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ABSTRACT 

The purpose in time-series financial analysis is to determine an 
appropriate forecasting model for the future values of volatility. The 
variance are determined using a single index model called a univariate 
conditional volatility model and the covariance matrix of a portfolio 
namely the multivariate conditional volatility models. The paper models 
the conditional variances belong a class of univariate GARCH models, 
moreover, to capture the volatility spillover effects among assets as well 
as to capture the asymmetric effects on the conditional correlations, the 
multivariate GARCH models are estimated. Both methods are employed 
in the ten most active trading value stocks in the Stock Exchange of 
Thailand. The evidences show that the univariate volatility models 
provide the well performance on each series of the ten most active 
trading assets and the multivariate models give the high and dynamic 
correlations among those assets. For incorporating volatility spillovers 
effects, the VARMA-GARCH model is used which is not superior to the 
VARMA-AGARCH model which captures the asymmetric effects.  

____________________     _________________________________________________

1. Introduction 

To invest in stock markets, there are 
risks involving the expectation of the 
returns. The volatility in the global 
financial markets could take place from 
the international linkage between 
countries. In order to stabilize the world 
economy, the financial market that has an 
increasing influence in the current 
economy must be effective. The key to 
manage the market price risk is volatility. 
The high risks may be caused by either the 
dramatic changes in the stock prices or the 
linkages among the world financial 
markets. Therefore, these risks will have to 
be managed.  

* Corresponding author. 
    E-mail address: aspree@gmail.com             

(A. Chaiwan). 

Figure 1 shows the index returns of 
Stock Exchanges of Thailand (SET) which 
has high volatile growth. Since the first 
quarter of 2008, the dramatically down 
trend of SETI has occurred. Figure 2 
shows the total returns of the ten most 
active trading value stocks in SET in 
December 24, 2008. 

To reach the low expectations of 
financial volatility while the risks in the 
market are arising, the risk management 
needs to be concerned and developed from 
experiences from conventional investment 
products, the prediction of volatility of 
assets in times of significant economic 
difficulties and partly, a lack of access to 
the detailed information needed for value 
in an accurate way. 

The well-known tools as the simplest 
variance models are initially the 
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autoregressive conditional heteroske-
dasticity (ARCH) model of Bollerslev 
(1986). In a GARCH model, the variance 
term depends on the lagged variances as 
well as the lagged squared residuals. An 
ARCH-GARCH model known as the 
univariate GARCH model is widely used 
in financial time series analysis. Besides 
the estimation of the conditional variance 

by fitting a univariate volatility model, the 
multivariate volatility also contributes to 
the development of forecasting the 
condition variance of each asset as well as 
the conditional correlations among pairs of 
assets.  

 
 

 
 
Figure 1: The SET Index of Thailand  

 
Source: Yahoo Finance (July 2009) 

 

The initial development of multivariate 
GARCH model is a constant conditional 
correlation (CCC) multivariate GARCH 
model of Bollerslev (1990) that fits a 
univariate GARCH model to each asset 
returns first and then calculates the 
conditional correlation matrix. The 
correlations of CCC are required to be 
constant, however, in some applications 
time-varying correlations are needed. 
Engle (2002) proposed the Dynamic 
Condition Correlations (DCC) multivariate 
GARCH model to relax the constant 
correlations. Both methods (CCC and 
DCC) require the standard GARCH model 
for the variances of the individual 
processes. The other model is VARMA-
GARCH model of Ling and McAleer 
(2003), which allows large shocks in one 
asset to affect the variances of the other 

assets. McAleer et al. (2008) develops the 
VARMA-AGARCH model to capture the 
asymmetric spillover effects between the 
assets in the portfolio. 

Most literatures more applied the 
multivariate GARCH models in stock 
index returns as well as foreign exchange 
returns than in individual assets. The main 
purpose of this paper is to estimate the 
volatility of individual asset returns using 
univariate GARCH model and multivariate 
GARCH models to capture the volatility 
asymmetric and spillovers effects between 
assets following the motivation of Hakim 
and McAlee (2008).  

 
2. Model Specifications 
 

This paper models for the conditional 
volatility of individual asset returns belong 
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to a class of the univariate GARCH 
models.  
 

GARCH(1,1) 
 

Following Bollerslev (1986) and 
Taylor (1986) independently defined and 
derived the GARCH(1,1) model with 
conditional normal distributions as  

1
2

1 )( −− +−+= ttt hrh βμω , (1) 
based on the independently and identically 
distributed (i.i.d.) assumption; thus, 

,2/1
ttt zhr += μ     (2) 
).1,0(...~ Ndiizt  

The four parameters are βαμ ,, and .ϖ  To 
ensure nonnegative in the conditional 
variance, the constraints 0≥ϖ , 0≥α and 

0≥β are required.  
Asset prices pt, and returns rt, 

conditional variances ht, and standardized 
residuals zt are connected by these 
following equations; 

ttttt zhppr 2/1
1 )/log( +== − μ      (3) 

and 
1

2
1 )( −− +−+= ttt hrh βμαω                        

     1
2

1 )( −− ++= tt hz βαω       (4) 
 
GJR-GARCH 

 
The GJR(1,1) model of Glosten, 

Jagannathan, and Runkle (1993) is an 
asymmetry model of conditional variances. 
Asymmetry can be introduced by 
weighting 2

1−te  differently for negative and 
positive residuals; thus, 

1
2

11
2

1 −−−
−

− +++= ttttt heIeh βααω   (5) 
The squared residual is multiplied by 

−+αα  when the return is below its 
conditional expectation )1( 1 =−tI  and by 
α  when the return is above or equal to the 
expected value )0( 1 =−tI . The parameters 
are constrained by ,0,0 >≥ αω  

0>+ −αα and .0≥β  

The additional information based on 
the sign of the residual 1−te  is summarized 
by the indicator variable 
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The GJR (p, q) model is defined as 
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i
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2
11

1
)( βααω (7) 

Furthermore, to capture volatility 
asymmetric and spillovers effects, the 
multivariate GARCH models namely the 
CCC model of Bollerslev (1990), the DCC 
model of Engle (2002), the VARMA-
GARCH model of Ling and McAleer 
(2003), and the VARMA-AGARCH 
model of McAleer et al. (2008) are 
estimated in this paper. 

 
CCC 
 
The CCC model of Bolerslev (1990) is 

suggested as a multivariate GARCH model 
in which all conditional correlations are 
constant and the conditional variances are 
modelled by univariate GARCH models. 
This so-called CCC model (constant 
conditional correlation) is not a special 
case of the Vec model, but belongs to 
another, nonlinear model class. The 
CCC(1,1) model is given by  

,1,
2

1, −− ++= tiiitiitii hh βεαω   (8) 

tjjtiiijtij hhh ,,, ρ=    (9) 

ijρ  equals to the constant correlation 
between itε  and jtε , which can be 
estimated separately from the conditional 
variances. The weakness of the CCC 
model is it cannot capture the spillover 
effects and asymmetric effects. However 
the advantage of the CCC model is in the 
unrestricted applicability for large systems 
of time series. On the other hand, the 
assumption of constant correlation is 
possibly quite restrictive.  
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DCC 
 
To relax the restriction of CCC model, 

Engel (2002) proposed a model called the 
dynamic conditional correlation, which 
providing the time-varying correlations on 
the correlation matrix. By considering the 
following: 

TtQFy ttt ,...,1),,0(~1 =−  (10)  
,tttt DDQ Γ=     (11) 

where ),...,( 1 kttt hhdiagD = is a dia-gonal 
matrix of conditional variances, and tF  is 
the information set available to time t.  

The conditional variance is estimated 
by using a univariate GARCH model. 
After the univariate volatility is modelled, 
the standardized residuals ,/ ititit hy=η  
are used to estimate the dynamic 
conditional correlations. So the DCC 
model is given by the following: 

1 2 1 1 1 2 1(1 ) − − −′= − − + +t t t tQ S Qφ φ φη η φ     (12) 

{ } { }1/ 2 1/ 2( ( ) ( ( )t t t tdiag Q Q diag Q− −Γ =  (13) 

where S is the unconditional correlation 
matrix of theε , equation (13) is used to 
standardize the matrix estimated in (12) to 
satisfy the definition of a correlation 
matrix. 

 
VARMA-GARCH  

 
Ling and McAleer (2003) proposed the 

multivariate model to accommodate 
asymmetric impacts of positive and 
negative shocks on the conditional 
variance that can capture the volatility 
spillover effects among assets that can be 
across the markets or the countries called 
the VARMA-GARCH model. To also 
capture the asymmetric effects on the 
conditional correlations, McAleer et al. 
(2008) in the Econometric Theory 
proposed the VARMA-AGARCH model. 

By considering the following model 
specification: 
 

tttt FyEy ε+= − )( 1     (14) 

 
,ttt Dηε =     (15) 

 

where ),...,(,),...,( 11 ′=′= mtttmttt yyy ηηη  
is a sequence of independently and 
identically distributed random vectors, and 

).,...,( 2/12/1
1 mttt hhdiagD =  

The VARMA-GARCH model is given 
by 

1 1

r s

t k t k l t l
k l

H A B Hω ε − −
= =

= + +∑ ∑r  (16) 

where 
1 1( ,..., ) , ( ,..., ) ,t t mt mH h h ϖ ϖ ϖ′ ′= =

1/ 2
, 1( ), ( ,..., ) ,t i t t t mtD diag h η η η ′= =

2 2
1( ,..., ) ,′=

r
t t mt kAε ε ε and lB  are ×m m  

matrices with typical elements ijα  and ijβ , 
respectively, for i,j = 1,…,m, I( tη ) = 
diag(I( itη )) is an ×m m  matrix. Based on 
equation (15), the VARMA-GARCH 
model assumes the matrix of conditional 
correlations is given by ( )′ = Γt tE ηη . 
 

VARMA-AGARCH 
 
The VARMA-AGARCH model of 

McAleer et al. (2009) is given by 

jt

s

j
jit

r

i
itit

r

i
it HBICAWH −

=
−

=
−−

=
∑∑∑ +++=

11
1

1
εε
rr

   (17) 

where iC  are ×m m matrices for i = 
1,…,r and It = diag(I1t,…,Imt), so that 
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                (18) 

 
The VARMA-AGARCH model is 

reduced to the VARMA-GARCH model 
when 0=iC  for all i.  
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3. Description of the studied market, 
Data and Estimations 

 
3.1 The Stock Exchange of Thailand 
 

The Thai Stock Market so-called 
the Stock Exchange of Thailand (SET) is 
an emerging market and has operated fully 
computerized trading since April 1991. 
Trading is restricted to listed and 
authorized securities and is supervised by 
the Securities Exchange Commission. 
Trading day is normally Monday through 
Friday, and closed on weekend and official 
holidays. In order to respond to rapid 
changing in financial activities, SET uses 
the upgraded trading system called 
Advance Resilience Matching System 
(ARMS) since August 2008 which features 
higher risk management efficiency and 
improved system redundancy. The trading 
system ARMS bases on the automatic 
method called the Automated Order 

Matching system (AOM). Therefore, the 
daily trading in SET takes place via a fully 
computerized trading to perform the order 
matching process according to price then 
time priority so the orders that are not 
matched by the end of a trading day are 
automatically cancelled. It is conducted in 
two trading sessions that are the morning 
sessions from 10:00 to 12:30 a.m. and the 
afternoon sessions from 2:30 to 4:30 p.m.  

The figure 1 shows the SET Index 
of Thailand. The dramatically down trend 
occurred since the first quarter of 2008 
which could be reflected from the world 
financial crash. 

 
3.2 Data 
 

This paper obtains the daily data 
files available from Reuters, including 
open, close, high, low prices and volume 
recorded. 

 
 

Figure 2: The returns of stocks in Thailand  

 
Source: Yahoo Finance (July 2009) 
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The daily data used to estimate 
volatility models are the individual stock 
prices traded in the Stock Exchange of 
Thailand (SET) spanning the time period 
from October 1, 2007 to September 30, 
2008, for obtaining 237 observations of 
daily returns. The original data include 
prices for every trade time interval during 
the day by implementing the ten most 
active trading value single stocks in SET 
based on December 24, 2008, consisting of 
BANPU, PTT, and PTTEP in 
Petrochemicals and Chemicals sector, SCC 
in Construction Materials sector, and TTA 
in Transportation and Logistic sector, 

namely PTT Public Company Limited, 
PTT Exploration and Production Public 
Company Limited, Kasikornbank Public 
Company Limited, The Siam Commercial 
Bank Public Company Limited, Advanced 
Info Service Public Company Limited, 
Italian-Thai Development Public Company 
Limited, PTT Chemical Public Company 
Limited, The Siam Cement Public 
Company Limited, and Thoresen Thai 
Agencies Public Company Limited, 
respectively. The returns of the ten most 
active trading value single stocks in SET 
are shown in Figure 2 and the variable 
names are summarized in Table 1. 

