Chapter 2

Theoretical Foundations

In this chapter, the multivariate volatility GARCH model is presented in Dynamic
conditional and smooth transition correlation approach that has to test about time vary
correlation before estimation. The fractional properties of variables are tested and are
estimated by Semi Parametric ARFIMA model. The time vary CAPM are presented by

State Space Estimator, Quantile regression and Bayesian estimator.

Time-Varying Correlation Models

The mean and volatility equations, with the following two subsections describing
the Dynamic conditional and smooth transition correlation models are discussed in this
section

The two-dimensional vector of oil price and each Asia stock market (y;) has mean

equation

v, =Ey, /3, ]+r,t=12,..T (1)

where 3, | is all information available at time t-1, together with values of
exogenous variables for time t. Since we are interested in the role oil prices in the
evolution of y, 3, ; together with lagged stock returns. Allowing oil prices changes

affect stock returns for each country enables us to capture correlations. The mean

equations in (1) are assumed linear. The conditional covariance follow

rt|:§t—1 ~ N(OaHt) (2)

where N denotes the bivariate normal distribution. From (2), each univariate error

process can be written



r=hi2e, =12 3)

tt,t Ct,to

Where h,,=E(r2/3,)and ¢,,is a sequence of independent random variables

it
with mean zero and variance one. As common in empirical analyses, each conditional

variance is assumed to follow a univariate GARCH (1,1) process
by, =0y + ot + Buhy, 4)

with non-negativity and stationarity restrictions imposed.

Rather than modelling the off-diagonal elements of H directly, the definition
h12,t =0 (hluhzz,t)l/z (5)

allows the focus to be placed on the time-varying correlations p,. The Dynamic
conditional and smooth transition models then differ in their definitions of p,. The

constant conditional correlation (CCC) model simply assumes that p, is constant over

time (McMaleer, 2005,Bauwens, L., S. Laurent and V.K. Rombouts, 2006).

Dynamic Conditional Correlation Model
Engle (2002) specifies the dynamic conditional correlation model through the
GARCH(1,1)-type process

4 = pnl—a-p)+ Q& &, t ﬂqi,j,t—l (6)

Where p,, is the (assumed constant) unconditional correlation between &, and
&,,,a, is the news coefficient and B is the decay coefficient. In order to constrain the
conditional correlation p, to lie between -1 and +1, ¢,,, from (6) and the conditional

correlation is obtained from



P =4, /(%1,‘722,z)1/2 (7

The model is mean-reverting provided @ + f <1, and when the sum is equal to 1

the conditional correlation process in (6) is integrated (Ling, S., and M. McAleer, 2003 a
, Nektarios Aslanidis, 2007).

Smooth Transition Conditional Correlation Models

The smooth transition conditional correlation model considered by Silvennoinen
and Terasvirta (2005) assumes the presence of two extreme states (or regimes) with state-
specific constant correlations. These correlations are allowed to change smoothly
between the two regimes as a function of an observable transition variable. The

conditional correlation p, follows
,O,:,01(1—G,(S,;;/,c))+sz,(s,;y,c) (8)

in which the transition function G,(s,;y,c) is assumed continuous and bounded
by zero and unity, y and c are parameters, whereas s is the transition variable. Since (8)
implies p, = p, whenG=0and p, = p, when G = 1, extreme values of the transition

function identify the distinct correlations that apply in these regimes. A weighted mixture
of these two correlations applies when 0 < G; < 1. A plausible and widely used

specification for the transition function is the logistic function
(G,(s;37,¢) =1/1+exp[-y(s, =)l > 0 ©)

where the parameter ¢ is the threshold between the two regimes. The slope
parameter

v> 0 determines the smoothness of the change in the value of the logistic function
and thus the speed of the transition from one correlation state to the other. When

y > 0,G,(s,;7,c)becomes a step function (G,(s,;7,c)=0 if s; < c their transition

variable can be deterministic or stochastic. (G,(s,;y,c)=1-if -s, >c), and the transition



between the two extreme correlation states becomes abrupt. In that case, the model
approaches a threshold model in correlations. An important special case of the smooth
transition conditional correlation model uses time as the transition, s, =¢/7 , which gives
rise to the time-varying conditional correlation (TVCC) model. The (smooth) change
between correlation regimes, and as y —>oo  captures a structural break in the
correlations (Bwo-Nung Huang, 2005 and Annastiina Silvennoinen, 2007). The Pooled
AIC are used for selecting Smooth Transition Conditional Correlation Models (philip
Hans Franses, 2004). The alternative AIC for 2-regime SETAR model as the sum of
AICs for AR models in the two regimes, that is

