
 

Chapter 5 

Modelling the Volatility in Bond Returns in South-East Asia 

 

Many studies have analysed the returns and volatility in stock markets, but 

there are fewer analyses of bond markets. The analysis of volatility in bond markets is 

useful to help investors, especially those who can bear the lower levels of risk, to 

understand the characteristics and behaviour of volatility and volatility spillovers 

across countries, and the effects of positive and negative shocks (or news) on volatility. 

In particular, they can diversify portfolio risk by making efficient asset allocations. 

Bond markets in South-East Asia grew rapidly in terms of market capitalization and 

trade volume following the Asian financial crisis in 1997 and it also becomes an 

important market for private and institutional investors. 

This chapter is a revised version from the original paper presented at the Sixth 

International Conference on Business and Information 2009, Kuala Lumpur, Malaysia 

in Appendix C. 
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Abstract  

 

Bond markets have become useful for risk diversification and portfolio 

management, recently also for South-East Asian markets. The paper evaluates the 

volatility linkages and spillovers across bond markets in the South-East Asia countries 

of Indonesia, Philippines, Singapore and Thailand. Daily returns of bond indexes from 

1 April 2004 to 13 March 2009 are used, and univariate and multivariate models are 

estimated to analyse returns and volatilities. The univariate volatility models suggest 

that asymmetric effects are present for the Indonesia and Philippines markets, whereas 

Singapore and Thailand display symmetric effects. Using multivariate volatility 

models to capture conditional correlations and spillover effects, the CCC model 

shows that the correlations are negative between Thailand and the other countries, so 

that investors can efficiently diversify the risk of their portfolio by investing in Thai 

bonds. The VARMA-GARCH and VARMA-AGARCH models show significant 

volatility spillovers. The volatility spillover effects from the Singapore market to the 

other markets are statistically significant, which means that hedging or speculation 

should be considered when the volatility in the Singapore bond market is changing.  

As in the case of the univariate model, asymmetry in VARMA-AGARCH also exists 

for Indonesia and Philippines bonds. Thus, the asymmetric model is superior to its 

symmetric counterpart for Indonesia and Philippines. However, rolling windows 

estimation suggests that the assumption of constant conditional correlations is too 

restrictive, as evidence from the DCC model yields statistically significant time-

varying conditional correlations. 
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5.1 Introduction 

Volatility is a key component in portfolio and risk management, especially in 

modern financial theory. Efficient portfolios rely on the correlations or covariances of 

pairs of assets, and may change over time. Therefore, much research in economics 

and finance has attempted to model the variances, covariances, and correlations of 

assets to construct efficient portfolios, and to adjust them over time. Bond markets in 

South-East Asia grew rapidly in terms of market size and trade volume after the Asian 

financial crisis in 1997, as shown in Figures 5.1 and 5.2. Therefore, bond markets 

have become important for fund managers and investors. 

Many studies have analysed the returns and volatility in stock markets, but 

there are fewer analyses of bond markets. The analysis of volatility in bond markets is 

useful for investors and fund managers for understanding the characteristics and 

behaviour of volatility and volatility spillovers across countries, and the effects of 

positive and negative shocks (or news) on volatility. In particular, they can diversify 

portfolio risk by making efficient asset allocations.  

Numerous models have been developed to capture volatility. Engle (1982) 

developed the Autoregressive Conditional Heterscedasticity (ARCH) model to 

analyse volatility, and Bollerslev (1986) generalized ARCH to the Generalized 

Autoregressive Conditional Heterscedasticity (GARCH) model. However, both 

models assume symmetric effects of positive and negative shocks. In order to 

accommodate differential impacts on the conditional variance of positive and negative 

shocks, Glosten et al. (1993) proposed the GJR model, while the EGARCH model of 

Nelson (1991) also captures the asymmetric effects of shocks on volatility.  
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Multivariate volatility models are also useful for explaining volatility. The 

Constant Conditional Correlation (CCC) model of Bollerslev (1990) also assumes the 

conditional correlations of returns are time invariant, and restricted for the volatility 

spillovers between different returns. Engle (2002) proposed the Dynamic Conditional 

Correlation (DCC) model to allow correlations to vary over time, but did not allow 

volatility spillovers. The VARMA-GARCH model of Ling and McAleer (2003) and 

VARMA-AGARCH model of McAleer et al. (2009) are able to capture volatility 

spillovers, but constant conditional correlations are maintained (for further details, see 

McAleer (2005)). 