 
Table 1: Variable Names 

Variables Names 

adva Advanced Info Service Public Company Limited 

banpu PTT Public Company Limited 

itd Italian-Thai Development Public Company Limited 

kbank Kasikornbank Public Company Limited 

ptt PTT Exploration and Production Public Company Limited 

pttch PTT Chemical Public Company Limited 

pttep PTT Exploration and Production Public Company Limited 

scb The Siam Commercial Bank Public Company Limited 

scc The Siam Cement Public Company Limited 

tta Thoresen Thai Agencies Public Company Limited 

 

The continuously compounded 
returns of asset i at time t are calculated by 
following: 

 

100*)log(
1,

,

−
=

ti

ti
it p

p
r    (19) 

 
where pi,t and pi,t-1 are the closing prices of 
market i at days t and t-1, respectively.  
 
 
 
 

3.3 Estimations 
 

The plots of the daily returns for all 
series used in this study are shown in 
Figure 2.2. All returns series have constant 
mean but the time varying variance. These 
time-series data are tested for the 
stationary using Augmented Dickey-Fuller 
(ADF) test in Table 2.2. From the unit root 
test, all series of asset returns are 
stationary at level because all series reject 
the null hypothesis at the 1% level of 
critical value that is -3.456. The simple 
descriptive statistics of the time-series of 
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the ten returns are provided in Table 2. 
Apparently, the empirical mean of the 
processes are close to zero as well as the 
median of the processes, the maximum 
values range between 0.086 and 0.129, and 
the minimum values range between -0.267 

and -0.104. The high degree of kurtosis is 
in all series and an appropriate time-series 
models are needed because of the 
clustering of the returns series. 
 

 
 

Table 2: Unit Root Test in the returns of all series 

Series Coefficient 1% level of critical value  t-statistic 
adva -1.106 -3.456 -17.471 
banpu -0.938 -3.456 -14.961 
itd -0.978 -3.456 -15.578 
kbank -1.030 -3.456 -16.473 
ptt -0.965 -3.456 -15.370 
pttch -0.687 -3.456 -8.350 
pttep -1.026 -3.456 -16.386 
scb -1.001 -3.456 -16.011 
scc -0.974 -3.456 -15.601 
tta -0.901 -3.456 -14.261 
Note: The null hypothesis θ  = 0 is tested for stationary if reject. 
 

Table 3: Descriptive statistics for all series 

Statistics adva banpu itd kbank ptt pttch pttep scb scc tta 
           
 Mean -0.001 -0.003 -0.004 -0.002 -0.003 -0.005 -0.002 -0.002 -0.003 -0.006
 Median  0.000  0.000 -0.006  0.000  0.000 -0.007 -0.002  0.000  0.000 -0.006
 Maximum  0.086  0.092  0.116  0.079  0.095  0.091  0.125  0.091  0.078  0.129
 Minimum -0.113 -0.186 -0.184 -0.124 -0.139 -0.153 -0.188 -0.173 -0.104 -0.267
 Std. Dev.  0.025  0.039  0.043  0.027  0.032  0.035  0.035  0.029  0.019  0.046
 Skewness  0.104 -0.953 -0.391 -0.395 -0.255 -0.838 -0.439 -0.667 -0.431 -0.935
 Kurtosis  5.670  6.416  4.899  5.629  5.183  6.204  6.068  8.286  7.405  7.752

           
           

 Jarque-
Bera  77.11  164.5  45.35  81.05  54.04  140.6  109.4  319.5  216.6  280.4
 Probability  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000

           
           

 Sum -0.204 -0.788 -1.1667 -0.488 -0.754 -1.349 -0.451 -0.389 -0.958 -1.584
 Sum Sq. 
Dev.  0.161  0.398  0.479  0.188  0.269  0.309  0.323  0.224  0.091  0.551
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4. Empirical Results 
 

4.1 Univariate GARCH Models. 

The estimations from the class of 
univariate GARCH models are provided in 
Table 4-5. The empirical results show the 
coefficient determining both in conditional 
mean equation with ARMA(1,1) and 
condition variance equation. In the short 
run of the ARMA(1,1)-GARCH(1,1) 
model, the estimations in variance 
equations show that all series are 
significantly different from zero at 5% 
level. On the other hand, in the long run, 
all asset returns are significant except for 
BANPU and TTA. The ARMA(1,1)-
GJR(1,1) model shows all estimates are 
significantly different from zero at 5% 
level in the long run, only the four assets 
namely ITD, KBANK, PTTCH, and SCC 
are significantly different from zero at 5% 
level in the short run. All of significances 

are at 5% level. Moreover, the estimated 
values of γ  which is greater than zero 
indicate the negative shocks give higher 
impact than the positive shocks or leverage 
effects for all stocks, except SCB. 

Figure 3 and Figure 4 show the 
plots of the daily returns and the plots of 
volatility of the ten asset returns, 
respectively. The volatility of all time-
series data is dramatically increasing and 
persists until the end of the period  

The descriptive statistics of the ten 
volatilities are provided in Table 6. The 
TTA gives the highest statistics consisting 
of mean, median, maximum and minimum 
values, skewness, and kurtosis. All 
volatilities display a high degree of 
kurtosis. This can interpret that they are 
not close to a Gaussian distribution. Then, 
an appropriate time-series model is 
needed. 

 
Table 4: ARMA(1,1)-GARCH(1,1) 
 Mean equation  Variance equation   
 C AR(1) MA(1)  ω α β AIC SIC 

adva -0.001 0.753 -0.873  9.41E-06 0.083 0.915 -4.706 -4.623 
 -1.163 5.554 -8.508  0.689 2.732 21.537   
banpu -0.002 0.169 -0.074  0.001 0.198 0.397 -3.726 -3.643 
 -0.809 0.245 -0.107  2.385 2.924 1.864   
itd -0.003 0.389 -0.345  0.0001 0.097 0.819 -3.567 -3.484 
 -1.224 0.712 -0.616  1.396 2.312 8.324   
kbank -0.001 0.789 -0.828  1.46E-05 0.115 0.880 -4.599 -4.517 
 -1.005 3.256 -3.765  1.959 2.270 17.534   
ptt -0.001 -0.783 0.842  2.79E-05 0.164 0.833 -4.161 -4.078 
 -0.437 -3.995 4.883  1.140 3.411 17.804   
pttch -0.002 -0.717 0.659  0.0002 0.353 0.431 -4.146 -4.063 
 -1.290 -1.991 1.653  3.172 3.910 3.172   
pttep 0.001 0.211 -0.166  1.68E-05 0.127 0.877 -3.994 -3.911 
 0.267 0.152 -0.117  0.642 2.609 17.611   
scb 6.50E-05 -0.355 0.408  1.89E-05 0.104 0.894 -4.363 -4.280 
 0.040 -0.949 0.367  1.226 2.192 22.028   
scc -0.002 -0.217 0.178  2.30E-05 0.187 0.759 -5.331 -5.248 
 -2.313 -0.122 0.100  2.510 3.024 10.649   
tta -0.006 -0.864 0.942  0.001 0.471 -0.068 -3.497 -3.414 
 -2.242 -11.386 17.913  5.810 4.367 -0.669   
Notes: (1) The numbers show the parameter estimates and t-ratios.  
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 (2) The significant at 5% level of significance shown in bold.





 

 

                          M
ultivariate G

ARC
H

 volatility m
odels for financial portfolio in Thailand                             137

 
Table 5: ARMA(1,1)-GJR(1,1) 

 Mean equation  Variance equation   
 C AR(1) MA(1)  ω α γ β AIC SIC 

adva -0.001 0.757 -0.869  9.02E-06 -0.004 0.130 0.944 -4.737 -4.640 
 -1.543 6.527 -10.334  0.758 -0.163 2.501 26.218   
banp -0.002 -0.043 0.117  4.21E-05 -0.001 0.094 0.926 -3.777 -3.681 
 -0.731 -0.053 0.146  1.171 -0.036 2.246 21.400   
itd -0.007 0.384 -0.372  2.73E-05 -0.082 0.099 1.028 -3.654 -3.558 
 -9.274 0.885 -0.837  12.981 -184.206 18.194 47592   
kbank -0.003 0.913 -0.940  9.34E-06 -0.079 0.175 0.996 -4.665 -4.568 
 -2.148 25.114 -31.583  2.617 -3.699 5.063 46.566   
ptt -0.002 -0.743 0.811  6.97E-05 0.048 0.238 0.782 -4.184 -4.087 
 -1.156 -3.477 4.311  1.572 1.217 1.967 10.107   
pttch -0.004 -0.623 0.642  8.51E-05 -0.063 0.265 0.845 -4.213 -4.116 
 -2.439 -1.034 1.091  2.993 -2.268 4.286 16.845   
pttep -0.002 -0.013 0.087  0.0002 0.028 0.335 0.657 -4.007 -3.911 
 -0.758 -0.014 0.097  1.440 0.455 2.023 3.582   
scb -0.001 -0.346 0.412  3.61E-05 0.020 0.152 0.876 -4.377 -4.280 
 -0.550 -0.772 0.940  1.158 0.436 1.774 14.820   
scc -0.004 0.623 -0.718  1.73E-05 -0.134 0.325 0.923 -5.416 -5.319 
 -4.961 2.750 -3.729  2.597 -4.469 4.448 23.735   
tta -0.005 -0.850 0.934  0.0002 -0.014 0.243 0.805 -3.519 -3.422 
 -1.743 -10.360 18.597  1.980 -0.393 2.748 10.510   
Notes: (1) The numbers show the parameter estimates and t ratios.  
 (2) The significant at 5% level of significance shown in bold. 
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Figure 3: Daily returns of all series 
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Figure 4: Daily volatility of all series 
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Table 6: Descriptive statistics for the volatilities  

Statistics adva banpu itd kbank ptt pttch pttep scb scc tta 
           
 Mean 5.661 14.73 17.51 7.180 10.99 12.09 12.30 8.839 3.478 20.80 
 Median 4.857 11.96 14.53 5.337 8.552 7.089 10.15 6.961 2.408 14.16 
 Maximum 30.17 92.03 72.16 39.269 57.65 137.87 85.80 51.44 31.34 327.2 
 Minimum 1.901 9.861 7.217 0.517 2.585 4.587 3.007 1.046 0.578 9.544 
 Std. Dev. 3.459 8.962 10.62 6.269 9.171 15.756 10.54 8.187 3.561 25.49 
 Skewness 3.677 4.597 3.270 3.038 2.718 4.837 4.209 3.567 4.248 8.071 
 Kurtosis 22.11 30.58 14.26 13.29 11.89 30.57 24.85 15.71 25.75 87.26 

           
           

 Jarque-
Bera 4490.9  9051.4  1815.6 1530.2  1162.8  9144.7 5872.5 2273.9 6315.5 78821 
 Probability  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000 

           
 

 
4.2 Multivariate GARCH Models. 
 

Table 7 gives the estimation of 
CCC-GARCH(1,1) model which the CCC 
estimators yield the constant conditional 
correlation between the ten assets. All of 
the estimations are significantly different 
from zero at 5% level of significance. The 
estimated correlations between assets are 
0.32 to 0.63. Unfortunately, the correlation 
among the ten assets in portfolio are all 
positive correlations, the portfolio 
diversification could be inefficient. 

The estimated parameters of the 
conditional correlations for the DCC 
model are provided in Table 8. Both of the 
estimated coefficients are significantly 
different from zero at 5% level of 
significance. This can interpret that the 
conditional correlations between the ten 
returns are dynamic or time-varying. These 
dynamic conditional correlations can also 
imply that the ten assets are in the same 
class or in the same market.  

