Chapter 4

Modelling Stock Volatility in South-East Asia

An efficient portfolio relies on the correlation or covariance of a pair of assets
that may change over time. Investors can make decisions and manage their portfolios
to weigh between the expected returns and risks. In recent years emerging stock
markets have been of considerable interest to investors who have been attracted by the
opportunities for further international portfolio diversification and the high expected
rates of return offered. Stock markets in South-East Asia are attractive for
international investors in many reasons such as the increasing in market capitalization
and higher average returns.

This chapter is a revised version from the original paper presented at the
Second Conference of The Thailand Econometric Society, Chiang Mai, Thailand in

Appendix B.
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Abstract

Stock returns and volatility are important for investment decision making and
risk management. This paper evaluates the volatility linkages and spillovers across
stock markets because investors tend to move their funds across markets to adjust
portfolio risk and returns. The volatility spillovers in six countries, namely Indonesia,
The Philippines, Thailand, and Singapore, are examined using daily returns of stock
indices from 31 July 2000 to 12 November 2008. The univariate volatility models
suggest that Indonesia and Singapore markets have asymmetric effects in that positive
and negative shocks have the same impact on conditional volatility. The multivariate
volatility is used to determine the conditional correlation and spillover effects. CCC
model found the constant conditional correlation, except in the correlation between
Vietnam and Indonesia, and between Vietnam and Thailand. VARMA-GARCH and
VARMA-AGARCH models show that the volatility spillovers are evident in 8 of 15
for both models. Moreover, the numbers of cases that have significant and
insignificant asymmetric effect do not differ much. Therefore, VARMA-AGARCH is
not clearly superior to VARMA-GARCH. In addition, DCC shows significant time-

varying correlations.
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4.1 Introduction

Volatility is the key for portfolio and risk management, especially with
modern financial theory. It has become an important tool for fund managers and
investors to use while making decisions for investments. Fund managers and investors
tend to move their funds from the markets that have high volatility to the markets that
have low volatility. For example, they can move funds from one stock market to other
stock markets if the volatility in the first stock market has increased.

This behavior of fund managers and investors leads to increases or decreases
in the volatility across the countries. Another cause that changes the volatility is the
information that affects all markets and all countries simultaneously, such as the
Asian financial crisis in 1997. This means there are volatility linkages and spillovers
across the countries. Therefore, fund managers and investors can make decisions and
manage their portfolio to weigh between the expected return and risk.

Consequently, many models have been developed to capture the characteristic
of volatility. Engle (1982) introduced the Autoregressive Conditional
Heterscedasticity (ARCH) to model the character of volatility. In 1986, Bollerslev
generalized ARCH to become Generalize Autoregressive  Conditional
Heterscedasticity (GARCH). However, both of them assume that positive and
negative shocks have the same impact on the conditional variance. To accommodate
differential impacts on the conditional variance between positive and negative shocks,
Glosten et al. (1993) proposed the GJR model. The EGARCH model of Nelson
(1991) can also capture asymmetric volatility.

The multivariate volatility models are common in modelling volatility. The

CCC model of Bollerslev (1990) assumes that the conditional correlation coefficients
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of the returns are time invariant and restricted for volatility spillovers among different
returns. Engle (2002) proposed the Dynamic Conditional Correlation (DCC) model to
allow correlation variance over time, but it still does not allow volatility spillovers.
The VARMA-GARCH model of Ling and McAleer (2003) and the VARMA-
AGARCH model of McAleer et al. (2009) are extended to capture the volatility
spillovers, but constant conditional correlation is maintained.

This paper aims to examine the characteristic of volatility, the asymmetric
effect of positive and negative shocks, and volatility spillovers across Southeast Asian

stock markets to manage the portfolio risk and returns.

4.2 Model Specifications

A wide range of conditional volatility models are used to estimate the
volatility and volatility spillovers with symmetric and asymmetric effects in financial
markets. The univariate and multivariate conditional volatility models, namely
GARCH, GJR, EGARCH, CCC, DCC, VARMA-GARCH and VARMA-AGARCH,
are used in this paper to capture the characteristic of the volatility on financial market
in South-East Asia. In 1982, Engle introduced the Autoregressive Conditional
Heteroskedasticity (ARCH) that volatility is affected by positive shock and negative
shock in the previous period in the same impact. After that many models are
developed and extended continuously.

