5202 
 0.9479 2.8315 -1.9774  2.6283 3.0516 1.4564 67.8420    
phils 0.0001     2.64E-05 0.1054 0.1319 0.7509  -5.4997 -5.4822 
 0.4147     2.5674 2.2301 1.8712 11.9633    
 0.0001 0.0790   2.64E-05 0.0997 0.1380 0.7528  -5.5027 -5.4818 
 0.3175 2.4466   2.5588 2.1850 1.8867 12.0069    
 8.36E-05 0.3774 -0.2954  2.67E-05 0.1014 0.1414 0.7492  -5.5024 -5.4779 
 0.2008 1.1608 -0.9069  2.5979 2.2148 1.8807 11.9564    
thais 0.0008     3.88E-05 0.0559 0.2091 0.7069  -5.4877 -5.4702 
 2.2146     1.6201 1.0457 1.7758 7.4489    
 0.0006 0.1345   3.80E-05 0.0472 0.2242 0.7097  -5.5008 -5.4799 
 1.5051 4.0079   1.6364 0.9166 1.8120 7.6814    
 3.36E-05 0.0896 0.0103  0.0001 -0.0468 0.3111 0.5254  -5.4122 -5.3877 
 0.0743 0.2292 0.0228  2.8622 -0.9251 2.0651 3.3195    
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Table 4.4  (Continued)  
   
 Mean equation  Variance equation  AIC SC  C AR(1) MA(1)  ω α γ β  
sings 0.0003     2.90E-06 0.0170 0.1414 0.9020  -5.9748 -5.9573 
 1.1357     2.2613 0.9478 3.5644 35.1220    
 0.0003 -0.0080   2.88E-06 0.0162 0.1419 0.9023  -5.9749 -5.9539 
 1.1829 -0.3009   2.2611 0.8962 3.5958 34.9504    
 0.0003 -0.9885 0.9975  2.89E-06 0.0150 0.1428 0.9033  -5.9771 -5.9527 
 1.1487 -169.2199 286.1736  2.5822 0.8422 3.6608 38.2496    
viets 9.17E-05     3.89E-06 0.4431 -0.0282 0.6863  -5.5074 -5.4899 
 0.3870     2.9384 4.5974 -0.2784 16.5202    
 0.0001 0.2832   4.16E-06 0.4115 -0.0219 0.7011  -5.5662 -5.5453 
 0.3918 7.8555   3.1135 4.5192 -0.1831 20.3239    
 0.0001 0.2836 -0.0005  4.16E-06 0.4115 -0.0220 0.7011  -5.5649 -5.5405 
 0.3938 2.6636 -0.0044  3.1159 4.5783 -0.1835 20.3205    
Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.  

(2) Entries in bold are significant at the 95% level. 
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Table 4.5  Univariate EGARCH (1,1) 
 
 Mean equation  Variance equation  AIC SC  C AR(1) MA(1)  ω α γ β  
indos 0.0012  -0.9633 0.2200 -0.1010 0.9037 -5.4732 -5.4557 
 3.1649     -3.7808 4.2967 -2.8893 32.1669    
 0.0009 0.1552 -0.9160 0.2042 -0.1147 0.9082 -5.4921 -5.4711 
 1.9061 5.3051   -3.6909 4.0325 -2.9584 33.4730    
 0.0008 0.2693 -0.1164 -0.9161 0.2041 -0.1164 0.9082 -5.4910 -5.4666 
 1.7507 1.6346 -0.6933  -3.6997 4.0382 -2.9294 33.5499    
malas 0.0003  -0.3260 0.2371 -0.0567 0.9837 -6.5438 -6.5264 
 1.4362     -4.1404 8.5934 -1.8253 126.5452    
 0.0002 0.1356 -0.3168 0.2292 -0.0622 0.9842 -6.5615 -6.5405 
 1.0933 4.3042   -4.2073 8.5955 -1.9114 131.3602    
 0.0002 0.5155 -0.3859 -0.3084 0.2247 -0.0655 0.9848 -6.5631 -6.5386 
 0.8569 3.2903 -2.2952  -4.2356 8.6135 -1.9177 134.8770    
phils 3.79E-05  -1.0352 0.3219 -0.0798 0.9032 -5.5000 -5.4826 
 0.1053     -2.0571 3.7712 -1.7496 16.2402    
 -7.86E-05 0.0962 -1.0958 0.3322 -0.0897 0.8970 -5.5043 -5.4834 
 -0.1965 2.9033   -2.1933 3.8948 -1.6877 16.2805    
 -0.0002 0.3020 -0.2036 -1.1057 0.3359 -0.0924 0.8961 -5.5036 -5.4792 
 -0.3869 0.9585 -0.6435  -2.2060 3.9097 -1.6835 16.2366    
thais 0.0009  -1.3493 0.2558 -0.1423 0.8606 -5.4922 -5.4747 
 2.4606     -2.1323 3.0695 -1.7579 11.2990    
 0.0007 0.1298 -1.3478 0.2441 -0.1538 0.8600 -5.5054 -5.4844 
 1.6268 3.9985   -2.1349 3.1527 -1.7414 11.2392    
 0.0007 0.1073 0.0233 -1.3501 0.2445 -0.1539 0.8598 -5.5041 -5.4796 
 1.6115 0.4374 0.0939  -2.1258 3.1696 -1.7666 11.1812    
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Table 4.5  (Continued)   
    