Many papers have investigated volatility, especially volatility spillovers and 

correlations across countries or markets, such as Fleming et al. (1998), Fernández-

Izquierdo and Lafuente (2004), Gannon (2005), Steeley (2006), Hakim and McAleer 

(2008), and da Veiga, Chan and McAleer (2008). In most cases, time-varying 

volatility and volatility spillovers across countries or markets have been found 

empirically. 

This paper examines the returns and volatility characteristics, asymmetric 

effects of positive and negative shocks, and volatility spillovers across bond markets 

in South-East Asia, namely Indonesia, Philippines, Singapore and Thailand, by using 

various univariate and multivariate models. 

The remainder of the paper is as follows. Model specifications are given in 

Section 5.2, data are discussed in Section 5.3, empirical results are analysed in 

Section 5.4, and some concluding remarks are presented in Section 5.5.  
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5.2 Model Specifications 

A wide range of conditional volatility models have been used to estimate and 

forecast volatility and volatility spillovers with symmetric and asymmetric effects in 

financial markets. Univariate and multivariate conditional volatility models, namely 

GARCH, GJR, EGARCH, CCC, DCC, VARMA-GARCH and VARMA-AGARCH, 

are used in this paper to capture the volatility in bond markets in South-East Asian 

countries.  

5.2.1 GARCH 

Engle (1982) introduced the Autoregressive Conditional 

Heteroskedasticity (ARCH) model that volatility is affected symmetrically by positive 

and negative shocks of equal magnitude from previous periods. Bollerslev (1986) 

generalized ARCH(r) to the GARCH(r,s) model, as follows: 

 

2

1 1

r s

t i t i j t j
i j

h hω α ε β− −
= =

= + +∑ ∑      (5.1) 

 

where 0,ω > 0iα ≥ for i = 1,…,r, and 0jβ ≥  for j = 1,…,s, are sufficient to ensure 

that the conditional variance, ht > 0. The iα  represent the ARCH effects and jβ  

represent the GARCH effects. 

GARCH(r,s) shows that the volatility is not only effected by shocks 

but also by its own past. The model also assumes positive shocks ( 0tε > ) and 

negative shocks ( 0tε < ) of equal magnitude have the same impact on the conditional 

variance. 
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5.2.2 GJR 

In order to accommodate differential impacts on the conditional 

variance of positive and negative shocks of equal magnitude, Glosten et al. (1993) 

proposed the following specification for ht: 

 

( ) 2

1 1

( )
r s

t i i t i t i j t j
i j

h I hω α γ ε ε β− − −
= =

= + + +∑ ∑    (5.2) 

 

where ( )t iI ε −  is an indicator function that takes the value 1 if t iε − < 0 and 0 otherwise. 

The impact of positive shocks and negative shocks on conditional variance allows for 

an asymmetric impact. The expected value of iγ  is positive, such that negative shocks 

have a higher impact on volatility than do positive shocks of equal magnitude. It is not 

possible for leverage to be present in the GJR model, whereby negative shocks 

increase volatility and positive shocks of equal magnitude decrease volatility. 

If r = s = 1, 0ω > , 1 0α ≥ , 1 1 0α γ+ ≥  and 1 0β ≥  are sufficient 

conditions to ensure that the conditional variance ht > 0. The short run persistence of 

positive (negative) shocks is given by 1α  ( )1 1α γ+ . When the conditional shocks, tη , 

follow a symmetric distribution, the short run persistence is 1 1 / 2α γ+ , and the 

contribution of shocks to long run persistence is 1 1 1/ 2α γ β+ + . 

5.2.3 EGARCH 

Nelson (1991) proposed the Exponential GARCH (EGARCH) model, 

which incorporates asymmetries between positive and negative shocks on conditional 

volatility. The EGARCH model is given by: 
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1 1 1

log log
r r s

t i t i i t i j t j
i i j

h hω α η γ η β− − −
= = =

= + + +∑ ∑ ∑   (5.3) 

 

In equation (5.3), t iη −  and t iη − capture the size and sign effects, 

respectively, of the standardized shocks. If iγ  is less than zero, positive shocks will 

have a smaller effect on volatility than will negative shocks of equal magnitude. 