42.1 GARCH

Bollerslev (1986) generalized ARCH(r) to the GARCH (r,s), model as

follows:
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I’ltza)+zr:aigt2_i+i,6’jh_j (4.1)

where @>0, ¢; >0fori=1,....r,and ;20 for j =1,...;s, are sufficient to ensure
that the conditional variance, hy > 0. The «; represent the ARCH effects and j;
represent the GARCH effects.

GARCH (r,s) shows that the volatility is not only effected by shocks
but also effected by lag of itself. The model also assumes a positive shock (g, >0)
and negative shock (& <0) of equal magnitude have the same impact on the

conditional variance.
422 GJR

To accommodate differential impacts on the conditional variance

between positive and negative shocks of equal magnitude, Glosten et al. (1993)

proposed the following specification for hy:

r

htza)—l—Z(ai—l—}/il(gti))gtzi—l—iﬁjhlj (4.2)

i=1

where 1(s,_;) is an indicator function that takes value 1 if &_,< 0 and O otherwise.

The impact of positive shocks and negative shocks on conditional variance is allowing

asymmetric impact. The expected value of y, is greater than zero that means the

negative shocks give higher impact than the positive shocks, a; +y; > «;.
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Ifr=s=1 w>0,020,0,+y,20,and £ >0 then it has sufficient
conditions to ensure that the conditional variance h; > 0. The short-run persistence of

positive (negative) shocks is given byal(a1+7l). When the conditional shocks, 7,

follow a symmetric distribution, the expected short-run persistence is o, +y,/2, and
the contribution of shocks to expected long-run persistence is o, +y,/2+ 4.
4.2.3 EGARCH
Nelson (1991) proposed the Exponential GARCH (EGARCH) model,
which assumes asymmetries between positive and negative shocks on conditional

volatility. The EGARCH model is given by:
Ioght:a)+zai |77t—i|+zyi77t—i+2ﬂj |Oth- (4.3)
i=1 i=1 j=1

In equation (4.3), |;| and #,_; capture the size and sign effects of the

standardized shocks respectively. The expected value of y, is less than zero.

Therefore, the positive shock provides less volatility than the negative shock. This
mean (4.3) can allow asymmetric and leverage effects. As EGARCH also uses the
logarithm of conditional volatility, there are no restrictions on the parameters in (4.3).
As the standardized shocks have finite moments, the moment conditions of (4.3) are
straightforward.

Lee and Hansen (1994) derived the log-moment condition for GARCH

(1,1) as
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E(log(ayy +4)) <0 (4.4)

This is important in deriving the statistical properties of the QMLE.

McAleer et al. (2007) established the log-moment condition for GJR(1,1) as

E(log((es + 7,1 (. )y + B)) <O (4.5)

The respective log-moment conditions can be satisfied even when

a, + f, <1 (that is, in the absence of second moments of the unconditional shocks of
the GARCH(1,1) model), and when o, +y/2+ f, <1 (that is, in the absence of

second moments of the unconditional shocks of the GJR(1,1) model).
424 VARMA-GARCH
The VARMA-GARCH model of Ling and McAleer (2003) assumes
symmetry in the effects of positive and negative shocks of equal magnitude on

conditional volatility. Let the vector of returns on m (>2) financial assets be given by:

Y, =E(Y,|F)+¢

(4.6)
& =D, (4.7)
H, :a)+iﬁw§t7k +ZS:B,HFI (4.8)

where Ht :(hn!""hmt)” a):(a)l,...,a)m)', Dt:dlag(hlliz), nt:(nlt"“’nmt),’

& =(eh,.. ), Acand B, are mxm matrices with typical elements «; and g,
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respectively, fori,j=1,...,m, I(7,) = diag(l(7,)) isan mxm matrix, and F is the past

information available to time t. Spillover effects are given in the conditional volatility

for each asset in the portfolio, specifically where A and B, are not diagonal matrices.