AIC(p,, p,) =n, lné'l2 +n, ln6'22 +2(p, +D+2(p, +1)

where n,,j=1,2, is the number of observations in the ji regime,and &éz, j=1,2,,is

the variance of the residuals in the ju regime. The BIC for a SETAR model can be

defined analogously as
BIC(p,,p,)=n,In6] +n,Iné; +(p, +)Inn, +(p, +1)Inn,

For given upper bounds p, and p,, respectively, the selected lag orders in the two

regimes are those for which the information criterion is minimized.

The SETAR model assumes that the threshold variable g, is chosen to be a

lagged value of the time series itself. The model is assumed in both regimes, a 2-regime

SETAR model is given by

t

Do T PP TE Ifp_ <c
Dor TP 2P T E, Ifp.>c

An alternative way to write the SETAR model is
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P = ((pog +OP )(1_I[pr—1 > C])+(¢0’2 T PP )I[pt—l > C] +é&,

where I [A] is an indicator function with I [A]=1 if the event A occurs and 1 [A]
= 0 otherwise.

The SETAR model assume that the border between the two regime is given by a
specific value of the threshold variable In particular, in the 2-regime SETAR model,
v, will be estimated within the y, , (Philip Hans Franses, 2004 and Zivot., 2006).

Testing for constant correlations in a multivariate GARCH model

The constant-correlation hypothesis in a multivariate GARCH model is detected
by Lagrange Multiplier (LM) (Tse.Y.K., 2000). The constant-correlation model set the
conditional variances of y; follow a GARCH process, while the correlations are constant.

Denoting I'={p;;} as the correlation matrix, we have

oy =0,+a,0]  +pBy i=L..K (10)
0, =pP;0,0,,1<i<j<K (11)

The assumption ®,, o; and B; are nonnegative, o, +; <1, for i=1,2,K and

I is positive definite. The LM test can then be applied to test for the restrictions.
This approach only requires estimates under the constant-correlation model, and can thus
conveniently exploit the computational simplicity of the model.

The equations allow time-varying correlations
Py =Pyt 5ijyi,t—1yj,t—1’ (12)
The conditional covariances are given by

Ot = P00

(13)
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Note that there are N=K*+2K parameters in the extended model with time-varying
correlations. The constant-correlation hypothesis can be tested by examining the

hypothesis Ho:5; =0, 1<i<j<K Under Hy, there are M=K(K-1)/2 independent

restrictions. The optimal properties under the null Hy is the LM test .The model which is

deified standardised residual as &, =y, /o, might be written as
p;‘jt:p;‘j+5; €€ (14)

As ¢, depends on other parameters of the model through o, , analytic derivation of

the LM statistic is intractable. The LM statistic of Hy under the above framework which

denote Dy as the diagonal matrix with diagonal elements given by o, , and I'={p;;;} as

the time-varying correlation matrix. Hence the conditional-variance matrix of y; is given

by €,=DJI,D,. Under the normality assumption the conditional log-likelihood of the

observation at time t is given by (the constant term is ignored)

‘ :——ln|DF D |——y,D T,'D"y,
S

for i=1,....K and the log-likelihood function 1| is given by / Zz;l;- For
simplicity, the assumption of y,, and o2 are fixed and known. This assumption has no
effects on the asymptotic distributions of the LM statistic. The derivatives of o? with

respect to @,,«;and S, fori=1...K
d, =00, /0w, e, =00, /0a,, f, =00, /3B,

d, —1+a,d,, 1>

+a.e

eit_ I[l iit-1°

Ji=a, i1 +yi,t—1’ (15)
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where the starting values are given by d, =l,e, =0} and f, =y2 The first

partial derivatives of /, with respect to the model parameters are given by

c%t (‘C";‘git _l)diz

ow, 20, ,

or, (g;é‘,, —l)en

oa, A 20, , "
o, 207

e OO A L

09,

;
Where ¢ =(g},....5,) =1"¢, and ! = {pjj } thus, if we denote the parameters

of the model as these analytic derivatives can facilitate the evaluation of the MLE of the

’