Moreover, (5.3) can allow for asymmetric and leverage effects. As EGARCH uses the 

logarithm of conditional volatility, there are no restrictions on the parameters in (5.3). 

As the standardized shocks are assumed to have finite moments, the moment 

conditions of (5.3) are entirely straightforward. 

Lee and Hansen (1994) derived the log-moment condition for 

GARCH(1,1) as 

 

2
1 1(log( )) 0tE αη β+ <       (5.4) 

 

This is important in deriving the statistical properties of the QMLE. 

McAleer et al. (2007) established the log-moment condition for GJR(1,1) as 

 

2
1 1 1(log(( ( )) )) 0t tE Iα γ η η β+ + <     (5.5) 

 

The respective log-moment conditions can be satisfied even when 

1 1 1α β+ <  (that is, in the absence of second moments of the unconditional shocks of 
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the GARCH(1,1) model), and when 1 1/ 2 1α γ β+ + <  (that is, in the absence of 

second moments of the unconditional shocks of the GJR(1,1) model). 

5.2.4 VARMA-GARCH 

The VARMA-GARCH model of Ling and McAleer (2003) assumes 

symmetry in the effects of positive and negative shocks of equal magnitude on 

conditional volatility. Let the vector of returns on m (≥ 2) financial assets be given by: 

 

1( | )−= +t t t tY E Y F ε       (5.6) 

=t t tDε η        (5.7) 

1 1

r s

t k t k l t l
k l

H A B Hω ε − −
= =

= + +∑ ∑r     (5.8) 

 

where 1( ,..., ) ,t t mtH h h ′= 1( ,..., ) ,mω ω ω ′= 1/ 2
,( ),t i tD diag h= 1( ,..., ) ,t t mtη η η ′=

2 2
1( ,..., ) ,t t mtε ε ε ′=

r
kA and lB  are ×m m  matrices with typical elements ijα  and ijβ , 

respectively, for i,j = 1,…,m, I( tη ) = diag(I( itη )) is an ×m m  matrix, and Ft is the past 

information available to time t. Spillover effects are given in the conditional volatility 

for each asset in the portfolio, specifically where kA  and lB  are not diagonal matrices. 

For the VARMA-GARCH model, the matrix of conditional correlations is given by 

( )′ = Γt tE ηη . 

5.2.5 VARMA-AGARCH 

An extension of the VARMA-GARCH model is the VARMA-

AGARCH model of McAleer et al. (2009), which assumes asymmetric impacts of 

positive and negative shocks of equal magnitude, and is given by 
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1 1 1

r r s

t k t k k t k t k l t l
k k l

H A C I B Hω ε ε− − − −
= = =

= + + +∑ ∑ ∑r r   (5.9) 

 

where Ck are ×m m  matrices for k = 1,…,r  and It = diag(I1t,…,Imt), so that 

,

,

0, 0
1, 0.

k t

k t

I
ε

ε

>⎧⎪= ⎨ ≤⎪⎩
 

From equation (5.9), if m = 1, the model reduces to the asymmetric 

univariate GARCH, or GJR. If Ck = 0 for all k, the model reduces to VARMA-

GARCH.  

5.2.6 CCC 

If the model given by equation (5.9) is restricted so that Ck = 0 for all 

k, with Ak and Bl being diagonal matrices for all k, l, then VARMA-AGARCH 

reduces to 

 

, ,
1 1

r s

it i i i t k i i t l
k l

h hω α ε β− −
= =

= + +∑ ∑     (5.10) 

 

which is the constant conditional correlation (CCC) model of Bollerslev (1990), for 

which the matrix of conditional correlations is given by ( )′ = Γt tE ηη . As given in 

equation (5.10), the CCC model does not have volatility spillover effects across 

different financial assets, and does not allow conditional correlation coefficients of the 

returns to vary over time. 