For the VARMA-GARCH model, the matrix of conditional correlations is given by
E(rn)=T"
425 VARMA-AGARCH
An extension of the VARMA-GARCH model is the VARMA-
AGARCH model of McAleer et al. (2009), which assume asymmetric impacts of

positive and negative shocks of equal magnitude, and is given by

r r S

H, = a)+zAk§t—k +2Ck|t—k§t—k +z BH., (4.9)
=1

k=1 k=1

where Cx are mxm matrices for k =1,...,r and I; = diag(ly,...,Imt), SO that

| 0,6,>0
- L&, <0

From equation (4.9) if m = 1, the model reduces to the asymmetric
univariate GARCH or GJR. If C, = 0 for all k it reduces to VARMA-GARCH.
426 CCC
If the model given by equation (4.9) is restricted so that Cx = 0 for all
k, with A, and B, being diagonal matrics for all k,I, then VARMA-AGARCH reduces

to:
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h, =@ + Zaigi,t—k + Zﬂihi,t—l (4.10)
k=1 1=1

which is the constant conditional correlation (CCC) model of Bolerslev (1990). The
CCC model also assumes that the matrix of conditional correlations is given

by E(nn)=T". As given in equation (4.10), the CCC model does not have volatility

spillover effects across different financial assets. Moreover, CCC also does not allow
conditional correlation coefficients of the returns to vary over time.
427 DCC

Engle (2002) proposed the Dynamic Conditional Correlation (DCC)
model. The DCC model allow for two-stage estimation of the conditional covariance
matrix. In the first stage, univariate volatility models have been estimated and obtain
h; of each of assets. Second stage, asset returns are transformed by the estimated
standard deviations from the first state, then used to estimate the parameters of DCC.

The DCC model can be written as follows:

Y IR 0(0,Q) t=1..T (4.11)
Q =DI'D,, (4.12)
where D, =diag(h;/?,...,h%?)is a diagonal matrix of conditional variances, with m

asset returns, and F; is the information set available to time t. The conditional variance

is assumed to follow a univariate GARCH model, as follows:
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hy, =, + Zai,k‘gi,t—k + Zﬂi,lhi,t—l (4.13)
k=1 =1

when the univariate volatility models have been estimated, the standardized residuals,

n =Yl \/h_,t , are used to estimate the dynamic conditional correlations, as follows:

Q=0-4-4,)S+dn .1, +6,Q, (4.14)

T ={(diag(Q) *} Q {(diag(Q) **}, (4.15)

where S is the unconditional correlation matrix of the & and equation (4.15) is used to
standardize the matrix estimated in (4.14) to satisfy the definition of a correlation

matrix.

4.3 Data and Estimation

The data used to estimate univariate and multivariate GARCH models is the
daily returns of stock indices of six countries in Southeast Asia, namely Indonesia,
Malaysia, The Philippines, Thailand, Singapore, and Vietnam. The sample ranges
from 31 July 2000 to 12 November 2008 with 1,529 observations. All data was
obtained from Reuters. The stock returns and their variable names are summarized in
Table 4.1.

The returns of market i at time t are calculated as follows:

Ri,t = Iog(Pi,t / Pi,t—l) (4.16)
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where Pi: and Pj., are the closing prices of market i at days t and t-1, respectively.
Each stock price index is denominated in the local currency. The plots of the daily
returns for all series are shown in Figure 4.1. Figure 4.1 shows that all returns have
constant mean, but the time-varying variance.

The stationarity of the data will be tested by using the Augmented Dickey-

Fuller (ADF) test. The test is given as follows:

p
Ay, =a+Bt+0y  + > Ay, +é (4.17)

i=1

The null hypothesis is ¢ = 0. If the null hypothesis is rejected, it means that the series
y: Is stationary. The estimated values of ¢ and t-statistic of all returns are significant

if less than zero at 1% level, as shown in Table 4.2.