Table 9 shows the estimates of 
conditional variance of VARMA-GARCH 
and Table 10 shows the estimates of 
conditional variance of VARMA-
AGARCH models, respectively. Then, the 
number of volatility spillovers and 

asymmetric effects of VARMA-GARCH 
and VARMA-AGARCH models are 
summarized in Table 11. The empirical 
results show the volatility spillovers in 
both models. BANPU is the highest 
spillovers to the other assets evidenced in 
both VARMA-GARCH and VARMA-
AGARCH models. The correlations are 
negative for the pair of BANPU and 
ADVANC, BANPU and ITD, BANPU 
and PTTCH, and BANPU and PTTEP, 
positive otherwise. The low and opposite 
correlations give an efficient of potential 
gain from portfolio diversification between 
those stocks. Furthermore, the empirical 
results in Table 11 also summarize the 
asymmetric effects from VARMA-
AGARCH model. The asymmetric effects 
exist in five stocks named KBANK, PTT, 
PTTCH, SCB, and TTA. Therefore, the 
positive and negative shocks have the 
different impact on those conditional 
volatilities. This also can imply the 
superior of the VARMA-AGARCH to the 
VARMA-GARCH model.  

 
 
 
 
 

 



170 
 

Multivariate GARCH volatility models for financial portfolio in Thailand 

 

141

Table 7: CCC-GARCH(1,1)  

          
Returns banpu ptt pttep kbank scb adva itd pttch scc 
          
ptt 0.633         
 13.054         
          
pttep 0.654 0.792        
 14.208 30.538        
          
kbank 0.499 0.704 0.602       
 7.807 17.402 13.122       
          
scb 0.455 0.614 0.545 0.853      
 6.193 12.479 11.795 42.199      
          
adva 0.327 0.442 0.365 0.545 0.504     
 5.804 8.675 6.808 11.279 9.656     
          
itd 0.487 0.554 0.549 0.691 0.617 0.465    
 7.390 10.335 10.601 15.902 13.567 8.493    
          
pttch 0.493 0.639 0.662 0.620 0.553 0.358 0.603   
 9.137 15.481 17.759 15.419 13.093 6.533 12.299   
          
rscc 0.448 0.551 0.555 0.695 0.648 0.443 0.593 0.593  
 7.169 10.984 10.946 19.905 16.019 7.237 13.112 12.492  
          
rtta 0.526 0.599 0.564 0.643 0.574 0.456 0.573 0.583 0.564 
 8.670 13.221 11.121 16.849 12.907 8.654 11.145 12.138 11.165 
          
Notes: (1) The two entries for each parameter are their respective estimates and Bollerslev and Woodridge 

robust t-ratios.  
(2). The significant at 5% level of significance shown in bold. 

 
 

Table 8: The DCC Estimates of the Qt Model  

Parameter Estimates Estimates in the Qt Equation 

Ø1 0.032 

 2.702 

Ø2 0.673 

 4.865 
Notes: (1) The two entries for each parameter are their respective estimates and Bollerslev and Woodridge 

robust t-ratios.  
(2). The significant at 5% level of significance shown in bold. 
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Table 9: VARMA-GARCH(1,1)  

Returns ω αadva αbanpu αitd αkbank αptt αpttch αpttep αscb αscc αtta 
adva -0.0001 -0.1510 0.0154 -0.0422 0.1431 0.0051 0.0331 0.0038 -0.0725 -0.0727 0.0251 
            
banpu 0.0004 -0.0483 -0.1850 0.0344 -0.4676 0.1702 0.1970 0.0330 0.0812 0.2085 0.0433 
            
itd 0.0003 -0.0915 -0.0795 -0.0576 -0.2984 0.0559 0.1295 0.3456 -0.1485 0.6975 0.1931 
            
kbank 0.0002 -0.0349 0.0531 -0.0201 0.0862 0.1082 -0.0031 -0.1241 -0.1276 0.3524 -0.0241 
            
ptt 3.13E-05 -0.1070 -0.0064 -0.0401 -0.1215 -0.0947 0.1620 0.0582 -0.1369 0.4340 0.0266 
            
pttch -0.0001 -0.0668 0.0353 0.0322 -0.0527 0.2973 -0.0680 -0.0612 -0.1625 -0.0239 0.0435 
            
pttep 6.07E-05 -0.0122 -0.0396 -0.0226 -0.1340 0.0304 0.0531 0.0813 -0.0585 -0.0806 0.0206 
            
scb 0.0002 -0.0144 0.0002 -0.0436 0.0669 0.0672 0.1571 0.0063 -0.1988 0.2152 0.0122 
            
scc 0.0001 0.0609 0.0054 0.0186 -0.0645 0.0315 0.0108 -0.0772 0.0433 -0.0057 0.0200 
            
tta 0.0005 0.0806 -0.1217 0.0838 0.1812 -0.0297 0.2431 0.0776 -0.4304 -0.3329 0.1486 
            
Notes: (1) The 2 entries for each parameter are the parameter estimates and Bollerslev and Woodridge robust t-ratios.  

(2) The significant at 5% level of significance shown in bold. 
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Table 9: VARMA-GARCH(1,1) (Continued)  

Returns  βadva βbanpu βitd βkbank βptt βpttch βpttep βscb βscc βtta 
adva  0.8988 0.2270 0.0727 -0.3105 -0.0537 -0.0933 0.1603 -0.0101 -0.0941 0.0214 
            
banpu  -0.2776 0.8536 -0.2404 0.3202 0.1969 -0.1809 -0.3017 0.2624 -0.2776 0.1534 
            
itd  -0.5629 0.1273 0.7322 0.7722 -0.0822 -0.0394 -0.1784 0.1038 -1.265 -0.0363 
            
kbank  -0.1018 -0.1615 -0.0475 0.3527 0.1440 0.0218 0.0121 0.3370 -0.1704 0.0864 
            
ptt  -0.2507 0.0982 0.0656 0.1023 1.0016 -0.1884 0.0349 5.57E-05 -0.4254 0.0561 
            
pttch  0.4737 0.0531 0.1405 -0.4261 0.0198 0.6705 -0.0415 0.3685 -0.4128 -0.0008 
            
pttep  -0.2555 0.1767 -0.0890 0.1814 -0.0860 0.0099 0.9485 0.0375 -0.1050 0.0367 
            
scb  -0.4237 0.1311 -0.0353 0.1349 -0.0208 0.0019 0.0501 0.6300 -0.5746 0.0685 
            
scc  0.1824 -0.0540 0.0410 -0.2160 0.1855 -0.0042 -0.0772 0.2667 0.0213 -0.0618 
            
tta  0.8178 0.1662 -0.4893 -0.9025 -0.1940 0.1566 0.6792 0.4785 -0.2451 0.4961 
            
Notes: (1) The 2 entries for each parameter are the parameter estimates and Bollerslev and Woodridge robust t-ratios.  

(2) The significant at 5% level of significance shown in bold. 
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Table 10: VARMA-AGARCH(1,1)  

Returns ω αadva αbanpu αitd αkbank αptt αpttch αpttep αscb αscc αtta 
adva -0.0001 -0.1517 0.0107 -0.0449 0.1712 0.0063 0.0204 -0.0003 -0.0888 -0.0808 0.0304 
            
banpu 0.0005 -0.0341 -0.1923 0.0448 -0.4709 0.1454 0.2234 0.0599 0.0723 0.2854 0.0315 
            
itd 0.0004 -0.1888 0.0050 -0.0603 -0.1818 0.0302 0.1347 0.1554 -0.1829 0.2349 0.1579 
            
kbank 0.0002 -0.0284 0.0561 -0.0187 -0.0565 0.0655 0.0194 -0.0769 -0.1168 0.2314 -0.0040 
            
ptt 2.17E-05 -0.0203 0.0178 -0.0308 -0.0716 -0.0963 0.1037 -0.0073 -0.1254 0.1558 0.0040 
            
pttch 1.20E-05 0.0206 0.0435 0.0738 -0.0749 0.2476 -0.1556 -0.1029 -0.2096 -0.2572 0.0323 
            
pttep 1.36E-05 -0.0599 -0.0476 -0.0197 -0.0861 0.0017 0.0670 0.0194 -0.1288 -0.0253 0.0259 
            
scb 0.0002 -0.0671 0.0110 -0.0451 0.0461 0.0319 0.1857 -0.0186 -0.1891 -0.0486 0.0080 
            
scc 0.0001 0.0630 0.0015 -0.0049 -0.0089 0.0188 0.0121 -0.0393 0.0510 -0.2010 0.0129 
            
tta 0.0005 0.1232 -0.0799 0.0255 0.1492 -0.0087 0.2641 -0.0327 -0.3900 -0.4997 -0.0625 
            
Notes: (1) The 2 entries for each parameter are the parameter estimates and Bollerslev and Woodridge robust t-ratios.  

(2) The significant at 5% level of significance shown in bold. 
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Table 10: VARMA-AGARCH(1,1) (Continued)  

Returns γ βadva βbanpu βitd βkbank βptt βpttch βpttep βscb βscc βtta 
adva 0.0445 0.8401 0.2383 0.0694 -0.3372 -0.0493 -0.0700 0.1688 -0.0068 -0.1607 0.0318 
            
banpu 0.0039 -0.3450 0.8262 -0.2908 0.3096 0.2369 -0.1939 -0.3270 0.2859 -0.3687 0.1873 
            
itd 0.0639 -0.3972 0.3843 0.7482 0.4246 0.0599 -0.0440 -0.4068 0.1344 -0.9247 -0.0832 
            
kbank 0.1885 -0.1589 -0.0923 -0.0136 0.3976 0.2798 0.0062 -0.1636 0.2918 -0.0930 0.0441 
            
ptt 0.2213 -0.1296 0.0742 0.0775 0.0071 0.9923 -0.1897 0.0514 0.0224 -0.1979 0.0299 
            
pttch 0.3807 0.8097 -0.0742 0.2050 -0.9125 0.3062 0.4410 -0.1405 0.6041 -0.2594 0.0014 
            
pttep 0.0280 -0.3667 0.2661 -0.0725 0.1425 -0.0692 -0.0030 1.0265 0.0248 -0.2920 0.0706 
            
scb 0.2465 -0.4241 0.0698 -0.0305 0.0829 0.0537 0.0081 0.0921 0.4813 -0.3382 0.0923 
            
scc 0.2314 0.0919 0.0107 0.0040 -0.1348 0.1060 0.0234 -0.0460 0.1290 0.3490 -0.0574 
            
tta 0.3792 0.8057 0.1266 -0.2813 -0.9888 0.1495 -0.0207 0.3616 0.3814 0.1867 0.5631 
            
Notes: (1) The 2 entries for each parameter are the parameter estimates and Bollerslev and Woodridge robust t-ratios.  

(2) The significant at 5% level of significance shown in bold. 
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Table 11: Spillovers and asymmetric effects of negative and positive shocks 

Returns Number of volatility spillovers Asymmetric effects VARMA-GARCH VARMA-AGARCH 
adva 5 4 N 
banpu 7 8 N 
itd 3 - N 
kbank 1 2 Y 
ptt 4 2 Y 
pttch 2 2 Y 
pttep - 2 N 
scb 2 2 Y 
scc 5 2 N 
tta 2 1 Y 
Note: Y = asymmetric effects and N = no asymmetric effects 
 
5 Conclusion 

The main purpose of this paper is to 
model the conditional variances belonging 
to a class of univariate and multivariate 
GARCH models. The multivariate 
GARCH models are employed for 
capturing the volatility spillovers effects 
between assets to the others as well as 
capturing the asymmetric effects on the 
conditional correlations. Both methods are 
conducted in the ten most active trading 
value stocks in the Stock Exchange of 
Thailand in December 24, 2008. We 
employed the ARMA(1,1)-GARCH(1,1) 
and ARMA(1,1)-GJR(1,1) to estimate the 
volatility of individual stock returns. The 
estimations provide statistic significant 
measures of the conditional mean and 
variance. However, the estimates from 
univariate conditional volatility models 
suggest that the leverage effects occur in 
stock volatility for all return series except 
SCB. This means, in the long run, the 
asymmetric volatility model, -- the GJR 
model -- is superior to GARCH model. 

The constant conditional 
correlations (CCC) model is employed to 
observe increasing correlation in terms of 
market situations in the unrestricted 
applicability for large systems of time 
series. The estimated correlations between 
assets are 0.32 to 0.63. The correlation 
among the ten assets in portfolio are all 

positive correlations, the portfolio 
diversification could be inefficient. 
Because the assumption of constant 
correlation is strong and restrictive, the 
dynamic conditional correlations (DCC) 
model is used for the conditional 
correlations are not constant or time-
varying. The empirical results show 
moderate correlations between the ten 
assets in portfolio, but all correlations are 
positive. By the way, the positive 
correlations would yield the potential gain 
from investment and hardly to diversify 
risk for the portfolio. From the DCC 
model, the conditional correlations 
between the ten stocks are dynamic or 
time-varying. 