 

 



 80

5.2.7 DCC 

Engle (2002) proposed the Dynamic Conditional Correlation (DCC) 

model, which allows for two-stage estimation of the conditional covariance matrix. In 

the first stage, univariate volatility models are estimated to obtain the conditional 

volatility, ht, of each asset. At the second stage, asset returns are transformed by the 

estimated standard deviations from the first stage, and are then used to estimate the 

parameters of DCC. The DCC model can be written as: 

 

1| (0, ), 1,...,− =�t t ty F Q t T ,     (5.11) 

,= Γt t t tQ D D        (5.12) 

 

where 1/ 2 1/ 2
1( ,..., )t t mtD diag h h= is a diagonal matrix of conditional variances, with m 

asset returns, and Ft is the information set available at time t. The conditional variance 

is assumed to follow a univariate GARCH model, as follows: 

 

, , , ,
1 1

r s

it i i k i t k i l i t l
k l

h hω α ε β− −
= =

= + +∑ ∑     (5.13) 

 

when the univariate volatility models have been estimated, the standardized residuals, 

/=
it it ity hη , are used to estimate the dynamic conditional correlations, as follows: 

 

1 2 1 1 1 2 1(1 ) − − −′= − − + +t t t tQ S Qφ φ φη η φ     (5.14) 

{ } { }1/ 2 1/ 2( ( ) ( ( ) ,− −Γ =t t t tdiag Q Q diag Q    (5.15) 
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where S is the unconditional correlation matrix of the returns shocks, and equation 

(5.15) is used to standardize the matrix estimated in (5.14) to satisfy the definition of 

a correlation matrix. For details regarding the regularity conditions and statistical 

properties of DCC and the more general GARCC model, see McAleer et al. (2008). 

 

5.3 Data  

The data used to estimate the univariate and multivariate GARCH models are 

the daily returns of bond indexes of four countries in South-East Asia, namely 

Indonesia, Philippines, Singapore, and Thailand. The sample ranges from 1 April 

2004 to 13 March 2009, with 1,262 observations. All the data are obtained from 

DataStream and the Thai Bond Market Association. The bond returns and their 

variable names are summarized in Table 5.1.  

The returns of market i at time t are calculated as follows: 

 

, , , 1log( / )−=i t i t i tR P P        (5.16) 

 

where Pi,t and Pi,t-1 are the closing prices of market i for days t and t-1, respectively. 

Each bond price index is denominated in the local currency. The plots of the daily 

returns for all series are shown in Figure 5.3, which shows that all returns have a 

constant mean but time-varying variances.  

Stationary of the data are tested by using the Augmented Dickey-Fuller (ADF) 

test, which is given as follows: 
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 1
1

− −
=

Δ = + + + Δ +∑
p

t t i t i t
i

y t y yα β θ φ ε     (5.17) 

 

The null hypothesis is θ  = 0 which, if rejected, means that the series yt is stationary. 

The estimated values of θ  and the t-statistics of all the returns are significantly less 

than zero at the 1% level, as given in Table 5.2, which shows that all series are 

stationary. 

 

5.4 Empirical Results 

Three univariate models, namely GARCH(1,1), GJR(1,1), and EGARCH(1,1), 

are estimated to determine the conditional mean equations and conditional variance 

equations, with three types of conditional mean equations. The results are given in 

Tables 5.3-5.5. From Table 5.3, the coefficients in the conditional variance equations 

are all significant in both the short and long run. The asymmetric effects of positive 

and negative shocks on conditional volatility in GJR are significant only for 

Indonesia, while the rest are insignificant. For the EGARCH model, Indonesia and 

Philippines show asymmetric effects and leverage, 0γ <  andγ α γ< < − , whereby 

negative shocks increase volatility and positive shocks decrease volatility, except for 

ARMA(1,1)-EGARCH(1,1), which has no leverage. Therefore, asymmetric models of 

univariate volatility are preferred to GARCH for Indonesia and Philippines. 

Moreover, many empirical evidences suggest that the changes in volatility are 

correlated with the variation in the term structure of interest. 

For multivariate volatility, the results for CCC in Table 5.6 show that the 

estimated constant conditional correlations are significant, except between Singapore 
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and Thailand, where it is insignificant. The correlations for South-East Asian 

countries lie between -0.12 and 0.46. Moreover, the correlations between the Thai 

bond market and other markets are negative, which means portfolios constructed by 

including Thai bonds can diversify portfolio risk efficiently. 