44  Empirical Results

The univariate methods (namely, GARCH (1,1), GJR (1,1), and EGARCH
(1,1)) are estimated to determine the coefficient of conditional mean equations and
condition variance equations, with three types of conditional mean equations. The
results are given in Tables 4.3-4.5. As shown in Table 4.3, coefficients in variance
equations are all significant in the short and long runs. Asymmetric effects of positive
and negative shocks on conditional volatility in GJR and EGARCH are significant
only in Indonesia and Singapore, while the rest are insignificant. Therefore,
asymmetric models of univariate volatility are preferred to GARCH in the cases of

Indonesia and Singapore.
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As CCC-GARCH (1,1) shows in Table 4.6 for multivariate volatility, we can
see that the estimated correlation yields the constant conditional correlation, except
with correlation between Vietnam and Indonesia, and between Vietnam and Thailand.
Moreover, the correlation between Vietnam and Malaysia is negative. This means a
portfolio which is constructed from the assets in Vietnamese and Malaysian stock
markets can diversify portfolio risk efficiently.

The VARMA-GARCH and VARMA-AGARCH models are used to determine
the linkages and spillovers across countries because they can estimate time-varying
volatility, and also test for volatility spillovers and asymmetric effects of positive and
negative shocks. The results of VARMA-GARCH and VARMA-AGARCH for each
pair of assets are estimated. Then, we summarize the number of volatility spillovers
and number of asymmetric effects in VARMA-GARCH and VARMA-AGARCH
models in Table 4.7. The results show the volatility spillovers are evident in 8 of 15
for both models. Asymmetric effects are not significant in 6 of 15 cases, which mean
that positive and negative shocks have the same impact on conditional volatility.
However, 60% of cases are statistically significant. We can conclude that overall
VARMA-AGARCH is not clearly superior to VARMA-GARCH. For the Indonesian
market, the results of VARMA-GARCH found that there is no volatility spillover
between the Indonesian market and the other markets. On the other hand, VARMA-
AGARCH gives better results to show that volatility spillovers and asymmetric
effects exist in most cases for Indonesia. Therefore, the VARMA-AGARCH is
superior to VARMA-GARCH even though overall it does not seem to be.

The DCC-GARCH(1,1) estimate and t-ratio are shown in Table 4.8. The value

of parameter 431 and ;/32 is significantly different from zero, which clearly means that
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the conditional correlations in overall are time-varying, or that constant condition
correlations do not hold. Furthermore, the short-run and long-run persistence of

shocks to conditional correlations is statistically significant. However, the value of
parameter ¢3 1 and ¢3 2 are approach to zero and one, respectively. Therefore, the

conditional correlations are very tiny change over time, which means that

consideration in time-varying conditional correlation is not necessary in practice.

4.5 Concluding Remarks

The paper estimates the conditional volatility of Southeast Asian countries
(Indonesia, Malaysia, The Philippines, Thailand, Singapore, and Vietnam) using
univariate and multivariate volatility models. The univariate volatility models suggest
that negative shocks in Indonesia and Singapore make that stock market more volatile
than positive shock.

For multivariate volatility, CCC provided the constant conditional correlation,
except correlation between Vietnam and Indonesia, and Vietnam and Thailand.
Correlation between Vietnam and Malaysia is only negative. This means that portfolio
managers can diversify risk efficiently if they invest in Vietnamese and Malaysian
stock. The VARMA-GARCH and VARMA-AGARCH models show that the
volatility spillovers are evident in 8 of 15 for both models. Asymmetric effects are
insignificant in 6 of 15 cases, which means that positive and negative shocks have the
same impact on conditional volatility. However, the numbers of cases that are
significant or insignificant are not very different, so VARMA-AGARCH is not clearly
superior to VARMA-GARCH. The evidence of the DCC model shows the statistically

significant time-varying conditional correlations.
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Table 4.1 Summary of Variable Names

Variables Index Names

indos Jakarta Stock Exchange Index
malas Kuala Lumpur Comp. Price Index
phils Philippine SE Comp. Index

thais Stock Exchange of Thailand Index
sings FTSE STI

viets Vietnam Stock Exchange Index
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Table 4.2 ADF Test of a Unit Root in the Returns