 Mean equation  Variance equation  AIC SC  C AR(1) MA(1)  ω α γ β  
sings 0.0003  -0.3388 0.1793 -0.0894 0.9767 -5.9789 -5.9615 
 1.0602     -2.9299 5.3785 -2.8563 87.9317    
 0.0003 -0.0214 -0.3411 0.1805 -0.0889 0.9766 -5.9790 -5.9580 
 1.2306 -0.8216   -2.9471 5.3260 -2.8633 88.0682    
 0.0007 0.9972 -0.9973 -0.3185 0.1792 -0.0888 0.9790 -5.9790 -5.9545 
 1.0234 359.5283 -370.7887  -2.8963 5.4987 -2.8762 92.4021    
viets 0.0003  -0.8749 0.5701 0.0125 0.9448 -5.5285 -5.5111 
 1.3025     -5.5206 7.8097 0.3436 68.0807    
 0.0004 0.2749 -0.8246 0.5348 0.0061 0.9474 -5.5837 -5.5628 
 1.2152 8.2818   -5.5000 7.7074 0.1404 71.7807    
 0.0005 0.8200 -0.6376 -0.8513 0.5409 0.0029 0.9441 -5.5823 -5.5578 
 0.9275 16.3590 -7.9423  -5.3444 7.3438 0.0647 66.0766   
Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.  

(2) Entries in bold are significant at the 95% level. 
 
 

 
 
 
 



 67

Table 4.6  Constant Conditional Correlation between Returns in 

CCC-GARCH (1,1) 

Returns indos malas phils thais sings 
malas 0.3634  

 15.3114  
phils 0.3296 0.3241  

 13.8315 11.2059  
thais 0.3790 0.3800 0.2842  

 21.1724 19.5228 13.1261  
sings 0.4564 0.4561 0.3495 0.4422  

 19.3563 24.3327 13.5171 20.8740  
viets 0.0287 -0.0152 0.0674 0.0184 0.0649 

 1.0280 -0.4632 2.4731 0.6034 2.1610 
Note: (1) The two entries for each parameter are their respective estimate and 

Bollerslev and Woodridge robust t-ratios.  

(2)  Entries in bold are significant at the 95% level. 
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Table 4.7  Summary of Volatility Spillovers and Asymmetric Effect of Negative and 

Positive Shocks 

Pairs of assets Number of volatility spillovers Number of 
asymmetric effects VARMA-GARCH VARMA-AGARCH 

indos_malas 0 1 1 
indos_phils 0 1 1 
indos_thais 0 0 1 
indos_sings 0 1 0 
indos_viets 0 0 1 
malas_phils 1 2 1 
malas_thais 0 0 0 
malas_sings 1 2 0 
malas_viets 1 0 0 
phils_thais 2 0 0 
phils_sings 1 2 1 
phils_viets 1 0 0 
thais_sings 1 1 1 
thais_viets 2 2 1 
sings_viets 0 0 1 
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Table 4.8  DCC-GARCH(1,1) Estimates 

Parameter Estimates Estimates in the Qt Equation 
φ̂ 1 0.0119 

 6.7891 
φ̂ 2 0.9716 

 195.4114 
Note:  The two entries for each parameter are their respective estimate and  

 Bollerslev and Woodridge (1992) robust t-ratios. 
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Figure 4.1  Daily Returns for All series 

 
 
 