The VARMA-GARCH and VARMA-AGARCH models are used to determine 

the linkages and spillovers across countries because they can estimate time-varying 

volatility, and also test for volatility spillovers and the asymmetric effects of positive 

and negative shocks of equal magnitude. The results of VARMA-GARCH and 

VARMA-AGARCH are shown in Tables 5.7-5.8, for which the number of volatility 

spillovers and asymmetric effects are summarized in Table 5.9. The results show that 

volatility spillovers are evident in both models. Table 5.7 shows that the Singapore 

bond market volatility has spillovers to the other bond markets, such that the volatility 

of a developed country affect the volatility of developing countries. Therefore, 

investors and fund managers should be aware of these results if they invest in 

developing countries when the volatility in the developed country is rising, except for 

Thailand, which has a negative impact. 

Speculators may operate in developing countries, particularly Indonesia and 

Philippines, to earn capital gains from volatile markets. Furthermore, volatility in 

Thailand is affected by volatility in Indonesia. In Table 5.8, the asymmetric effects in 

the multivariate volatility model lead to the same results as in the univariate volatility 

model, EGARCH. Thus, asymmetric effects exist in the Indonesia and Philippines 

bond markets, so that positive and negative shocks of equal magnitude have different 

impacts on conditional volatility. Therefore, we can conclude that VARMA-
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AGARCH is superior to VARMA-GARCH for the Indonesia and Philippines bond 

markets, whereas the reverse holds for the Singapore and Thailand bond markets.  

Rolling windows are used to examine time-varying conditional correlations 

through the VARMA-GARCH and VARMA-AGARCH models. The rolling window 

size is set at 1,000 for all pair of assets, and the results are shown in Figures 5.4 and 

5.5, respectively.  For the VARMA-GARCH model, the correlations of all pairs of 

assets are not constant over time, so that the assumption of constant conditional 

correlations may be too restrictive. However, the changes in the estimated correlations 

are small. The correlation between the pair, Indonesia and Philippines, is the largest 

(at around 0.4-0.5), while the rest are smaller than 0.15 in absolute terms. The 

VARMA-AGARCH model shows similar results to VARMA-GARCH in that the 

correlations vary over time. 

The DCC estimates and t-ratios are shown in Table 5.10. The value of φ̂ 2 is 

significantly different from zero and not approach to 1, which means that the 

conditional correlations are time varying, so that constant condition correlations do 

not hold. However, the parameter φ̂ 1 is only marginally significant. Moreover, the 

value of parameter φ̂ 1 and φ̂ 2 are approach to zero and one, respectively. Therefore, 

the conditional correlations are very tiny change over time, which means that 

consideration in time-varying conditional correlation is not necessary in practice. 

 

5.5 Concluding Remarks 

The paper estimated conditional volatility, covariances and correlations in 

bond markets in South-East Asian countries, namely Indonesia, Philippines, 
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Singapore and Thailand, using univariate and multivariate volatility models. The 

univariate volatility models suggested that negative shocks in Indonesia and 

Philippines made bond markets more volatile than did positive shocks of similar 

magnitude, or if asymmetric effects existed. 

For multivariate volatility, the CCC model provided constant conditional 

correlations, except for an insignificant correlation between Singapore and Thailand. 

The correlations between Thailand and the other countries were negative, which 

meant that investors could diversify the risk of their portfolio efficiently by investing 

in Thai bonds. The VARMA-GARCH and VARMA-AGARCH models showed that 

volatility spillovers were evident in both models. The volatility spillover effects from 

the Singapore market to the other markets were statistically significant, so that the 

volatility of a developed country will affect the volatilities of developing countries. 

This means that investors and fund managers should be wary if they invest in 

developing countries when the volatility in the developed country is changing, while 

speculators may engage in developing countries, such as Indonesia and Philippines, to 

earn capital gains from the volatile markets. 