Returns Coefficient t-statistic
indos -0.8435 -25.6478
malas -0.8572 -25.2510
phils -0.9341 -26.5831
sings -0.9388 -26.2514
thais -0.8801 -25.7109
viets -0.7467 -24.1369
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Table 4.3 Univariate GARCH (1,1)

Mean equation Variance equation
C AR(1) MA(1) ® o B Q° SC
indos 0.0014 1.81E-06 0.1296 0.8134 -5.4558 -5.4507
3.8427 2.6543 3.8135 17.3384
0.0015 0.1430 1.69E-06 0.1249 0.8205 -5.4705 -5.4640
3.3335 4.8499 2.6716 3.9559 18.3939
0.0014 0.1808 -0.0386 1.69E-05 0.1249 0.8204 -5.4692 -5.4483
3.3121 0.9630 0.2045 2.6798 3.9660 18.4340
malas 0.0004 6.54E-07 0.1163 0.8935 -6.5223 -6.5084
2.5132 2.2647 6.2337 68.3310
0.0004 0.139 4.47E-07 0.0925 0.9141 -6.5365 -6.5191
1.9538 3.9705 1.7428 6.2644 73.7371
0.0003 0.4778 -0.3526 4.00E-07 0.0858 0.9199 -6.5376 -6.5166
1.7322 2.6853 -1.8609 2.2067 5.9967 88.8074
phils 0.0003 2.93E-05 0.2061 0.7129 -5.4926 -5.4786
1.0193 3.2261 3.8770 13.7358
0.0004 0.0795 3.01E-05 0.2074 0.7080 -5.4954 -5.4779
0.9915 2.5959 3.3581 3.9051 13.8951
0.0003 0.4888 -0.4065 3.14E-05 0.2159 0.6959 -5.4954 -5.4745
0.8266 1.7726 -1.4412 3.5461 3.8799 13.7583
thais 0.0010 2.72E-05 0.1112 0.7929 -5.4715 -5.4576
2.7028 1.3314 2.7011 13.1301
0.0010 0.1283 2.82E-05 0.1167 0.7827 -5.4833 -5.4658
2.4370 3.7622 1.3910 2.7499 12.9605
0.0010 0.0858 0.0427 2.79E-05 0.1162 0.7840 -5.4820 -5.4610

2.4598 0.4193 0.2040 1.3896 2.7607 13.1086
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Table 4.3 (Continued)

Mean equation Variance equation
C AR(1) MA(1) ® o B Q° SC
sings 0.0007 2.34E-06 0.1196 0.8803 -5.9478 -5.9338
2.7517 1.9354 4.0187 34.0953
0.0007 -0.0190 2.31E-06 0.1188 0.8809 -5.9472 -5.9298
2.8099 -0.6842 1.9290 3.9582 33.9351
0.0007 -0.1676 0.1489 2.31E-06 0.1187 0.8811 -5.9460 -5.9250
2.7951 -0.1151 0.1018 1.9264 3.9577 33.9443
viets 5.91E-05 3.80E-06 0.4298 0.6871 -5.5085 -5.4945
0.2281 2.8483 5.4381 16.3879
9.28E-05 0.2831 4.10E-06 0.4003 0.7021 -5.5674 -5.5499
0.2444 7.8533 3.0184 6.0897 20.1821
9.27E-05 0.2774 0.0063 4.10E-06 0.4002 0.7021 -5.5661 -5.5451
0.2445 2.5729 0.0512 3.0182 6.1451 20.1756

Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.

(2) Entries in bold are significant at the 95% level.