For incorporating volatility spillover 
effects, the VARMA-GARCH model is 
used for the ten assets. The evidence for 
the highest volatility spillovers is BANPU 
which would affect volatility of most 
assets. Asymmetric effects are statistically 
significant in five stocks named KBANK, 
PTT, PTTCH, SCB, and TTA, means 
positive and negative shocks have the 
same impact on conditional volatility. 
Therefore, the VARMA-AGARCH model 
which captures the asymmetric effects is 
superior to the VARMA-GARCH model. 

In the near future, research could 
conduct the conditional correlations 
forecast and investigate the well-perform 
result of the multivariate GARCH models. 
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The considering and employing of the 
appropriate volatility models to forecast 
value-at-risk (VaR) would be also carried 
out for risk management and to examine 
the optimal strategies especially in the 
risky emerging markets. 
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Abstract 

 

For several daily financial return series, most empirical literatures reveal that volatility 

has a long memory property. Consequently, an advanced model -- the fractionally integrated 

ARFIMA model which allows the intermediate degrees of volatility persistence --, is needed. 

The purpose of the paper is to estimate the long memory models in volatility of index returns 

of four stock markets in South-East Asia. Furthermore, the time-dependent heteroskedasticity 

of the returns is described by the autoregressive fractionally integrated moving average with a 

generalized autoregressive conditional heteroskedasticity (ARFIMA-GARCH) models. The 

ARFIMA-FIGARCH and ARFIMA-FIEGARCH models are highly considered and then 

seriously taken into account as to how the performances of those several models for asset 

returns and volatility measures reveal. Our results show the presence of long memory process 

in volatility of all series. The ARFIMA-FIEGARCH performs excellently in estimating the 

volatility of all series as well. 
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1.  Introduction 

In financial investment, the investors, traders, fund managers, etc., certainly encounter 

changes with their own asset prices. As the price fluctuation depends on several sources of 

unexpected news, the rate change of asset prices is commonly defined as volatility in 

finances. At any event, measuring and predicting volatility is the crucial task in financial 

analysis.  

The first models for long memory in mean were introduced by Granger and Joyeux 

(1980), and Hosking (1981). Most empirical evidences show the long memory process in 

volatility. The fractionally integrated models are widely used and become popular in financial 

time series analysis. Granger (1980) proved that long memory process, which the 

autocorrelation of unknown shocks decays slowly, can arise when short memory -- the 

memory decays exponentially fast --, is aggregated. As the persistence of shocks depends on 

several sources, it reflects on volatility which indicates a long memory property. According 

to Ding, Granger, and Engle (1993), the volatility tends to change quite slowly at times, and 

the effects of unknown shocks can take a considerable time to decay. Therefore, models for 

long memory are of great interest in financial work. Again, in short memory, the exponential 

decay is too fast to describe the data. Consequently, it is necessary to have a model that 

allows for intermediate degrees of volatility persistence. In the conditional mean, Granger 

and Joyeux (1980), and Hosking (1981) proposed that the autoregressive fractionally 

integrated moving-average (ARFIMA) specification fill the gap between short and complete 

persistence. This model captures the short-run behavior of the time-series by the 

autoregressive moving-average (ARMA) parameters. Thus the fractional differencing 

parameter dL)1( −  is added to model the long-run dependence in the ARFIMA model. The 

characteristic of this long memory process is that the autocorrelation function has a 

hyperbolically decaying shape. In other words, the autocorrelation of shocks decays slowly to 

zero. Eventually, in the conditional variance, Baillie, Bollerslev and Mikkelsen (1996) 

introduced the fractionally integrated autoregressive conditional heteroskedasticity 

(FIGARCH) model which relates to financial volatility dynamics and allows for the long 

memory in the conditional variance. Ling and Li (1997a) extended the ARFIMA process to 

an autoregressive fractionally integrated moving average with GARCH model (ARFIMA-

GARCH), which has a fractionally integrated conditional mean with the GARCH to describe 

time-dependent heteroskedasticity. An apparent of long range dependence in financial asset 

volatility introduced by Robinson and Hidalgo (1997) could be modeled by long memory. 
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Bollerslev and Mikkelsen (1999) have confirmed the assumption that long memory models 

would yield the most accurate empirical out-of-sample volatility forecasts.  

From this point of view, there are a number of studies using long memory models for 

both the daily returns of assets and the high-frequency ones. The true volatility, known as 

realized volatility (RV), is found in the model that a fractionally integrated process can highly 

explain the slow decay in the autocorrelations of RV. The empirical studies for RV show that 

fractionally integrated processes are discussed in this section. Alizadeh, Brandt, and Diebold 

(2002) showed that a sum of AR(1) component is likely to have long memory process. Pong, 

Shackleton, Taylor, and Xu (2004) showed that a sum of AR(1) component accurately 

forecasted currency volatility. The literatures on RV are growing rapidly. McAleer and 

Medeiros (2008) show an excellent review of how to perform modelling and forecast 

volatility of their several techniques of volatility estimation, and hence the strengths and 

limitations of the various approaches also widen their points of view.  

In this paper, we highly consider the long memory process, the fractionally integrated 

ARFIMA process with the GARCH specification (ARFIMA-GARCH) underlying the 

concept model of Granger and Joyeux (1980), Hosking (1981), Baillie (1996), Baillie, 

Bollerslev and Mikkelsen (1996), and Long and Li (1997a). We investigate the dynamic 

behavior of the daily returns, the ARFIMA process in the conditional mean as well as in the 

conditional variance. The data used in this paper are the daily index returns data, under the 

assumption of time-varying conditional heteroscedasticity. We take into account the index 

returns of the stock exchanges in South-East Asia, namely Indonesia, Malaysia, Thailand, 

Singapore in so far as they are available from DataStream. The different models of the 

ARFIMA with GARCH type models are also considerable for comparison purposes including 

of ARFIMA-FIGARCH, and ARFIMA-FIEGARCH models. 

 

2. Model Specifications 

A complicated model involving long memory process to model return volatility is applied 

in this paper. The following section describes the models that we implement in stock index 

returns of Southeast Asia stock markets. The (generalized) autoregressive conditional 

heteroskedasticity models (ARCH and GARCH), the fractionally integrated models 

(FIGARCH and FIEGARCH) of Baillie, Bollerslev and Mikkelsen (1996), and Bollerslev 

and Mikkelsen (1996) and the ARFIMA-GARCH model of Long and Li (1997a) are 

reviewed by following subsequences; (1) shot memory model, and (2) long memory model.  
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(1) Short Memory Model 

 

2.1 ARMA 

We first describe an autoregressive moving average (ARMA) process. This process is 

an underlying from which a generalized autoregressive conditional heteroskedaticity 

(GARCH) is derived. The ARMA process is presented as a white noise process )( tε . By 

constructing a white noise process, the basic properties of white noise are used as 

0][,][,0][ 22 === +τε εεσεε tttt EEE for all t and for all 0≠τ . 

An autoregressive model with p lags, AR(p), is given by 
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       (1) 

 

where μ is the mean, φ is the weight. An AR(1) is referred to a first-order one process which 

volatility based upon only the previous value of ty . 

A moving average model or MA(q), is given by 

 

t

q

i
itity εεθμ ++= ∑
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−

1

        (2) 

 

where μ is the mean, φ is the parameter. it−ε  and tε  are the previous and current weighted 

average values of a white noise disturbance term, respectively. This linear combination of 

white noise processes makes a variable ty dependent on the previous and current values of a 

white noise disturbance term. 

A model for predicting future values of a variable ty  is an autoregressive moving 

average model, or ARMA(p,q), given by 

 

qtqtttptt yyy −−−− −−−+++= εθεθεφφ ...... 11111     (3) 

 

This equation is the linear combination between a variable ty  and its own previous 

values (AR) plus the previous and current values of a white noise disturbance term (MA).  
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2.2 ARCH 

Engle (1982) proposed the autoregressive conditional heteroscedasticity of order q, or 

ARCH (q), defied as  

 

2

1
it

q

i
ith −

=
∑+= εθω         (4) 

 

where 0,0 ≥> jαω  to ensure 0>th  or strictly positive conditional variance. The ARCH 

effect α captures the dependence in the condition variance or the short-run persistence of 

shocks. 

 

2.3 GARCH 

Bollerslev (1986) and Taylor (1986) proposed the Generalized ARCH (GARCH) 

model allowing for an infinite number of squared errors to influence the current conditional 

variance. The next period’s variance can be forecasted in effect of which:- 

- Weight average of the long run average variance (mean), 

- The variance predicted for this period (GARCH) and, 

- Information about volatility during the previous period that is the squared 

residual (ARCH). 

The GARCH (p,q) model is given by 
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βεαω                  (5) 

 

where .0>ω For GARCH(1,1), the constraints 01 ≥α  and 01 ≥β  are needed to ensure 

0>th  or strictly positive conditional variance. This model assumes that the positive shocks 

( 0tε > ) and negative shocks ( 0tε < ) have the same impact on the conditional variance. 

 

2.4 EGARCH 

Nelson (1991) introduced the Exponential GARCH (EGARCH) model as follows 
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where t iη −  and t iη − capture the size and sign effects of the standardized shocks respectively. 

The positive shocks provide less volatility than the negative shocks when iγ  < 0. Then the 

model allows asymmetric and leverage effects.  

These stationary GARCH and EGARCH models have a short memory property. In 

empirical studies of Dacorogna, Müller, Nagler, Olsen, and Pictet (1993), Ding et al. (1993), 

Bollerslev and Mikkelsen (1996) give evidence that their theoretical autocorrelations of 

conditional variances decay slowly, so a long memory model is appropriate. 

 

(2) Long Memory Model 

 

Considering the following process { ty } 

 

tt Ly εφ )(=           (7) 

 

where ,,1,)(
0
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∞
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i
i LL φφφφ  and tε  has finite kurtosis. A process in (7) 

generates a linear process if { tε } is a strict white noise and the nonlinear if not. 

Long memory models are usually defined by applying the filter dL)1( −  to a process 

followed by assuming the filtered process as a stationary ARMA (p, q) process. The lag 

operator L shifts any process backwards by one time period, ,1−= tt yLy  while the 

differencing parameter d is between 0 and 1 for volatility applications. The filter then 

represents fractional differencing which is defined by the binomial expansion as 
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2.5 ARFIMA  
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Granger (1980) and Hosking (1981) introduced a well-known class of linear 

dependent processes; the autoregressive fractionally integrated moving average (ARFIMA   

(p,d,q) model). An ARFIMA process {yt} is defined by 

 

))(()1)(( tt
d LyLL εθφ =−        (9) 

 

where ,5.0<d  { tε } is a strict white noise sequence with zero mean and variance 2
εσ , L is 

the backshift operator 

 
p

ptt LLLyLy φφφ −−−== − ...1)(, 11   and   q
q LLL θθθ −−−= ...1)( 1        (10) 

 

are polynomials of degrees p and q, respectively. dL)1( −  is the fractional difference operator 

defined by the binomial series in (8). 

Then, more complex models are produced by specifying an ARMA filter in a time 

series process { ty } in (7) in a short memory input sequence (see Palma and Zevallos (2001)). 

The class of ARMA-GARCH models can be obtained when { tε } follows a GARCH process. 

We now review a number of specifications for the long memory process by describing 

in three combinations of these two elements: short- or long-memory filter and short- or long-

memory input 2
tε as follow: 

 

Long-memory input, short-memory filter 

 

2.6 FIGARCH  

Baillie (1996) and Baillie, Bollerslev and Mikkelsen (1996) investigated a model with 

long-memory input for the conditional variance ht, by inserting the additional filter dL)1( −  

and short-memory filter, ARMA, and then making the GARCH more general known as the 

fractional integration (FI) GARCH model. The FIGARCH (1,d,1) model is defined by 
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2.7 FIEGARCH  
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Bollerslev and Mikkelsen (1996) found that the fractionally integrated exponential 

GARCH (FIEGARCH) model performs better than FIGARCH model. 

From the EGARCH model of Nelson (1991), the returns are assumed to have 

conditional distributions that are normal with constant mean and with variances. The 

FIEGARCH (1,d,1) model is defined by 

 

)()](1[()](1[()log( 1
1

−
− +−+= ttt zgLLh αβω                           (12) 

][)( 211 tttt zEzzzg −+= − θθ                 (13) 

 

where tω  and th  denote conditional means and conditional variance respectively. The 

standardized residuals are 

 

ttt hez /=                    (14) 

 

Short-memory input, long-memory filter 

 

2.8 ARFIMA-GARCH  

Ling and Li (1997a) proposed a fractionally integrated autoregressive model with 

conditional heteroskedasticity, ARFIMA(p,d,q)-GARCH(r,s). This is discrete time process 

with )(Lφ  as in (7), tz  as in (14) with standard normal distribution and the GARCH model as  
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If ,5.0<d  and ,1
11

<+∑∑
==

s

j
j

r

i
i βα then { ty } is invertible and stationary. Palma and Zevallos 

(2001) showed that in ARFIMA-GARCH model, the data have long memory if    0 < d < 0.5.  