Asymmetric effects are significant in the Indonesia and Philippines bond 

markets, so that positive and negative shocks of equal magnitude do not have the 

same impacts on conditional volatility. Thus, VARMA-AGARCH is superior to 

VARMA-GARCH for the Indonesia and Philippines bond markets. However, the 

rolling windows suggest that the assumption of constant conditional correlations is 

too restrictive in practice as the evidence from the DCC model shows that statistically 

significant time-varying conditional correlations are present. 
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Table 5.1  Summary of Variable Names 

Variables Index Names 

indob CGBI ESBI Indonesia Bond Index 

philb CGBI ESBI Philippines Bond Index 

singb JPM  GBI Singapore Bond Index 

thaib Thai Government Bond Index 
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Table 5.2  ADF Test of Unit Roots in Returns 

 Returns Coefficient t-statistic 
indob -0.9461 -33.6104 
philb -0.8963 -31.9584 
singb -0.9127 -32.3937 
thaib -0.6093 -23.4788 
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Table 5.3  Univariate GARCH(1,1)   
 Mean equation   Conditional variance equation  AIC SC  C AR(1) MA(1)  ω α β  
indob 0.0005  5.16E-07 0.1439 0.8667 -8.0161 -7.9998
 5.8216  6.4458 3.0814 37.3688
 0.0004 0.1764 4.84E-07 0.1354 0.8772 -8.0325 -8.0121
 4.7782 3.4705 7.019 3.1205 39.7361
 0.0004 -0.2257 0.4062 4.86E-07 0.1308 0.8704 -8.0324 -8.0080
 5.0098 -1.2093 2.4356 5.1216 3.1899 39.6790
philb 0.0006  1.55E-07 0.0657 0.9337 -8.2027 -8.1863
 6.0527  0.9735 2.7148 51.1790
 0.0006 0.0863 1.55E-07 0.0656 0.9336 -8.2073 -8.1869
 5.6272 2.6505 1.2579 2.6652 52.1571
 0.0006 0.4663 -0.3746 0.52E-07 0.0652 0.9341 -8.2081 -8.1836
 5.3106 1.6498 -1.2778 0.8678 2.6559 52.0800
singb -0.0002  7.44E-07 0.0729 0.9148 -7.1672 -7.1509
 -1.7291  2.6405 4.2579 50.7758
 -0.0002 0.0208 7.15E-07 0.0718 0.9163 -7.1653 -7.1449
 -1.6877 0.7053 2.6587 4.2539 53.2086
 -0.0002 0.4201 -0.3925 7.19E-07 0.0720 0.9161 -7.1642 -7.1397
 -1.6354 0.6667 -0.6136 2.8513 4.2428 54.3361
thaib 0.0002  2.33E-07 0.3908 0.6549 -9.6384 -9.6220
 5.7671  2.4409 4.7366 17.5952
 0.0002 0.4509 1.01E-07 0.2066 0.7969 -9.8015 -9.7811
 3.3058 12.4297 1.0420 5.0458 23.3535
 0.0002 0.4405 0.0130 1.01E-07 0.2067 0.7968 -9.7999 -9.7754
 3.3344 5.7340 0.1613 1.3862 5.0925 27.1606
Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.  