0= (wl-at,ﬁl,a)z,---,ﬂK,/leapu,-u,Pm,K,512,---,5,(,1,1() ., extended model if desired. Note

that on H,:T, =T for all t, so that &' =T"-'¢, and p/ = pi . In this case, &, are just the

standardized residuals calculated from the algorithm suggested by We shall denote 0 as
the MLE of @ under H,
The N-element score vector given by s =0//0fand V' as the N*N information

matrix given by V =E(— o0/ 8669'), where E(.) denotes the expectation operator, the

LM statistic for H|, is given by §'V-1§ , where the hats denote evaluation at §. ¥ may be

replaced by the (negative of the) Hessian matrix or the sum of the cross products of the

first derivatives of /.. The S is denoted the T*N Ol, matrix the rows of which are
06’
the partial derivatives for t=1,...T . the LM statistic for Hy can be calculated using the

following formula

Lmc =3(55)"s (17

' AR
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where [ is the T*1 column vector of ones and S is S evaluated & . Under the

usual regularity conditions LMC is asymptotically distributed as y2ym. Eq. (18) shows that

LMC can be interpreted as T times R?, where R* is the uncentered coefficient of
determination of the regression of / on S . It is well-known that other forms of the LM
statistic are available. For example, further simplification can be obtained by making use
of the fact that in "/ the elements corresponding to the unrestricted parameters is zero.

Eq. (18) is a convenient form.

q

P
2 2 2 2
o, =0+ Zaiho-i,t—l + Zﬁikyi,t—k’l =L...K

k=1

k=1
P
d, =1+ z aihdi,tfh
i

P
9
€y =0, t Z i€ iy s
=

P
2
S = Z o Siwant Viis
=

The first partial derivatives of /, with respect to ®;, ain and By (p+q+1 derivatives

altogether) can be calculated using (16), with ej and fi replacing e and fi, respectively.

Long Memory Time Series

A stationary process y has long memory, or long range dependence, if its

autocorrelation function behaves like
P = C k== as k — 0O (19)

where Cp is a positive constant, and « is a real number between 0 and 1. Thus

the autocorrelation function of a long memory process decays slowly at a hyperbolic rate.

In fact, it decays so slowly that the autocorrelations are not summable:
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For a stationary process, the autocorrelation function contains the same

information as its spectral density. In particular, the spectral density is defined as:

5 pe

1
27 k=—o00

S(@)=

Where o is the Fourier frequency (Halmilton, 1994). From (1) it can be shown

that

fl@) > as @0
(20)

Where C; is a positive constant. So for a long memory process, its spectral

density tends to infinity at zero frequency. Instead of using (X , in practice use
H=1-X/2€(05)), 21

Which is known as the Hurst coefficient (Hurst, 1951) to measure the long
memory in y,. The larger H is the longer memory the stationary process has.

Based on the scalling property in (19) and the frequency domain property in (20),
Hosking (Hosking, 1981) independently showed that a long memory process y,can also
be modeled parametrically by extending an integrated process to a fractionally integrated

process. In particular, allow for fractional integration in a time series y, as follow:
-0y, - th=U, (22)

where L denotes the lag operater , d is the fractional integration or fractional

difference parameter , H is a stationary short-memory disturbance with zero mean.

The time series is highly persistent or appears to be non-stationary, let d = 1 and
difference the time series once to achieve stationarity. However, for some highly

persistent economic and financial time series, it appear that an integer difference may be



15

too much, which is indicated by the fact that spectral density vanishes at the zero
frequency for the differenced time series. To allow for long memory and avoid taking an

integer ofy,, allow d to be fractional. The fractional difference filter is defined as

follows, for any real d > -1:

© (d -
(l_L)d:kZ-o:(k](_l) L (23)
- I'(d+1)

d—k)!  I(k+1)I'(d—k+1)

. . . . d)
With binomial coefficients: [ kj S (

Notice that the fractional difference filter can be equivalent treated as an infinite

order autoregressive filter. It can be show that when |d | >1/2, y,is stationary and has

short memory , and is sometimes refer to as anti-persistent.

When a fractionally integrated series y, has long memory, it can also be shown

that
d=H—1/2 (24)

and thus d and H can be used interchangeably as the measure of long memory.
Hosking(1981) showed that the scaling property in (19) and the frequency domain
property in (20) are satisfied when 0 <d <1/2.