Table 4.4 Univariate GJR (1,1)
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Mean equation

Variance equation

C ARD)  MAQ) ® o Y B AlC SC

indos 0.0012 450E-05  0.0295 02172  0.6907 54722  -5.4547
3.1681 40283 09356  3.2513  10.7198

0.0010 0.1519 3.14E-05 0.0250  0.1815  0.7637 -5.4881  -5.4672
2.2358 5.1435 31101  0.7874  2.7809 12.3098

0.0009 0.3069  -0.1591 3.12E-05  0.0238 01841  0.7645 -5.4872  -5.4628
2.0573 1.7806  -0.8939 3.1429 07367 27976  12.4962

malas 0.0003 1.03E-06 00969 00814  0.8716 -6.5305  -6.5130
1.6160 32141 35141 14761 59.7811

0.0003 0.1290 9.37E-07  0.0904  0.0825  0.8773 -6.5437  -6.5227
1.2046 3.8024 3.0964  3.2849  1.4478 65.8644

0.0002 0.4882  -0.3659 8.87E-07  0.0840  0.0833  0.8824 -6.5447  -6.5202
0.9479 28315 -1.9774 26283  3.0516  1.4564 67.8420

phils 0.0001 264E-05  0.1054 01319  0.7509 -5.4997  -5.4822
0.4147 25674 22301  1.8712 11.9633

0.0001 0.0790 264E-05 00997 01380  0.7528 55027  -5.4818
0.3175 2.4466 25588 21850  1.8867  12.0069

8.36E-05 0.3774  -0.2954 267E-05  0.1014  0.1414  0.7492 55024  -5.4779
0.2008 1.1608  -0.9069 25979 22148  1.8807 11.9564

thais 0.0008 3.88E-05  0.0559  0.2091  0.7069 54877  -5.4702
2.2146 16201  1.0457 17758  7.4489

0.0006 0.1345 3.80E-05  0.0472  0.2242  0.7097 -5.5008  -5.4799
15051 4.0079 16364 09166 18120  7.6814

3.36E-05 0.0896  0.0103 00001 -0.0468 03111 05254 54122  -5.3877
0.0743 0.2292  0.0228 28622 -0.9251  2.0651  3.3195
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Mean equation

Variance equation

C ARD)  MAQ) ® o Y B AlC SC
sings 0.0003 2.90E-06  0.0170  0.1414  0.9020 -5.9748  -5.9573
1.1357 22613 09478 35644 351220
0.0003  -0.0080 2.88E-06  0.0162  0.1419  0.9023 -5.9749  -5.9539
11829  -0.3009 22611  0.8962  3.5958  34.9504
0.0003  -0.9885  0.9975 2.89E-06  0.0150  0.1428  0.9033 59771  -5.9527
1.1487 -169.2199 286.1736 25822  0.8422  3.6608  38.2496
viets  9.17E-05 3.89E-06  0.4431 -0.0282  0.6863 55074  -5.4899
0.3870 29384 45974 -0.2784  16.5202
0.0001 0.2832 416E-06  0.4115 -0.0219  0.7011 -5.5662  -5.5453
0.3918 7.8555 31135 45192 -0.1831 20.3239
0.0001 0.2836  -0.0005 416E-06  0.4115 -0.0220  0.7011 -5.5649  -5.5405
0.3938 26636  -0.0044 31159 45783 -0.1835 20.3205

Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.

(2) Entries in bold are significant at the 95% level.



Table 4.5 Univariate EGARCH (1,1)