The squared data have intermediate-memory if 0 < d < 0.25 and long memory if 0.25 < d < 

0.5. An ARFIMA-EGARCH gives the same conclusions. 

 

 

Long-memory input, long-memory filter 
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2.9 ARFIMA-FIEGARCH  

This model is the combination of ARFIMA filters and conditionally heteroskedastic 

input with long-range dependency such as FIEGARCH model. Eventually, we obtain 

ARFIMA-FIEGARCH model. Robinson and Hidalgo (1997), and Palma and Zevallos (2001) 

showed the similar type of result for this context which the squares of the input sequence 

{ tε } has a long memory with filter parameter 5.0* <+= yddd ε , then the process { ty } has 

long memory. εd is the differencing parameter of long-memory input, FIEGARCH, and yd is 

the differencing parameter of long-memory filter, ARFIMA, where 5.0,0 << yddε . 

However, they concluded that the results will hold when the underlying distribution of the 

input error sequence is non-Gaussian but has finite kurtosis.  

 

3. Empirical Volatility Modelling 

In this section, we will explain the data set that are analyzed and the way to generate a 

daily volatility time series.  

 

 3.1 DATA 

The time-series data used in this paper are daily closing prices for four stock market 

indexes in South-East Asia, namely JKSE (Indonesia), KLCI (Malaysia), SETI (Thailand), 

and STI (Singapore) available on DataStream. The variable names are summarized in Table 

1. We select these stock markets from the index values. Those are very high values and 

potential investment alternatives compared with other markets in Southeast Asia. The index 

values of each market from Bloomberg are shown in Figure 1. The latest stock exchange 

founded in 1999 is Singapore Exchange (SGX), therefore the data are collected at that 

starting time. We consider for a long time period from September 1, 1999 to April 27, 2009, 

giving a total of 2,519 return observations. Each stock market index is calculated in the local 

currency as IDR, MYR, THB and SGD standing for Rupiah (Indonesia), Ringgit (Malaysia), 

Baht (Thailand), and Singapore dollar (Singapore) respectively.  

 

3.2 Volatility measures 

First, we adjust the closing price to obtain the returns for each market by taking 

logarithmic different. We employ the daily returns in modelling volatility of index returns 

because the yesterday information may be significant in explaining today prices changes. The 

daily data can capture the different responses on news that cause the volatility clustering (see 
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Engle (1990)). The rationale to employ daily data in modelling volatility transmission is 

mentioned in McAleer and da Veiga (2008a). The returns at time t are calculated as follows 

 

100*)log(
1−

=
t

t
t p

p
r                                           (16) 

 

where pt is the index price at time t. pt-1 are the index price at time t-1. The plots of the daily 

returns for all series are shown in Figure 2.  

The plots show that all returns have constant mean but the time-varying variance. The 

returns of JKSE and STI are more volatile than those of the KLCI and SETI, evidence by the 

plots of volatility in Figure 3. Then, an appropriate model is necessary to estimate. 

Second, we test all daily time-series returns for the stationary using Augmented 

Dickey-Fuller (ADF) test. Table 2 shows the unit root test which all series of stock market 

index returns are stationary at level because the ADF test statistics of all series reject the null 

hypothesis which the series are unit root at the 1% level of critical value equals -2.5658. 

Third, we investigate the standard descriptive statistics of the daily time-series data, 

provided in Table 3. From Table 3, we can summarize as follows. First, All series have 

similar constant means at close to zero.  Second, the maximum values of percentage changes 

of index returns range approximately between 4.5% for KLCI and 10.5% for SETI. And, the 

minimum values of percentage changes of index returns range approximately between -8.9% 

for STI and -16.0% for SETI. Finally, all series exhibit the clustering as is the common 

stylized facts for financial returns. The high degree of kurtosis is displayed. This excess 

kurtosis indicates a fat-tailed distribution compared to a standard normal distribution with 

kurtosis 3 and similar for all series. The Jarque-Bera test strongly rejects the null hypothesis 

of normally distributed returns. Then, an appropriate time-series model is needed. 

Then, we estimate the various model described in the previous section. We take into 

account as to compare how the performance of those several models for volatility measures. 

Both the conditional volatility models and long memory models are estimated under the 

assumption that the returns follow a t-distributional because this distribution performs far 

better than normal distribution (see McAleer and da Veiga (2008b)). We model the returns as 

a stationary ARMA(1,1) process in both short- and long-memory GARCH models. The auto-

correlation function plot (ACF) is used to identify the orders of an ARMA process for 

ARFIMA filters in ARFIMA-GARCH, ARFIMA-FIGARCH and ARFIMA-FIEGARCH 

models, and then we obtain an appropriate model fitted to the data.  
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Finally, we monitor the performance of the specifications by optimizing the 

information criterion of either Akaike (1974) or Schwarz (1978), denoted as AIC and SIC, 

respectively. Those criteria are given either 
n
k

n
LogL 22 +−  for AIC, or 

n
k

n
LogL )log(22 +−  

for SIC, with the MLE for a model that has k parameters estimated from n observations. As 

the SIC criterion consistently estimates the order p and q of a GARCH (p, q), then SIC may 

be preferred to AIC. In this paper, we consider both values of AIC and SIC across models. In 

addition, the p-value tests are used to identify the hypothesis that the variable is zero, i.e is 

not included in the model. 

 

4. Empirical Result 

In this section, we report the estimations of those models as mention in the previous 

section. The fitted models and volatility modelling performance of the models are also 

indicated at last. Table 4, 5, 6, and 7 summarize the estimations from GARCH, FIGARCH, 

FIEGARCH and ARFIMA-GARCH type models using 2,519 daily return observations of the 

stock market indexes in South-East Asia, namely JKSE (Indonesia), KLCI (Malaysia), SETI 

(Thailand), and STI (Singapore) respectively. The parameters are estimated using maximum 

likelihood estimation (MLE) method. We employed the student t distribution and the result of 

descriptive statistics show the high observed kurtosis. The student t distribution parameters 

are indicated by df in the Table 4, 5, 6, and 7, they are significantly different from zero at 5% 

level. We now divide the empirical results into two subsequences as follows 

 

4.1 Short- and long-memory GARCH models 

The results showing the maximum likelihood estimates of d from FIGARCH model 

are 0.32, 0.31, 0.52, and 0.43 for JKSE, KLCI, SETI, and STI respectively which are less 

than 0.5. As the t-ratios of the estimations are not close to zero, the null hypothesis d = 0 is 

rejected by the process which exhibits short memory, the ARCH and GARCH model. 

Consequently, the null hypothesis d = 1 which indicates that an integrated process is not 

appropriate, is ipso facto rejected. Therefore the estimations of parameters d which are 

significantly different from zero at 5% level show a stationary (d < 0.5) and the existence of 

long memory process for JKSE, KLCI, and STI, excluding SETI, are not significantly 

different from zero. From FIEGARCH model, the estimates of d are 0.035, 0.033, 0.034, and 

0.064 for JKSE, KLCI, SETI, and STI respectively which are less than 0.25. All of them are 

significantly different from zero at 5% level for KLCI, SETI, and STI, and at 10% level for 
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JKSE. The FIEGARCH model shows asymmetric effects and also leverage terms, which 

negative shocks increase volatility and positive shocks decrease volatility in all series. Again, 

these empirical results clearly show a stationary and the existence of long memory process 

for volatility by FIGARCH and FIEGARCH models.  

An appropriate model fitted to the data are criteria by measuring goodness of fit as 

mentioned before (AIC and SIC). The GARCH specifications of the condition variance, 

judged by the AIC and SIC criteria, are far inferior to those of FIGARCH and FIEGARCH. 

However, involving FIGARCH and FIEGARCH could not obviously be indicated by the 

quality. Eventually, according to some ARFIMA-GARCH type models, we find long 

memory process in the mean and in the volatility.  

 

4.2 ARFIMA-GARCH models 

For long-range dependence ARFIMA-GARCH models, we find out the stationary 

ARMA process based on the ACF and PACF plots in Table 4 - 7, it is not clear what model is 

most appropriate for all series. The possibilities include an ARMA process with an 

autoregressive component of level 1, AR(1) and a moving average of 1, MA(1) for JKSE and 

KLCI, AR(2) and MA(2) for SETI, and AR(0) and MA(0) for STI. Based on AIC and BIC 

criteria, and p-value to test for the significantly different from zero of the variable, the best fit 

for JKSE and KLCI series is an ARFIMA(1,1)-FIEGARCH(1,d,1) plus leverage term, with 

approximately d* = 0.06 which are less than 0.25 in both series and most estimates are highly 

statistically significant at 5% level. For SETI, the best fit is an ARFIMA(2,2)-

FIEGARCH(1,d,1) plus leverage term, with approximately d* = 0.09 which is less than 0.25 

and also most estimates are significantly different from zero at 5% level. For STI, the best fit 

is an ARFIMA(0,1)-FIEGARCH(0,d,1) plus leverage term, with d* = 0.18 and all estimates 

are significantly different from zero at 5% level. These results show that the long memory 

models are preferred to short memory for volatility estimation in all index return series. The 

ARFIMA-FIEGARCH model performs far better for volatility modelling.  

 

5. Conclusion 

In this paper, we consider the different time-varying volatility models and investigate the 

long memory property in volatility. Most empirical evidences show that volatility has a long 

memory property, as the result the fractionally integrated models are used in financial time 

series analysis. For comparison purpose, we apply both short memory models, GARCH 

model and long memory models, FIGARCH, FIEGARCH and the ARFIMA with GARCH 
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models including ARFIMA-GARCH, ARFIMA-FIGARCH, and ARFIMA-FIEGARCH 

models. Our finding can be summarized as follows. First of all, our estimation results show 

that the fractional integration that apparently show the existence of long memory in volatility 

of all index returns. Therefore the results show that the volatility has a long persistence of 

shocks.  

Second, for the performance of various models, a model for the volatility of the set of 

data is selected by comparing the values of AIC and SIC across models. The results suggest 

that the long memory models are preferred to short memory models. Especially ARFIMA-

FIEGARCH model is superior to ARFIMA-FIGARCH and ARFIMA-GARCH models. 

Finally, this paper considers only model-based volatility measures from the univariate 

conditional volatility models and the long memory models. Using more long term 

information from financial data by including exogenous regressors may lead to an increased 

accuracy volatility modelling. Moreover, the multivariate conditional volatility models to 

capture spillover effects from the returns shocks of financial assets in the portfolio would be 

appropriate for further discussion.  
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Appendix 

 

Figure 1: Index value ratio of the Stock Markets in South-East Asia 
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Figure 2: Daily returns for all series 
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Figure 3: Volatility of returns for all series 
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Table 1: Summary of stock index names 

Codes Names 

JKSE Jakarta Composite Index 

KLCI Kuala Lumpur Composite Index 

SETI Stock Exchange of Thailand Index 

STI Straits Times Index 
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Table 2: ADF Test of a Unit Root in all index returns 

Index Returns  Coefficient  t-statistic 

JKSE  -0.8718  -44.1039 

KLCI  -0.8470  -43.0193 

SETI  -0.8995  -32.2940 

STI  -0.9592  -48.1396 

Note: The null hypothesis θ  = 0 is tested for stationary if reject. 
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Table 3: Descriptive Statistics of all index returns 

 JKSE KLCI SETI STI 
Mean 0.0405 0.0097 0.0030 -0.0066 
Maximum 7.6231 4.5027 10.5770 9.5324 
Minimum -10.9540 -9.9785 -16.0632 -8.9151 
Std. Dev. 1.5129 0.9750 1.5071 1.3727 
Skewness -0.6622 -0.7459 -0.7625 -0.3749 
Kurtosis 9.2069 11.6161 12.7928 8.3114 
Jarque-Bera 4227.6 8025.5 10309.7 3020.0 
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Table 4: Correlogram of JKSE (Indonesia) returns 

 
Notes: (1) Autocorrelation represents a moving average (MA) process. 
 (2) Partial Correlation represents an autoregressive component (AR) process. 
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Table 5: Correlogram of KLCI (Malaysia) returns 