ARFIMA models
The traditional approach to modeling an I(0) time series y,is to use the ARIMA

model:
o(B)(1-B) |y, - u}=0(B)e, 25)

Where ¢(B) and 6( B) are lag polynomials

¢(B)=1—Zp:¢,.Bf
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6(B)=1-Y 68"
j=1

With root out side the unit circle, and <, is assumed to be an i.i.d normal random

variable .this is usually referred to as the ARMA (p,d,q) model. By allow d to be the real
number instead of a positive integer, the ARIMA model becomes the Autoregressive
fractionally integrated moving average (ARFIMA) model. The stationary FARIMA
model is -1/2<d<1/2,(Sowel, 1992). The ARFIMA or FARIMA was extended by Beran
(Beran j., 1995).

0(B)(1-B)' {(1-B)" »,—u|=0(B)¢, 26)

where 0, -1/2<8<1/2 and m is the number of times that y; must be differenced to
achieve stationarity. The difference parameter is given by d = 6+m. The restriction of m
is either 0 or 1 , when m=0, p is the expectation of y;; in contrast, when m=1, p is the

slop of the linear trend component in y;,

SEMIFAR models

Many observed time series exhibit apparent trends. Forecasts will differ greatly,
depending on how these trends are modelled. A trend may be deterministic, i.e. defined
by a deterministic function and purely stochastic or mixture of both.

SEMIFAR models are define by (Beran J. A., 1999): A Gaussian process Y, is
called a semiparametric fractional autoregressive model (or SEMIFAR model) or order p

, if there exists a smallest integer me{0,1} such that
¢(B)(1_B)§{(I_B)m}/i_g(ti)}zei 27)
where O € (-0.5,0.5).

Estimation for SEMIFAR model Let
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2 o o

4
0° = (0'e 0 d P 9, ) = (0; o ,770 )[ be the true unknown parameter vector
in (26) where d=m +50,—1/2 <8’ <1/2 and m" 6{0,1} . Combining maximum

likelihood with kernel estimation , the following method for estimating ¢”and the trend
function g is obtained in (Beran J. A., 1999): Let K be a symmetric polynomial kernel
define by

K(x)=, oox™ x| <1 and K(x)=0if |x|>1,r €{0,1.2,...

and K(x)=0if |x|>1,re{0.1,2,..} and the coefficient @, such that [' x(o)dc=1.

Let »,(n€ N)be a sequence of positive bandwidths such that 5 —0andnb — and

define g(zi )= gr(t,_;m) by

(28)

where )7J =1—B)" Yj(form=l,set)71 =0). Using equations (9) and (10), define

approximate residuals

i—m—l1

e,(m= X a (nle,(mY,_, —&t_m], (29)

J=0

With coefficient a, and ¢ obtained from (9), and denote by . (8)=e, (77)/\/671 the

defined by maximizing the approximate log-likelihood

l(Yl,...,Yn;Q) =—zlog27r—ﬁlog0'€2 —ln’1 >
2’ 2 2 i=m+2

(30)
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with respect to @and g(z,) is set equal to g(z,;m).
The asymptotic behavior of gand 6 is derived in Beran(1999). As
n—>wx,g converges in probability to g , the optimal mean squared error of g is

(45 -2)/(5-205)

proportional to » ad Vn(0—O)converges in distribution to a zero mean

. . . —1
normal vector with covariance matrix ¥ =2D  where

otz 9 0 _g0
D, =(27) [ 2 log f(x) 0, log / (x)dx]|6 = 6

(€1)

with ¢ :(aé,o n? )Tz(aéo 8005 )T. The same result hold if a consent
model choice criterion is used for the estimation of the autoregressive order p.It should be
emphasized , in particular , that here both , the integer differencing parameter
m’ = [d() +0.5] and the fractional differencing parameter §° =d” —m’ are estimated
from the data. Also, the same central limit theorem holds if the innovation e are not
normal, and satisfy suitable moment conditions. Finally note that the asymptotic

covariance matrix does not depend on m"

R/S Statistic
The R/S statistic is the range of partial sum of deviation of a time series from its

mean, rescaled by its standard deviation. Specifically, consider a time series series y, for ¢

=1,...,T. The R/S statistic is defined as:

1 . . x _
0 =—| max E (yj —y)—min E .-y
ST 1<k<T i 1<k<T 1

(32)

Where y=1/TXl y, and 5y :\/1”2;:1(%—?)2' If y,s are iid. normal

random variables, then
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1

JT

where = denote weak convergence and ¥ is range of a Brownian bridge on the

QT:>V

unit interval. Lo(1991) gives selected quantiles of V'