(2) Entries in bold are significant at the 95% level. 
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Table 5.4  Univariate GJR(1,1)  
 Mean equation  Conditional variance equation  AIC SC  C AR(1) MA(1)  ω α γ β  
indob 0.0003  4.37E-07 0.0277 0.1658 0.8882 -8.0693 -8.0489 
 3.7777  3.4477 1.0057 2.1177 38.24  
 0.0002 0.1789 4.19E-07 0.0224 0.1713 0.8911 -8.0876 -8.0631 
 2.3929 3.3590 7.2959 0.8751 2.2889 48.1731  
 0.0002 0.5823 -0.4310 4.25E-07 0.0200 0.1786 0.8907 -8.0879 -8.0593 
 1.7220 4.4827 -3.1207 4.7258 0.7183 2.1921 45.0876  
philb 0.0004  2.04E-07 0.0145 0.0778 0.9390 -8.2335 -8.2131 
 4.4734  1.88736 0.6908 1.7425 51.2571  
 0.0004 0.0648 2.02E-07 0.0169 0.0767 0.9378 -8.2358 -8.2113 
 4.4955 1.8188 1.1698 0.7101 1.5856 41.9317  
 0.0004 0.5262 -0.4531 1.97E-07 0.0167 0.0774 0.9383 -8.2369 -8.2084 
 3.8935 1.7942 -1.4928 1.0522 0.6705 1.4833 42.5874  
singb -0.0002  8.90E-07 0.0865 -0.0393 0.9157 -7.1685 -7.1481 
 -1.2822  2.9609 3.8041 -1.5373 51.8116  
 -0.0002 0.0190 8.63E-07 0.0856 -0.0380 0.9166 -7.1664 -7.1419 
 -1.2460 0.6465 2.8186 3.7749 -1.5062 51.3207  
 -0.0002 0.4784 -0.4544 8.65E-07 0.0860 -0.0385 0.9165 -7.1652 -7.1366 
 -1.2091 0.8664 -0.8106 3.0624 3.7122 -1.5054 50.3725  
thaib 0.0002  2.33E-07 0.3954 -0.0072 0.6546 -9.6368 -9.6164 
 5.7394  3.6122 4.9482 -0.0723 16.9922  
 0.0002 0.4509 1.01E-07 .02071 -0.0011 0.7971 -9.7999 -9.7754 
 3.2437 12.3193 1.3977 3.4456 -0.0137 27.1457  
 0.0002 0.4406 0.0129 1.01E-07 0.2070 -0.0008 0.7969 -9.7983 -9.7698 
 3.2614 5.7280 0.1602 1.3719 3.5162 -0.0100 26.5800  
Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.  

(2) Entries in bold are significant at the 95% level. 
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Table 5.5  Univariate EGARCH(1,1)  
 Mean equation  Conditional variance equation  AIC SC  C AR(1) MA(1)  ω α γ β  
indob 0.0007  -0.1072 0.0726 -0.1188 0.9953 -8.0865 -8.0061 
 5.0362  -1.6333 1.7261 -4.0525 267.9606  
 0.0005 0.2029 -0.0771 0.0372 -0.1246 0.9956 -8.0557 -8.0312 
 3.3679 3.0696 -1.9216 1.3156 -3.4613 363.1264  
 0.0005 1.0138 -0.9973 -0.2343 0.2122 -0.0546 0.9897 -8.0159 -7.9873 
 6.7259 168.7703 -1109.24 -2.4637 4.3400 -1.2510 131.7278  
philb 0.0003  -0.1042 0.0233 -0.0949 0.9918 -8.2399 -8.2195 
 3.6664  -3.2770 1.4073 -4.7759 347.2820  
 0.0002 0.0596 -0.1508 0.0409 -0.1086 0.9882 -8.2331 -8.2086 
 2.3726 1.4813 -2.9756 1.6226 -4.3448 231.8719  
 0.0005 0.9884 -0.9974 -18075 0.2158 -0.1794 0.8475 -8.1572 -8.1286 
 9.4750 101.7960 -551.0198 -2.0862 2.3740 -2.9739 11.3435  
singb -0.0001  -0.2443 0.1464 0.0341 0.9868 -7.1606 -7.1402 
 -1.0390  -3.8380 4.8901 1.8130 180.1993  
 -0.0001 0.0137 -0.2401 0.1452 0.0336 0.9871 -7.1584 -7.1339 
 -1.0277 0.4651 -3.8017 4.8132 1.7630 182.2945  
 -0.0001 0.8738 -0.8667 -0.2474 0.1477 0.0352 0.9866 -7.1577 -7.1291 
 -1.0633 2.8742 -2.7851 -3.8800 4.9471 1.8038 179.4170  
thaib 0.0002  -1.0707 0.4860 0.0035 0.9409 -9.6474 -6.6270 
 6.7923  -5.2962 7.2456 0.0908 66.1295  
 0.0002 0.4327 -0.7770 0.3650 -0.0002 0.9590 -9.8116 -9.7871 
 3.5762 12.0128 -4.9232 6.7812 -0.0055 88.3754  
 0.0002 0.4309 0.0023 -0.7756 0.3646 -0.0003 0.9590 -9.8100 -9.7814 
 3.5675 5.5293 0.0277 -4.9044 6.7886 -0.0082 88.1437  
Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.  

(2) Entries in bold are significant at the 5% level.