 
Notes: (1) Autocorrelation represents a moving average (MA) process. 
 (2) Partial Correlation represents an autoregressive component (AR) process. 
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Table 6: Correlogram of SETI (Thailand) returns 

 
Notes: (1) Autocorrelation represents a moving average (MA) process. 
 (2) Partial Correlation represents an autoregressive component (AR) process. 
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Table 7: Correlogram of STI (Singapore) returns 

 
Notes: (1) Autocorrelation represents a moving average (MA) process. 
 (2) Partial Correlation represents an autoregressive component (AR) process. 
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Table 8: Estimation Results for JKSE (Indonesia) 
Var. Model Mean equation   Variance equation     LL 

  μ d AR(1) MA(1)  ω d α β α+β  df AIC SIC 
JKSE GARCH (1, 1) 0.1208     0.1922  0.1515 0.7767 0.9282  4.1234 -4256.779 
  5.456     2.144  3.318 10.36   11.15 3.3837 3.3802 
         φ β θ1 θ2    
 FIGARCH (1, d, 1) 0.1235     0.3821 0.3223 -0.0530 0.0931   4.1096 -4252.269 
  5.602     3.382 4.338 -0.3623 0.5358   10.82 3.3809 3.3767 
               
 FIEGARCH (1, d, 1) 0.1084     6.7538 0.0358* -0.1141 0.8632 -0.1467 0.2827 4.1888 -4240.280 
  5.021     4.534 1.782* -0.4774 15.04 -4.229 5.230 10.81 3.3729 3.3673 
                
 ARFIMA- 0.1214 0.0205 -0.2347 0.3071*  0.1986  0.1571 0.7659    -4245.781 
 GARCH (1, 1) 4.503 0.9380 -1.228 1.702*  2.119  3.378 9.700    3.3773 3.3717 
                
 ARFIMA- 0.1351 0.0596    0.4627 0.2333     4.3969 -4248.685 
 FIGARCH (0, d, 0) 3.981 3.239    5.774 7.115     10.98 3.3772 3.3738 
               
 ARFIMA- 0.1256 0.0216 -0.2221 0.3015*  0.4549 0.2347     4.4381 -4243.779 
 FIGARCH (0, d, 0) 4.607 0.9716 -1.245 1.799*  5.801 7.163     10.86 3.3749 3.3700 
               
 ARFIMA- 0.1234 0.0219 -0.2225 0.2975*  0.3805 0.3137 -0.0823 0.0516   4.2773 -4240.539 
 FIGARCH (1, d, 1) 4.532 1.004 -1.216 1.725*  3.471 4.488 -0.5630 0.2998   10.33 3.3739 3.3676 
                
 ARFIMA- 0.0891 0.0672    7.3816 0.0329* -0.1339 0.8790 -0.1584 0.2726 4.3601 -4230.773 
 FIEGARCH (1, d, 1) 2.390 3.926    4.485 1.813* -0.6062 17.56 -4.570 5.367 10.30 3.3662 3.3598 
               
 ARFIMA- 0.0897* 0.0343 -0.3055 0.3698*  7.1690 0.0328* -0.1393 0.8713 -0.1624 0.2816 4.3807 -4227.068 
 FIEGARCH (1, d, 1) 1.861* 1.602 -1.409 1.807*  4.543 1.792* -0.6508 16.67 -4.704 5.434 10.14 3.3648 3.3569 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 

  (2) Entries in bold are significant at the 95% level. 
    Entries in bold * are significant at the 90% level. 
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Table 9: Estimation Results for KLCI (Malaysia) 
Var. Model Mean equation   Variance equation     LL 

  μ d AR(1) MA(1)  ω d α β α+β  df AIC SIC 
KLCI GARCH(1, 1) 0.0269     0.0139  0.1151 0.8839 0.9991  4.1445 -3057.023 
  2.153     2.068  4.188 31.97   11.74  2.4311 2.4277 
         φ β θ1 θ2    
 FIGARCH(1, d, 1) 0.0285     0.0741 0.3116 -0.1105 0.0836   4.7515 -3039.816 
  2.268     2.673 8.624 -0.6701 0.4676   12.57 2.4182 2.4141 
               
 FIEGARCH(1, d, 1) 0.0241     14.9327 0.0335 -0.1041 0.9541 -0.0553 0.2314 4.2693 -3041.551 
  1.864     3.478 2.250 -0.4380 45.05 -3.062 4.448 11.70 2.4212 2.4156 
                
 ARFIMA- 0.0256 0.0366 -0.1504 0.2436  0.0138  0.1166 0.8811    -3033.352 
 GARCH(1, 1) 1.438 0.8903 -0.1947 0.3289  2.063  4.437 32.24    2.4147 2.4090 
                
 ARFIMA- 0.0233 0.0908    0.1137 0.2276     4.9096 -3034.825 
 FIGARCH(0, d, 0) 0.9072 4.599    5.005 12.83     12.29 2.4135 2.4101 
               
 ARFIMA- 0.0271 0.0328 -0.0242 0.1290  0.1131 0.2268     4.9230 -3028.144 
 FIGARCH(0, d, 0) 1.525 0.8163 -0.0400 0.2226  5.015 13.01     12.13 2.4098 2.4049 
               
 ARFIMA- 0.0277 0.0324 0.0010 0.0969  0.0692 0.3159 -0.1041 0.0990   4.9751 -3016.116 
 FIGARCH(1, d, 1) 1.580 0.8495 0.0016 0.1553  2.560 8.313 -0.6224 0.5381   11.62 2.4018 2.3954 
                
 ARFIMA- -0.0056 0.2030 0.7859 -0.8668  15.567 0.0315 -0.0930 0.9533 -0.0703 0.2306 4.4800 -3016.812 
 FIEGARCH(1, d, 1) -0.1335 3.901 9.933 -16.99  3.533 2.226 -0.3948 43.62 -3.459 4.959 11.02 2.4039 2.3960 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 

  (2) Entries in bold are significant at the 95% level. 
    Entries in bold * are significant at the 90% level. 
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Table 10: Estimation Results for SETI (Thailand)  
Var. Model Mean equation     Variance equation     LL 

  μ d AR(1) AR(2) MA(1) MA(2)  ω d α β α+β  df AIC SIC 
SETI GARCH(1, 1) 0.050       0.065  0.112 0.863 0.9755  5.155 -4231.430 
  2.308       3.158  6.741 42.48   7.601 3.363 3.360 
           φ β θ1 θ2    
 FIGARCH(1, d, 1) 0.049       0.113 0.522 0.116 0.542*   4.961 -4232.179 
  2.211       1.895 1.578 1.610 1.726*   6.446 3.364 3.360 
                 
 FIEGARCH(1, d, 1) 0.044       12.23 0.034 0.040 0.9294 -0.058 0.181 5.305 -4221.891 
  1.987       4.798 2.999 0.183 48.05 -3.357 5.560 7.507 3.358 3.352 
                  
 ARFIMA- 0.055 0.060 -0.313  0.280   0.067  0.114 0.8604    -4226.923 
 GARCH(1, 1) 1.638 2.482 -1.393  1.346   3.176  6.818 41.69    3.3623 3.356 
                  
 ARFIMA- 0.042 0.042      0.430 0.193     5.2640 -4241.659 
 FIGARCH(0, d, 0) 1.375 2.461      5.861 9.969     7.978 3.3717 3.368 
                 
 ARFIMA- 0.042 0.064 -0.308  0.267   0.432 0.192     5.2496 -4240.449 
 FIGARCH(0, d, 0) 1.178 2.615 -1.592  1.481   5.846 9.939     7.985 3.3723 3.367 
                 
 ARFIMA- 0.053 0.061 -0.317  0.282   0.117 0.514* 0.109 0.526*   5.0132 -4227.516 
 FIGARCH(1, d, 1) 1.538 2.551 -1.496  1.433   1.950 1.686* 0.0711 1.759*   6.533 3.3636 3.357 
                  
 ARFIMA- 0.032 0.078 -0.299  0.252   12.16 0.034 0.050 0.9275 -0.071 0.179 5.436 -4214.582 
 FIEGARCH(1, d, 1) 0.659 3.441 -1.427  1.267   4.963 3.088 0.232 48.72 -3.748 5.784 7.111 3.354 3.347 
                  
 ARFIMA- 0.029 0.065 -1.033 -0.670 0.998 0.687  12.05 0.035 0.021 0.9257 -0.072 0.187 5.424 -4208.685 
 FIEGARCH(1, d, 1) 0.771 1.964 -2.253 -2.679 2.386 3.458  4.992 3.118 0.102 47.62 -3.726 5.972 7.150 3.351 3.342 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 

  (2) Entries in bold are significant at the 95% level 
    Entries in bold * are significant at the 90% level 
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Table 11: Estimation Results for STI (Singapore) 
Var. Model Mean equation   Variance equation     LL 

  μ d AR(1) MA(1)  ω d α β α+β  df  SIC 
STI GARCH(1, 1) 0.0661     0.0203  0.0954 0.8974 0.9929  6.8754 -3932.835 
  3.446     2.914  6.425 59.38   7.409 3.1265 3.1230 
         φ β θ1 θ2    
 FIGARCH(1, d, 1) 0.0676     0.0529 0.4320 0.1164 0.4982   7.2255 -3925.273 
  3.524     2.321 5.826 1.597 4.216   7.367 3.1212 3.1171 
               
 FIEGARCH(1, d, 1) 0.1804     1.0032 0.6499 0.5406  -0.1418 0.0092 3.8158 -4032.902 
  7.891     3.749 7.954 1.102  -2.898 2.566 10.34 3.2083 3.2027 
                
 ARFIMA- 0.0720 0.0526 0.2332 -0.2640  0.0204  0.0958 0.8969    -3930.295 
 GARCH(1, 1) 2.666 1.535 0.8955 -0.9932  2.902  6.351 58.20    3.1268 3.1212 
                
 ARFIMA- 0.0691 0.0388    0.2396 0.2207     6.9456 -3952.807 
 FIGARCH(0, d, 0) 2.720 2.268    5.969 14.60     8.229 3.1423 3.1389 
               
 ARFIMA- 0.0718 0.0610 0.2623 -0.2957  0.2411 0.2202     6.8687 -3952.469 
 FIGARCH(0, d, 0) 2.502 1.629 0.8003 -0.8830  5.971 14.47     8.201 3.1436 3.1387 
               
 ARFIMA- 0.0735 0.0502 0.2155 -0.2436  0.0537 0.4274 0.1171 0.4918   7.3068 -3922.823 
 FIGARCH(1, d, 1) 2.753 1.458 0.7796 -0.8639  2.296 5.788 1.558 4.055   7.097 3.1217 3.1153 
                
 ARFIMA- 0.0533 0.0195    3.7642 0.1789 1.1873  -0.1179 0.2396 3.2738 -4036.400 
 FIEGARCH(0, d, 1) 2.853 1.243    12.70 6.681 2.918  -2.664 4.139 12.86 3.2111 3.2054 
                
 ARFIMA- 0.0534 0.0465*  -0.0463  3.7769 0.1796 1.2380  -0.1115 0.2374 3.2456 -4035.408 
 FIEGARCH(0, d, 1) 1.895 1.833*  -1.333  13.03 6.867 2.781  -2.538 3.975 12.90 3.2111 3.2047 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 

  (2) Entries in bold are significant at the 95% level. 
    Entries in bold * are significant at the 90% level. 
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Abstract 

 

The variance of a portfolio or the volatility is the key item in financial time series analysis 

and risk management to reduce and diversify portfolio risk. In order to compare the 

performance of the univariate conditional volatility models (single-index models) and the 

long memory models in forecasting Value-at-Risk (VaR) thresholds of a portfolio, we apply 

those models  in the portfolio returns of four stock market indexes in South-East Asia, 

namely the JKSE (Indonesia), KLCI (Malaysia), SETI (Thailand), and STI (Singapore). The 

size of the average capital charge and the magnitude of the average violations are used to 

compare the forecasting performance of both the univariate conditional volatility models and 

the long memory models. The results suggest that penalties imposed under the Basel Accord 

are too relaxed, and tend to favour the model that had an excessive number of violations -- 

the single-index model under the normal distribution assumptions --, than the long memory 

model. The univariate conditional volatility models seem to lead to lower daily capital 

charges. 
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1. Introduction 

An important task in financial time series have involved modelling and forecasting 
volatility since it is the key item in risk management. The most interesting financial assets for 
investors are common stocks which have higher risk than other assets, i.e. bonds. Typically in 
finances, commentators and traders define the price risks as volatility that can cause loss or 
gain from trading. There are many fantastically complex mathematical models for measuring 
the risk in their various portfolios, but the most widely used is called VaR -- Value-at-Risk. 
According to the amendment, the Basel II Accord attempts to encourage banks to hold their 
capital reserves to encounter their risks appropriately in financial investments, but banks are 
still free to specify their own model for VaR measurement (see Basel Committee on Banking 
Supervision (1988), (1995) for further details). Therefore the model providing accurate 
volatility measures to forecast VaR is important for banks’ self regulation. 