Lo(1991) pointed out that the R/S statistic is not robust to short range
dependence. In particular, if y is autocorrelated(has short memory) then the limiting
distribution of @ /~/T is V' scaled by the square root of the long run variance of y, -

To allow for short range dependence in y ,Lo(1991) modified the R/S statistic as follow:

~ 1 k k
0, = nex ) (v ~3)-min ) (y =)

~
O'( ) 1k<T Ik<T
T q j=1 j=1

(33)

Where the sample standard deviation is replaced by the square root of the Newey-
West estimate of the long run variance with bandwidth qz. Lo(1991) showed that if there
is short memory but no long memory in y , 0. also converges to V', the range of a

Brownian bridge.

GPH Test
Based on the fractionally integated process representation of a long memory time
series, (Geweke, 1983) proposed a semi-nonparametric approach to testing for long

memory. In particular, the spectral density of the fractionally integrated process y, is

given by:

—d
f(w){ﬁtsinz(‘;)} /(@
(34)
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where @ is the Fourier frequency, and f (w) is the spectral density
corresponding to u, . Note that the fractional difference parameter d can be estimated by

the following regression:

In f(a)j)zﬂ—dln[4 sinz(%)]-i-ej (35)

for j=12,...,n (D). Geweke and Porter — Hudak (Geweke, 1983) showed that using a
periodogram estimate of f (@,), the least square estimate d using the above regression

is normally integrated in large samples if » ()= 7% with 0<a <1

2
d~N(, a )

os /U —0)2
> LW -0

where

2, 9;
U =In[4sin (—)]
’ 2

and U is the sample mean of U, j=1.....n . Under the null hypothesis of no long

memory (d =0), the t-statistic

2
T -1/2

tyo = d-(—, —
ox LU ~U)
J

(18)

It has a limiting standard normal distribution.
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Model overview of Long Memory Time Series

The raw daily data, Thai and Asia stock index, N225 (Nikkei Stock Average 225)
Tokyo Stock Exchange, KLSE (KLSE Composite Index), Malaysian stock market,
TWSE (Taiwan's composite index) Taiwan Stock Exchange, SETI (SET Composite
Index) the Stock Exchange of Thailand, SSEC (Shanghai Composite Index) Shanghai
Stock Exchange, The BSESN (Bombay SE Sensitive Index) Bombay Stock Exchange,
JKSE (Jakarta Composite) Indonesia Jakarta Composite, PSI (PSE Composite Index)
Philippine Stock Exchange, KS11 (KOSPI Index) Korean Stock Exchange are collected
from Reuters for the period November 10, 1998 to November 10, 2008.

A stationary process y, is the set of log daily price Asia Indexes. Based on the

scalling property in (19) and the frequency domain property in (20) showed that a long

memory process y,can also be modeled parametrically by extending an integrated
process to a fractionally integrated process. The fractional integration in a time series y,

as follow:

(-89, -w=u,

where B denotes the lag operater , d is the fractional integration or fractional
difference parameter , ,U,is a stationary short-memory disturbance with zero mean.

SEMIFAR models are define by (Beran J. A., 1999) such that

$(B)(1-8) {(1-B) ¥, -gu)|=€,

(36)

The SEMIFAR model extended by 6, m which -1/2< 6<1/2 for any d > -1/2. The

number of times is m that y must be differenced to achieve stationary (Beran j., 1995).

The difference parameter is given by d = 6+m. The restriction of m is either 0 or 1 ,
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when m=0, p is the expectation of y,; in contrast, when m=1, p is the slop of the linear
trend component in y,

To allow for a possible deterministic trend in a time series, in addition to a
stochastic trend, long memory and short memory component. The SEMIFAR model is
based on the following extension to the FARIMA (p,d,0) model. The constant term p is
replaced by g(i;), a smooth trend function on [0.1], with i=t/T. Using BIC choose
autoregressive order p which is proposed by (Beran J. A., 1999)

Financial and Econometric Model Base with Time Varying

In this section, we are going to give a brief summary about the time varying
models, such us State Space CAMP, Bayesian CAMP and Quantile regression CAMP
that economists often used. State Space modeling in macroeconomics and finance has
become widespread over the last decade. Many dynamic time series models in economics
and finance may be represented in State Space form, as the system of equation. The work

of (Zellner and Chetty 1965) shows the optimal Bayesian portfolio problem by Bayes’

rule, the posterior density p(r| 9) is proportional to the product of the sampling density

(the likelihood function) and the prior density, f (r|l9) p(@). The Koenker and Bassett

(1978) developed the median (quantile) regression estimator to minimize the
symmetrically weighted sum of absolute errors (where the weight is equal to 0.5) to
estimate the conditional median (quantile) function. Then we will present an integrated

procedure to construct an appropriate model for the stock data.