 91

Table 5.6  Constant Conditional Correlations between Returns  

Returns indob philb singb 
philb 0.4576

 19.8532
singb 0.0655 0.0812

 3.2632 4.2918
thaib -0.1209 -0.1163 0.0229

 -6.3326 -5.2512 0.8932
Notes: (1) The two entries for each parameter are their respective 

estimate and Bollerslev and Woodridge (1992) robust t-

ratios.  

(2) Entries in bold are significant at the 5% level. 
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Table 5.7  Estimates for VARMA-GARCH(1,1) 

Returns ω αindob αphilb αsingb αthaib  βindob βphilb βsingb βthaib 
indob -1.09E-06 0.0930 0.0033 0.0178 -0.0191  0.8177 0.0109 0.0368 0.0893 

 -77.3670 2.9968 0.2154 1.3993 -2.2659  23.3354 0.5557 3.2169 2.4105 
philb -2.76E-07 -0.0027 0.1068 -0.0085 0.1109  0.0126 0.8382 0.0254 -0.0203 

 -1.7273 -0.2488 2.9085 -1.7308 1.1459  0.6597 17.4841 2.7924 -0.2370 
singb 3.10E-07 -0.0089 -0.0082 0.0692 -0.0516  0.0025 0.0123 0.9201 0.1229 

 0.9154 -1.1992 -0.6840 3.8622 -1.1937  0.3638 0.7472 44.7504 2.0903 
thaib 2.29E-07 -7.34E-05 0.0027 0.0006 0.2522  0.0011 -0.0017 -0.0025 0.7333 

 7.2968 -0.8892 0.9217 0.9172 5.1276  2.8459 -1.0311 -4.1930 20.9733 
Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.  

(2) Entries in bold are significant at the 95% level. 
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Table 5.8  Estimates for VARMA-AGARCH(1,1) 

Returns ω αindob αphilb αsingb αthaib γ βindob βphilb βsingb βthaib 
indob -1.06E-06 0.0377 -0.0074 0.0259 -0.0132 0.1116 0.8158 0.0181 0.0322 0.0569 

 -82.4782 1.3276 -0.9594 2.3140 -1.6161 2.0029 26.5608 1.1106 3.4256 1.9554 
philb -4.12E-07 -0.0033 0.0163 -0.0109 0.0914 0.1889 0.0024 0.8483 0.0351 -0.0195 

 -5.2189 -0.4527 0.5309 -3.4487 1.2811 2.8935 0.3047 25.0780 5.6777 -0.3453 
singb 4.72E-07 -0.0082 -0.0112 0.0836 -0.0573 -0.0366 0.0021 0.0193 0.9180 0.1178 

 1.3760 -1.1625 -0.9566 3.6573 -1.3119 -1.4581 0.3193 1.1441 44.7494 1.9679 
thaib 2.62E-07 -8.14E-05 0.0026 0.0008 0.2638 0.0319 0.0012 -0.0018 -0.0028 0.7053 

 8.7534 -0.9018 0.8583 1.1482 3.5412 0.2977 2.9725 -0.9960 -4.5885 19.6180 
Note: (1) The two entries for each parameter are their respective estimate and Bollerslev and Woodridge robust t-ratios.  

(2) Entries in bold are significant at the 95% level. 
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Table 5.9  Summary of Volatility Spillovers and Asymmetric Effects 

Returns Number of volatility spillovers Asymmetric effects VARMA-GARCH VARMA-AGARCH 
indob 2 1 Yes 
philb 1 1 Yes 
singb 1 1 No 
thaib 2 2 No 
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Table 5.10  DCC Estimates  

Parameter Estimate 
φ̂ 1 0.0199 

 1.6901 
φ̂ 2 0.6085 

 2.3211 
Note:  The two entries for each parameter are their respective estimate and  

 Bollerslev and Woodridge (1992) robust t-ratios. 
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Figure 5.1  Market Size of Bond Markets (USD Billions) 
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Figure 5.2  Trade Volume of Bond Markets (USD Billions) 
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Figure 5.3 Daily Returns for All Series 
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Figure 5.4 Dynamic Paths of Conditional Correlations of Pairs of Assets for 

VARMA-GARCH 
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Figure 5.5 Dynamic Paths of Conditional Correlations of Pairs of Assets for 

VARMA-AGARCH 

 