McAleer (2008) gives the analysis and has concerned about risk management under the 
Basel II Accord. The Ten Commandments for optimizing Value-at-Risk (VaR) and daily 
capital charges are presented in the 4th National Conference of Economists at Chiang Mai 
University, Thailand (2008). The suggestions and guidelines for risk management are that 
holding and managing cash is better than dealing with risky financial investments. McAleer, 
Jiménez-Martin and Peréz-Amaral (2009) also present the intended Ten Commandments to 
assist in risk management and importance of VaR forecasts.  

As mentioned in McAleer (2008), McAleer and da Veiga (2008a, 2008b), McAleer 
(2009), and McAleer, Jiménez-Martin and Peréz-Amaral (2009), the key items for banks 
have their own VaR and the accuracy of the various volatility models (see Li, Ling and 
McAleer (2002), and McAleer (2005) for excellent reviews of the conditional volatility, Asai, 
McAleer and Yu (2006) for recent reviews of stochastic volatility, and the reviews of realized 
volatility models in McAleer and Medeiros (2008)), the number of violations from the VaR 
forecasts, the penalty of the Basel Accord k, and the daily capital charges. 

In order to obtain the accuracy VaR forecasts and less capital charges, banks should have 

their preferable volatility model. McAleer and da Veiga (2008a) developed a new 

parsimonious and computationally convenient portfolio spillover GARCH (PS-GARCH) 

model to capture portfolio spillover effects and allowing spillover effects to be included 

parsimoniously. They found the similarity of this model and multivariate volatility models to 

yield volatility and VaR threshold forecasts. McAleer and da Veiga (2008b) compare the 

performance of the single-index and portfolio models in forecasting VaR thresholds. They 

found that the single-index models lead to lower daily capital charges by taking into account 

the Basel Capital Accord penalties. The interesting matter from their results is that the 
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penalties imposed under the Basel Accord are too lenient, and tend to favour models that had 

an excessive number of violations. 

In this paper, therefore, we will investigate the fit model for modelling and forecast 

volatility based on the univariate volatility models (single-index models) and the long 

memory models. Since many literatures show the persistence of shocks in volatility, the 

volatility has long memory property. We apply those models in order to measure and forecast 

volatility of the portfolio returns of four stock market indexes in South-East Asia, namely the 

JKSE (Indonesia), KLCI (Malaysia), SETI (Thailand), and STI (Singapore). The size of the 

average capital charge and the magnitude of the average violations are used to compare the 

forecasting performance of both the univariate conditional volatility models and the long 

memory models. 

 

2. Model Specifications 

In this section, the univariate conditional volatility models and the long memory models 

are introduced for forecasting Value-at-Risk. We consider the models using daily returns and 

several specifications for the conditional variance of shocks. 

The series of daily returns are known to be conditional heteroskedastic. They are 

modelled by   

 

ttty εμ +=          (1) 

ttt zσε =          (2) 

)( 1−= tt Ic ημ          (3) 

)( 1−= tt Ih ησ          (4) 

 

where )( 1−⋅ tIc and )( 1−⋅ tIh are functions of past information, 1−tI , and depend on an unknown 

of parameter η . tz  is an independently and identically distributed (i.i.d.) with a mean zero 

and a unit variance. tμ  and 2
tσ  are the condition mean and variance of returns ty  

respectively. 

The series of daily returns are known to have serial correlation that can be solved by 

constructing a white noise process, the ARMA(p,q) process. This process can be written 

using the lag operator as 

tt LyL εθμφ )()( =−         (5) 
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where p
pLLL φφφ +++= ...1)( 1 and q

qLLL θθθ +++= ...1)( 1  are the autoregressive and 

moving-average operators, respectively. tμ  equals )(
1

μφμ −+ −
=
∑ it

p

i
it y . 

Now the various models that are used to measure volatility for VaR forecasts are 

straightforward introduced. In this paper, we consider the RiskMetricTM model, the univariate 

models such as the ARCH and GARCH models, the GJR, the EGARCH model, and the long 

memory models; FIGARCH, FIEGARCH, ARFIMA-GARCH, ARFIMA-EGARCH, 

ARFIMA-FIGARCH, and ARFIMA-FIEGARCH models. 

 

2.1 RiskmetricsTM  

RiskMetricsTM of J. P. Morgan (1996) is a standard in the market risk measurement 

due to its simplicity. Basically, the RiskMetricsTM model is a model where the ARCH and 

GARCH coefficients are fixed to 0.06 and 0.94 respectively, which is given by 

 
2

1
2

1
2 94.006.0 −− += ttt σεσ        (6) 

 

Therefore the RiskMetricsTM model is not required to estimate any unknown 

parameter. However, it is simply for practitioners to use.  

 

2.2 ARCH 

Engle (1982) proposed the autoregressive conditional heteroscedasticity of order q, or 

ARCH (q), defined as  

 

2

1
it

q

i
ith −

=
∑+= εαω         (7) 

 

The parameters 0,0 1 >> αω  are sufficient to ensure positive in the conditional 

variance 0>th  when q = 1. The iα  represents the ARCH effect that captures the short-run 

persistence of shocks. 

 

2.3 GARCH 
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Bollerslev (1986) generalized ARCH (q) to the GARCH (p,q) model, given by 

 

jt

p

j
jit

q

i
it hh −

=
−

=
∑∑ ++=

1

2

1
βεαω                   (8) 

 

The parameters 0,0 1 >> αω  and 01 ≥β  are sufficient to ensure positive in the 

conditional variance 0>th . The iα  represents the ARCH effect and jβ  represents the 

GARCH effect that indicates the contribution of shocks to long run persistence ( 11 βα + ).  

 

2.4 GJR 

Glosten, Jagannathan, and Runkle (1992) proposed the model to accommodate 

differential impact on the conditional variance between positive and negative shocks, here 

after the GJR model, given by 

 

  jt

p

j
jititi

q

i
it hIh −

=
−−

=
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1

2

1
))(( βεεγαω      (9) 

 

where the conditional volatility is positive when parameters satisfy 0,00 ≥+> ii γαα and 

,0≥jβ for i = 1,…, q and j = 1,…, p. )( itI −ε  is an indicator function that takes value 1 if 

it−ε < 0 and 0 otherwise. The impact of positive shocks and negative shocks on conditional 

variance is allowing asymmetric impact. The expected value of iγ  is greater than zero that 

means the negative shocks give higher impact than the positive shocks, iii αγα ≥+ . 

 

2.5 EGARCH 

Nelson (1991) introduced the Exponential GARCH (EGARCH) model which is re-

expressed by Bollerslev and Mikkelsen (1996) as follows 

 

)(log)log(
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where t iη −  and t iη − capture the size and sign effects of the standardized shocks respectively. 

The positive shocks provide less volatility than the negative shocks when iγ  < 0. Then the 

model allows asymmetric and leverage effects.  

 

2.6 FIGARCH  

Baillie (1996), and Baillie, Bollerslev and Mikkelsen (1996) investigated a model 

with long-memory input for the conditional variance ht, by inserting the additional filter 
dL)1( −  and short-memory filter, ARMA, and then making the GARCH more general known 

as the fractional integration (FI) GARCH model. The FIGARCH (1, d, 1) model is defined by 

 

11
2

11 ])1)(1(1[ −+−−−−+= tt
d

t hLLLh βεφβω               (11) 

 

while the differencing parameter d is between 0 and 1. The filter then represents fractional 

differencing which is defined by the binomial expansion as 

 

...
!3

)2)(1(
!2

)1(1)1( 32 +
−−

−
−

+−=− LdddLdddLL d              (12) 

 

2.7 FIEGARCH  

Bollerslev and Mikkelsen (1996) purposed the fractionally integrated GARCH 

(FIEGARCH) specifications. 

From the EGARCH model of Nelson (1991), the returns are assumed to have 

conditional distributions that are normal with constant mean and with variances. The 

FIEGARCH (1,d,1) model is defined by 

 

)()](1[()](1[()log( 1
1

−
− +−+= ttt zgLLh αβω                           (13) 

][)( 211 tttt zEzzzg −+= − θθ                 (14) 

 

where tω  and th  denote conditional means and conditional variance respectively. The 

standardized residuals are ttt hez /= . 

       

2.8 ARFIMA-GARCH  
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Ling and Li (1997a) proposed a fractionally integrated autoregressive model with 

conditional heteroskedasticity, ARFIMA(p,d,q)-GARCH(r,s). This is discrete time process 

ty with standard normal distribution tz and the GARCH model as  

 

jt

s

j
jit
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i
it hh −

=
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=
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1
βεαω                             (15)      

 

If ,5.0<d  and ,1
11

<+∑∑
==

s

j
j

r

i
i βα then { ty } is invertible and stationary. Palma and Zevallos 

(2001) showed that in ARFIMA-GARCH model, the data have long memory if 0 < d < 0.5.  

The squared data have intermediate-memory if 0 < d < 0.25 and long memory if                

0.25 < d < 0.5. An ARFIMA-EGARCH gives the same conclusions. 

 

2.9 ARFIMA-FIEGARCH  

The combination of ARFIMA filters and conditionally heteroskedastic input with 

long-range dependency such as FIEGARCH model gives the ARFIMA-FIEGARCH model. 

Robinson and Hidalgo (1997), and Palma and Zevallos (2001) showed the similar type of 

result for this context which the squares of the input sequence { tε } has a long memory with 

filter parameter 5.0* <+= yddd ε , then the process { ty } has long memory. εd is the 

differencing parameter of long-memory input, FIEGARCH, and yd is the differencing 

parameter of long-memory filter, ARFIMA, where 5.0,0 << yddε .  

 

3. Empirical Volatility Modelling 

The data used in this paper are explained in this section. In addition to forecast the VaR, 

the portfolio returns are also described as follow:   

 

 3.1 DATA 

We use the daily closing price indexes based on four South-East Asia stock markets. 

They are JKSE (Jakarta Stock Exchange Index), KLCI (Kuala Lumpur Composite Index), 

SETI (Stock Exchange of Thailand Index), and STI (Straits Times Index), as available on 

DataStream. We select these stock markets from the index values. Those are very high values 

and potential investment alternatives compared with other markets in Southeast Asia. The 
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index values of each market from Bloomberg are shown in Figure 1. The latest stock 

exchange founded in 1999 is Singapore Exchange (SGX), therefore the data are collected at 

that starting time. We consider for a long time period from September 1, 1999 to April 27, 

2009, giving a total of 2,519 return observations. All stock indexes are computed and 

converted into a common currency, namely the US dollar for controlling exchange rate risk 

purpose by the Morgan Stanley Capital International (MSCI).  

 

3.2 Volatility forecasts 

To forecast the conditional volatility, we first adjust the closing price to obtain the 

returns for each market by taking logarithmic different. The rationale to employ daily data in 

modelling volatility transmission is mentioned in McAleer and da Veiga (2008a, 2008b). The 

returns for each index i at time t are calculated as follows 

 

100*)log(
1,

,

−
=

ti

ti
it p

p
r                                                      (16) 

 

where pi,t is the price of index i at time t. pi,t-1 is the price of index i at time t-1. Each return 

series of index i is calculated for portfolio returns by assuming as the portfolio weights are 

equal and constant overtime. Therefore, the portfolio returns at time t of four stock markets 

are the sum the weights of 0.25 multiply by the returns of index i at time t. The plots of the 

daily returns for all series are shown in Figure 2 and of the volatility for all series in Figure 3. 

Figure 2 shows that all returns series exhibit the clustering. The descriptive statistics 

of each series is provided in Table 2. The results show the excess kurtosis in all series that 

indicates a fat-tailed distribution compared to a standard normal distribution with kurtosis 3. 

Then, an appropriate model to model volatility more accuracy is necessary to estimate. All 

series have similar constant means at close to zero. The maximum values of percentage 

changes of index returns range approximately between 5.4% and 15.1%. The minimum 

values of percentage changes of index returns range approximately between -20.0% and         

-9.8%. Finally, The Jarque-Bera test strongly rejects the null hypothesis of normally 

distributed returns.  