State Space CAPM
Typically, the State Space models can be found in most books (cf. Durbin &
Koopman (2001), and Chan (2002)). The State Space model equation can be compactly

expressed as

2P _
= 5f + (Dt O+ Ly (37)

Y (mxN)xl — (m+N)xm mx1  (mxN)xl

where o, ~N(a, P), u,~WN(0,1)

d T H "0
and 5[ t ’®t: t ’ﬂt: tlllt ,Qt: Hth , )
Ct Zt Gtgt 0 Gth
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The initial value parameters are summarized in the (m + 1) X m matrix X :( ,) .
a

The smoothed estimate of the response y; and its variance are computed using

Y,)z! (38)

n t

v, =c,+Za, Var(at|Yn )= O Var(at

The smoothed disturbance estimates are the estimates of the measurement

equations innovations &, and transition equation innovations 77, based on all available

Y, ] (Or 774,,) >

respectively. The computation of £ and 7, from the Kalman smoother algorithm is

information Y,, and are denoted &, = E[at Yn](or ‘%) and7, = E[?]t

described in Durbin & Koopman (2001). These smoothed disturbance estimates can be
useful for parameter estimation by maximum likelihood and for diagnostic checking. The
vector of prediction errors v and prediction error variance matrices F; are computed from
the Kalman filtered recursions.

State Space representation of a time varying parameter regression model consider

a Capital Asset Pricing Model (CAPM) with time varying intercept and slope

Vi :at+ﬂM,txM,t+vt’ VtNWN,
Ay =0, + 6, &, ~WN, (39)
IgM,H—l =ﬂM,t +gt gz NWN:

where y, denotes the return on an asset in excess of the risk free rate, and
x,,,denotes the excess return on a market index. In this model, both the abnormal excess
return, and asset risk B, are allowed to vary over time following a random walk
specification. Lete, =(a,,B,,)", x, =(,,x,,)", H, =diagccc(o,,,0,) and G, =0,.

Then the State Space form equation (37) of equation (39) s
1 H
(a”l j =( %Jat + ( (i j and has parameters
yt xt Gtgt

12 2
® = 2lQ=|0 o 0 (40)
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Since «,is 1(1) the initial state vector «, requires an infinite variance so it is

customary to set a =0 and P = kI, withk — co. Using equation (23), the initial variance
is specified with p,= 0 and p_, =1, . Therefore, the initial state matrix X :[ ,J for the
a

-10
time varying CAPM has the form2. =| 0 —1|. The State Space parameter matrix @, in
00

equation (40) has a time varying system element Z= x, The specification of the State
Space form for the time varying CAPM requires values for the variances Gé Gé and o
as well as a data matrix X whose rows correspond with Z, =x; =(1,7,,,). The values
®, associated with x, in the third row are set to zero. In the general State Space model

equation (37), it is possible that all of the system matricesd,, ®,and €, have time

varying elements.

The typical CAPM regression model is,y, =a + B, x,,, +&,, & ~WN. The y,
denotes the return on an asset in excess of the risk free rate, and x,,, is the excess return

on a market index. The  State  Space  representation is  given

by| % | <[ O lwin x,=(Lx,,) and th isfi
y = a, + wit Xt—( ,xM’t) an the state vector satisties

!
yt ‘xt 65 t

’

=a,=f= (a,ﬂM) . The State Space system matrices are T;= I, Z;= x,,

a G=o P and

+1
H; = 0 . Estimating the CAPM with time varying coefficients in equation (22) subject to
random walk evolution are showed in data. Neumann (2002) surveys several estimation
strategies for time varying parameter models and concludes that the State Space model
with random walk specifications for the evolution of the time varying parameters

generally performs very well. The log-likelihood 1is parameterized using

!