Mean equation

Variance equation

C ARD) MAQ) ® o v B AlC SC
indos 0.0012 -0.9633  0.2200 -0.1010  0.9037 54732  -5.4557
3.1649 -3.7808  4.2067  -2.8893  32.1669
0.0009  0.1552 -0.9160  0.2042  -0.1147  0.9082 54921  -5.4711
1.9061  5.3051 -3.6909  4.0325 -2.9584  33.4730
0.0008  0.2693  -0.1164 -0.9161  0.2041 -0.1164  0.9082 -5.4910  -5.4666
17507  1.6346  -0.6933 -3.6997  4.0382  -2.9294  33.5499
malas 0.0003 -0.3260  0.2371  -0.0567  0.9837 -6.5438  -6.5264
1.4362 -4.1404 85934  -1.8253 126.5452
0.0002  0.1356 -0.3168  0.2292  -0.0622  0.9842 -6.5615  -6.5405
1.0933  4.3042 42073 85955 -1.9114 131.3602
0.0002 05155  -0.3859 -0.3084  0.2247 -0.0655  0.9848 -6.5631  -6.5386
08569  3.2903  -2.2952 42356 8.6135 -1.9177 134.8770
phils 3.79E-05 10352 03219 -0.0798  0.9032 -5.5000  -5.4826
0.1053 20571  3.7712  -1.7496  16.2402
-7.86E-05  0.0962 -1.0958  0.3322 -0.0897  0.8970 55043  -5.4834
-0.1965  2.9033 -21933  3.8948 -1.6877  16.2805
-0.0002 03020  -0.2036 11057 03359 -0.0924  0.8961 -5.5036  -5.4792
-0.3869  0.9585  -0.6435 22060  3.9097 -1.6835  16.2366
thais 0.0009 -1.3493  0.2558 -0.1423  0.8606 54922  -5.4747
2.4606 21323  3.0695 -1.7579  11.2990
0.0007  0.1298 13478 02441 -0.1538  0.8600 55054  -5.4844
1.6268  3.9985 21349  3.1527 17414 11.2392
0.0007  0.1073  0.0233 13501 02445 -0.1539  0.8508 55041  -5.4796
16115 04374  0.0939 21258  3.1696 -1.7666 11.1812
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Mean equation

Variance equation

C ARD)  MAQ) ® o v B AlC SC
sings 0.0003 -0.3388 01793  -0.0894  0.9767 -5.9789  -5.9615
1.0602 29299 53785 -2.8563 87.9317
0.0003  -0.0214 -0.3411  0.1805 -0.0889  0.9766 -5.9790  -5.9580
1.2306  -0.8216 29471 53260 -2.8633  88.0682
0.0007 09972  -0.9973 -0.3185  0.1792 -0.0888  0.9790 -5.9790  -5.9545
1.0234 359.5283 -370.7887 28963 54987 -2.8762 92.4021
viets 0.0003 -0.8749 05701  0.0125  0.9448 -5.5285  -5.5111
13025 55206  7.8097  0.3436  68.0807
0.0004  0.2749 -0.8246 05348  0.0061  0.9474 -5.5837  -5.5628
1.2152  8.2818 55000  7.7074  0.1404  71.7807
0.0005  0.8200  -0.6376 -0.8513 05409  0.0029  0.9441 55823  -5.5578
09275 16.3590  -7.9423 53444 73438  0.0647 66.0766

Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.

(2) Entries in bold are significant at the 95% level.
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Table 4.6  Constant Conditional Correlation between Returns in
CCC-GARCH (1,1)
Returns indos malas phils thais sings
malas 0.3634
15.3114
phils 0.3296 0.3241
13.8315  11.2059
thais 0.3790 0.3800 0.2842
21.1724  19.5228  13.1261
sings 0.4564 0.4561 0.3495 0.4422
19.3563  24.3327 135171  20.8740
viets 0.0287 -0.0152 0.0674 0.0184 0.0649
1.0280 -0.4632 2.4731 0.6034 2.1610

Note: (1) The two entries for each parameter are their respective estimate and

Bollerslev and Woodridge robust t-ratios.

(2) Entries in bold are significant at the 95% level.
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Table 4.7 Summary of Volatility Spillovers and Asymmetric Effect of Negative and
Positive Shocks

Paiirs of assets Number of volatility spillovers Number of
VARMA-GARCH VARMA-AGARCH asymmetric effects
indos_malas 0 1 1
indos_phils 0 1 1
indos_thais 0 0 1
indos_sings 0 1 0
indos_viets 0 0 1
malas_phils 1 2 1
malas_thais 0 0 0
malas_sings 1 2 0
malas_viets 1 0 0
phils_thais 2 0 0
phils_sings 1 2 1
phils_viets 1 0 0
thais_sings 1 1 1
thais_viets 2 2 1
sings_viets 0 0 1
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Table 4.8 DCC-GARCH(1,1) Estimates

Parameter Estimates Estimates in the Q; Equation
b1 0.0119
6.7891
&> 0.9716
195.4114

Note: The two entries for each parameter are their respective estimate and
Bollerslev and Woodridge (1992) robust t-ratios.
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Figure 4.1 Daily Returns for All series