Then, we estimate, forecast and fit the univariate conditional volatility models to 

portfolio returns known as single-index models (see McAleer and da Veiga (2008a, 2008b)). 

We also fit the long memory models to portfolio returns in comparison purpose how the 
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performance of those single-index and long memory models in forecasting VaR. Both the 

univariate conditional volatility models and long memory models are used to estimate the 

variance of portfolio returns directly. The estimations are undertaken under the distributional 

assumptions of shocks as (1) normal and (2) t, with estimated degrees of freedom. We model 

the returns as a stationary ARMA(1,1) process for both the univariate GARCH models and 

the long memory models. 

Finally, we forecast the 1-day-ahead conditional variance of portfolio returns and VaR 

threshold. To be compatible, the number of forecast with efficiency in estimation, we set the 

sample size at 2,000 (T=2,000), giving a forecasting period from May 2, 2007 to April 27, 

2009. The daily capital charge and the number of violations are used to evaluate the forecasts 

of the VaR threshold, next. 

 

3.3 Value-at-Risk (VaR), Daily capital charge and Violation magnitude. 

 

(a) Value-at-Risk 

A VaR threshold is the lower bound of a confidence interval for the mean. 

Suppose the daily returns ty  following the conditional mean and a random component tε , i.e. 

tε ∼ ),( ttD σμ with the unconditional mean tμ  and the standard deviation tσ . Then we can 

estimate VaR with various methods. The VaR threshold for ty can be calculated by  

 

tttt IyEVaR ασ−= − )( 1                   (17) 

 

where α is the critical value from the distribution of tε  to get the appropriate confidence 

level. tσ  can be replaced by any estimate of the conditional variance to get an appropriate 

VaR (see McAleer and da Veiga (2008a) for more detail). 

 

(b) Daily capital charge and the number of violations 

In practice, Basel II Accord requires banks hold their capital reserves appropriate 

to the risk the banks expose themselves to through their investment practices. In other words, 

the greater risk to which the banks are exposed, the greater the amount of capital the banks 

need to hold called capital charges. The Basel Accord imposes penalties in the form of higher 

multiplicative factor k on banks. In order to optimize the capital charges or minimize 
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problem, the number of violations and the VaR forecasts are taken into account and defined 

by (see McAleer (2009), and McAleer, Jiménez-Martin and Peréz-Amaral (2009) for more 

detail). 

 

{ }
{ }

160
,

,)3(sup
−

−+−=
ttVaRk

VaRVaRkDCCMinimize               (18) 

 

where  

DCC = daily capital charges, which is the higher of 60)3( VaRk+−  or 
1−

−
t

VaR , 

VaRt  = Value-at-Risk for day t, as in (17), 

60VaR  = mean VaR over the previous 60 working days, 

k  =  the Basel Accord violation penalty, that is greater than or equal zero but less than  

    or equal one ( 10 ≤≤ k ), in Table 1. 

 

In this context, Banks can control their daily capital charges by a good quality of 

volatility in VaR and the value of k arising from the violation penalty. 

 

4. Empirical Results 

In this section, we divide the empirical results into (1) the results of the estimations and 

(2) the daily capital charge and the violation magnitude as follow: 

 

4.1 Model Estimations 

We report the estimations for the single-index models and the long memory models in 

Table 4 and Table 5 respectively. Table 4 summarizes the estimations from RiskmetricsTM, 

ARCH(1), GARCH(1,1), GJR(1,1), and EGARCH(1,1) models, estimated under the normal 

distributional assumptions and t-distribution. The parameters are estimated using maximum 

likelihood estimation (MLE) method. The results show that most estimates of all single-index 

models are highly statistically significant at 1% level. The single-index models estimated 

under assumption that returns follow a t-distribution perform far better, judged by optimizing 

the information criterion of either Akaike (1974) or Schwarz (1978), denoted as AIC and 

SIC, respectively.  

Those criteria are given either 
n
k

n
LogL 22 +−  for AIC, or 

n
k

n
LogL )log(22 +−  for 

SIC, with the k parameters estimated from n observations.  
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The parameters γ in GJR and θ1 and θ2 in EGARCH models which are significantly 

different from zero indicate that the volatility of portfolio returns have asymmetric and 

leverage effects of shocks.  

Table 5 summarizes the estimations from the long memory models consisting of 

FIGARCH(1,d,1), FIEGARCH(1,d,1), ARFIMA-GARCH(1,d,1), ARFIMA-EGARCH  

(1,d,1), ARFIMA-FIGARCH(1,d,1), and ARFIMA-FIEGARCH(1,d,1) models, estimated 

under the normal distributional assumptions and t-distribution. The results show that most 

estimates of FIGARCH(1,d,1) and FIEGARCH(1,d,1) models are highly statistically 

significant at 1% level. In long memory models estimated under t-distribution perform far 

better, same as the single-index models, judged by AIC and SIC. The maximum likelihood 

estimates of d from FIGARCH(1,d,1) and FIEGARCH(1,d,1) with t-distribution are 0.23 and 

0.04 respectively, less than 0.25 which indicate the intermediate-memory in volatility of the 

portfolio returns. The parameters θ1 and θ2 in FIEGARCH(1,d,1) models which are 

significantly different from zero indicate that the volatility of portfolio returns also have 

asymmetric and leverage effects of shocks. Most estimates of ARFIMA-GARCH(1,d,1), 

ARFIMA-EGARCH(1,d,1), ARFIMA-FIGARCH(1,d,1), and ARFIMA-FIEGARCH(1,d,1) 

models are highly statistically significant at 1% level, especially in variance equation. The 

maximum likelihood estimates of d* from ARFIMA-FIGARCH(1,d,1) and ARFIMA-

FIEGARCH(1,d,1) with t-distribution are 0.23 and 0.04 respectively, less than 0.25 which 

indicate the intermediate-memory in volatility of the portfolio returns, the same results in 

FIGARCH and FIEGARCH models. However, differencing parameter d in long-memory 

filter ARFIMA in ARFIMA-GARCH(1,d,1) and ARFIMA-EGARCH(1,d,1) are not 

significantly different from zero. The parameters θ1 and θ2 in both ARFIMA-

EGARCH(1,d,1) and ARFIMA-FIEGARCH(1,d,1) models which are significantly different 

from zero indicate that the volatility of portfolio returns also have asymmetric and leverage 

effects of shocks. 

From the goodness of fit criteria, AIC and SIC, the long memory models are preferred 

to short memory for volatility estimation in this portfolio returns. The ARFIMA-FIEGARCH 

model performs far better for volatility modelling. 

 

4.2 VaR, Daily capital charge and Violation magnitude 

We consider the application of the volatility models to Value-at-Risk. We use the 

estimated coefficients in the previous in single-index models and long memory models to 
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forecast VaR. We use the VaR forecasts to identify the number of violations from the 

negative returns exceed the VaR forecasts. These numbers of violations can indicate the 

Basel Accord violation penalty (k) to optimize the daily capital charges. Table 3 gives the 

mean daily capital charges for each model. The worst-performing model that gives average 

daily capital charges of 16.68% is the FIGARCH with t-distribution model. The best-

performing model which gives average daily capital charges of 6.64% is the ARCH model 

under a normal distribution. 

We have the same results as McAleer and da Veiga (2008b) in the context of 

distributional assumptions of the estimations. We find that apart from RiskmetricsTM model, 

both the single-index models and the long memory models which are estimated assuming a   

t-distribution tend to give higher capital charges than the parallel models estimated under a 

normal distribution. Therefore, the penalties imposed under the Basel Accord may not be 

severe enough, as all of models with the normally distributed give a higher number of 

violations. In conclusion, the Basel Accord prefers models which give an excessive number 

of violations. 

 Table 3 also reports the maximum and average absolute deviations of violations from 

the VaR forecasts. The worst-performing model that gives the largest maximum absolute 

deviations at 5.304 is the GARCH model under a normal distributed assumption.  The best-

performing model that gives the lowest maximum absolute deviations at 0.779 is the long 

memory model ARFIMA-FIGARCH model under a t-distributed assumption. While, for the 

average absolute deviation values, the worst-performing model that gives the highest average 

absolute deviations at 1.294 is the ARCH model under a normal distributed assumption. On 

the contrary, the best-performing model that gives the basis average absolute deviations at 

0.409 is the GJR model. 

These results seem to be contradictory between those values of absolute deviations 

and the mean capital charges. It is not clear which model is appropriate for capital 

optimization. However, the numbers of violations should be highly considerable in the sense 

of accuracy forecast. The long memory models seem to lead to lower the numbers of 

violations. 

 

5. Conclusion 

In conclusion, we investigate (1) the performance of VaR forecasts in between the single-

index models and the long memory models for portfolio returns. (2) the daily capital charges 

and VaR models in order to reach the preferable model. 
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In the empirical example, the portfolio comprised four stock market indexes in South-

East Asia, namely the JKSE, KLCI, SETI, and STI, for the period from October 1, 2007 to 

April 27, 2009, giving a total of 2,519 return observations. On the basis of the empirical 

results, the estimation results show that the long memory models yield superior in portfolio 

volatility forecasts based on the goodness of fit criteria, AIC and SIC. However, in this study 

we exclude the multivariate volatility models that should be used to forecast the conditional 

variance and the conditional correlations between all index pairs, in order to capture the 

spillover effects. In the context of daily capital charges, it was found that the conditional 

volatility models under the normal distributional assumptions lead to lower daily capital 

charges by taking into account the Basel Accord penalties. Finally, the results suggest that 

penalties imposed under the Basel Accord are too relaxed, and tend to favour models that had 

an excessive number of violations. 
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Appendix 

 

Figure 1: The proportion of the Stock Markets in South-East Asia 
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Figure 2: Daily returns for all series 
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Figure 3: Volatility of returns for all series 
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Figure 4: Portfolio Returns and VaR Threshold Forecasts 
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Figure 4: Portfolio Returns and VaR Threshold Forecasts (Continued) 
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Table 1: Basel Accord penalty zones 

Zone Number of Violations k 

Green 0 to 4 0.00 

Yellow 5 0.40 

 6 0.50 

 7 0.65 

 8 0.75 

 9 0.85 

Red 10+ 1.00 
Note: The number of violations is given for 250 business days. 
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Table 2: Descriptive Statistics of all return series 

 JKSE KLCI SETI STI 
Mean 0.0269 0.0132 0.0046 -0.0048 
Maximum 15.0419 5.5463   10.5206 8.5634 
Minimum -19.9468 -11.2789 -18.0844 -9.8093 
Std. Dev. 2.2704 1.1254 1.8869 1.4619 
Skewness -0.3595 -0.5422 -0.5770 -0.2981 
Kurtosis 9.9880 10.5374 10.4319 7.8136 
Jarque-Bera 5179.63 6086.52 5937.10 2469.29 
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Table 3: Mean Daily Capital Charge and AD of Violations for the Single-Index and the   

Long Memory Models 
Model Number of 

Violations 
Mean Daily 

Capital Charge 
AD of Violations 

   Maximun Mean 
RiskmetricsTM 21 13.876 4.811 0.854 
ARCH 51 6.645 0.967 1.294 
ARCH-t 19 14.441 2.711 0.597 
GARCH 25 11.344 5.304 0.769 
GARCH-t 4 14.503 1.697 1.220 
GJR 20 9.922 1.122 0.409 
GJR-t 4 12.714 1.404 0.757 
EGARCH 22 9.424 3.019 0.582 
EGARC-t 4 12.153 1.172 0.682 
FIGARCH 18 13.142 1.227 0.439 
FIGARCH-t 2 16.684 0.797 0.797 
FIEGARCH 10 13.583 1.347 0.583 
FIEGARCH-t 6 11.619 0.925 0.611 
ARFIMA-GARCH 25 11.085 5.172 0.749 
ARFIMA-GARCH-t 4 14.461 1.665 1.193 
ARFIMA-EGARCH 22 9.339 2.979 0.572 
ARFIMA-EGARCH-t 3 12.031 0.916 0.611 
ARFIMA-FIGARCH 18 13.124 1.217 0.434 
ARFIMA-FIGARCH-t 2 16.669 0.779 0.779 
ARFIMA-FIEGARCH 10 13.421 1.301 0.559 
ARFIMA-FIEGARCH-t 7 13.142 0.877 0.535 

Notes:  (1) The daily capital charge, 60*)3( VaRkDCCt +−= where 60VaR  is the average VaR over the last 60 
business days, or replace by the greater of the previous day’s VaR. k is the penalty. 

            (2) AD is the absolute deviation of the violations from the VaR forecasts. 
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