Q= (ln(<7§ ), ln((fg2 ), ln(o-v2 ))’ so thata® =(exp(p, ).exp(e, )exp(p;)) .  The maximum

likelihood estimates for ¢ which estimates of g = (ln(oé ), ln(O'g2 ), ln(O'v2 ))' These methods

estimated the standard deviations o, o, and o, as well as estimated standard errors.
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Bayesian CAPM
The predictive density function reflects estimation risk explicitly since it
integrates over the posterior distribution, which summarizes the uncertainty about the

model parameters, updated with the information contained in the observed data. The

Bayes’ rule, the posterior density p(r|0)is proportional to the product of the sampling

density (the likelihood function) and the prior density, f (r| 49) p(6).

The decision-making under uncertainty are represented portfolio choice problem.

Let 7., denote the vector (N X 1) of next-period returns and W current wealth. The next-
period wealth is W, = W(1+a)'rm)in the absence of a risk-free asset. The next-period

wealth W

_ i
i —W(1+rf+a)r

A ) is a risk-free asset with return 7, is present. Let @ denote

the vector of asset allocations. The optimal portfolio decision consists of choosing @ that

maximizes the expected utility of next-period’s wealth,

max E (U (W,.,)) = max I U(W,.,) p(r]0)dr, subject to feasibility constraints, where 6 is

the parameter vector of the return distribution and U is a utility function generally

characterized by a quadratic or a negative exponential functional form. The distribution

of returns is p(#(6),. The max E(U (W,,,))= max.[U(WT+1 ) p(r|0)dr, is conditional on

the unknown parameter vector#, which are set fequal to its estimate 0 (r)based on
some estimator of the data » (often the maximum likelihood estimator). Then, the
optimal allocation given by @ =argmax E (U (a)’r)‘ 0=0 (r)) .
©
The return generating process for the stock’s excess return
isn=a+pf'f,+¢,t=1,...,T,. The f, is denoted a (K x 1) vector of factor returns (returns
to benchmark portfolios), and ¢, is a mean-zero disturbance term. Then, the slopes of the

regression in » =a+ f'f, + & are stock’s sensitivities (betas). In a single factor model

such as the CAPM, the benchmark portfolio is the market portfolio. The implications for
portfolio selection of varying prior beliefs about a pricing model are expressed, the prior

mean of , «,, is set equal to zero. It could have a non-zero value. The prior variance

o, of a reflects the investor’s degree of confidence in the prior mean a zero value of
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o, represents dogmatic belief in the validity of the model; o, = cosuggests complete lack

of confidence in its pricing power.

Quantile Regression CAPM

The other conditional quantile functions are estimated by minimizing an
asymmetrically weighted sum of absolute errors, where the weights are functions of the
quantile of interest. Thus, Quantile regression is robust to the presence of outliers. Engle
and Manganelli (1999) and Morillo (2000) used in financial applications. The general
Quantile regression model, as described by Buchinsky (1998), is y, =x/8,+ 1, or,

xiBy
alternatively, 6= I f, (s|xl.)ds,where B,is an unknown k x 1 vector of regression

—00

parameters associated with the @, percentile x; is a k x 1 vector of independent variables,

v, is the dependent variable of interest, and s, is an unknown error term. Thed,
conditional quantile of y given x is Quant, ( y6i|xi) = x,3,.Its estimate is given by x; ,39.

As 6 increases continuously, the conditional distribution of y given x is traced out.

Although many of the empirical Quantile regression papers assume that the errors are

independently and identically distributed (i.i.d.), the only necessary assumption

quantile of the error

concerning 4, is Quant, ( ,uyl.|xl.):0, That is, the conditional 8,

term is equal to zero. Thus, the Quantile regression method involves allowing the
marginal effects to change for firms at different points in the conditional distribution by

estimating /£, using several different values of9,60 (0,1) It is in this way that Quantile

regression allows for parameter heterogeneity across different types of assets. Thus, the

Quantile regression estimator can be found as the solution to the following minimization

iy -x; B iy =x;B

problem: ,Bé,zargﬁmin[ z H‘yj—x;ﬂ‘+ z (1—6’)|yi—x,.'ﬂj By minimizing a

weighted sum of the absolute errors, the weights are symmetric for the median regression
case (#=0.5) and asymmetric otherwise. The former implies that the method is

computationally straightforward while the latter implies

‘[hat\/;(,&9 —ﬂg);‘L)N(O,Qg),The CAPM presents E, (R, )=7,,5, ast<t+ 1
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The beta-risk is determined over moving samples. The £, _ is the beta-risk obtained from
a time series regression. R, =a,+f, R, +u .. The R and R, are the excess return

on the asset and the market portfolio, respectively.



