
 

Chapter 2 

Methodology  

 

2.1 Volatility  

This dissertation will be conducted to reveal alternative volatility models. It is 

useful to start with an explanatory of what volatility is.  

Volatility refers to the standard deviation of the continuously compounded 

time series. Typically, in financial markets, we are interested in losses from the 

investments that are the deviations from the asset returns. So, volatility is itself a stock 

variable which would be statistically measured over a period of time.  

Volatility is related to risk. It is often use to qualify the risk which is 

commonly associated with undesirable outcome. One of well-known volatility 

applications is Value-at-Risk (VaR) which is widely used for risk management. 

Before volatility is estimated and modelled, features of it could be mentioned. 

There are several features about financial market returns and volatility. 

1) Volatility is time-varying as the nature of returns fluctuation or does not 

remain constant through time. In the financial literature, this characteristic 

is called volatility clustering. 

2) Asset returns have fat-tail that their kurtosis excesses 3.  

3) Volatility asymmetry which volatility increases if the previous day returns 

are negative. 
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4) The returns and volatility of different assets e.g. different company shares, 

and different markets e.g. stock and bond markets in one or more regions, 

tend to have correlations or move together.  

 

2.2 Volatility long memory  

As mentioned, volatility persistence is a feature of the returns that is important 

in financial analysis. The long memory characteristic of financial market volatility is 

also important for volatility forecasting. In time series analysis, volatility has a long 

memory when the autocorrelation of measures of volatility decline slowly at a 

hyperbolic rate. Taylor (1986) was the first to show the autocorrelation of absolute 

returns decays slowly compared with which of squared returns. Granger and Joyeux 

(1980), and Hosking (1981) showed fractionally integrated in the mean process 

exhibits long memory property. Baillie (1996), and Baillie, Bollerslev and Mikkelsen 

(1996) tested for fractional integration in the conditional variance models. Corsi 

(2009) proposed the Heterogeneous Autoregressive model to present long memory 

property in Chang et al. (2009). There has been a lot of research investigating whether 

long memory of volatility performs far better for volatility forecasts. 

In order to estimate volatility, since it does not remain constant through time, 

the conditional volatility models are widely used. The model specifications in 

modelling volatility are detailed next. 
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2.3 Model Specifications 

RiskmetricsTM  

RiskMetricsTM of J. P. Morgan (1996) is a standard in the market risk 

measurement due to its simplicity. Basically, the RiskMetricsTM model is a model 

where the ARCH and GARCH coefficients are fixed to 0.06 and 0.94 respectively, 

which is given by 
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Therefore the RiskMetricsTM model is not required to estimate any unknown 

parameter. However, it is simply for practitioners to use.  

 

ARCH 

Engle (1982) proposed the autoregressive conditional heteroskedasticity of 

order q, or ARCH (q), defined as  
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The parameters 0,0 1 >> αω  are sufficient to ensure positive in the 

conditional variance 0>th  when q = 1. The iα  represents the ARCH effect that 

captures the short-run persistence of shocks. 
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GARCH 

Bollerslev (1986) generalized ARCH (q) to the GARCH (p, q) model, given 

by 
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The parameters 0,0 1 >> αω  and 01 ≥β  are sufficient to ensure positive in 

the conditional variance, 0>th . The iα  represents the ARCH effect and jβ  

represents the GARCH effect that indicates the contribution of shocks to long run 

persistence ( 11 βα + ).  

 

GJR 

Glosten, Jagannathan, and Runkle (1992) proposed the model to accommodate 

differential impact on the conditional variance between positive and negative shocks, 

hereafter the GJR model, given by 
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where the conditional volatility is positive when parameters satisfy 

0,00 ≥+> ii γαα and ,0≥jβ for i = 1,…, q and j = 1,…, p. )( itI −ε  is an indicator 

function that takes value 1 if it−ε < 0 and 0 otherwise. The impact of positive shocks 

and negative shocks on conditional variance is allowing asymmetric impact. The 
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expected value of iγ  is greater than zero that means the negative shocks give higher 

impact than the positive shocks, iii αγα ≥+ . It is not possible for leverage, which 

negative shocks increase risk and positive shocks of equal magnitude decrease risk, to 

be present in the GJR model.  

 

EGARCH 

Nelson (1991) introduced the Exponential GARCH (EGARCH) model which 

is re-expressed by Bollerslev and Mikkelsen (1996). The EGARCH(p,q) is given by 
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where it−η  and it−η capture the size and sign effects of the standardized shocks 

respectively. The positive shocks provide less volatility than the negative shocks 

when 0<iγ . Then the model allows asymmetric and leverage effects.  

 

CCC 

Bollerslev (1990) introduced the Constant Conditional Correlation (CCC) 

model. The CCC model assumes the matrix of conditional correlations. The CCC(1,1) 

is given by  
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where ijρ  is the constant correlation between itε  and jtε , which can be estimated 

separately from the conditional variances. The weakness of the CCC model is it 

cannot capture the spillover effects and asymmetric effects. However the advantage of 

the CCC model is in the unrestricted applicability for large systems of time series.  

 

DCC 

Engle (2002) proposed the Dynamic Conditional Correlation (DCC) model. 

The DCC model allow for two-stage estimation of the conditional covariance matrix.       

In the first stage, the univariate volatility models have been estimated and obtain th  of 

each of assets. Second stage, asset returns are transformed by the estimated standard 

deviations from the first state, then used to estimate the parameters of DCC. The DCC 

model is given by  
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,tttt DDQ Γ=        (2.9) 

 

where ),...,( 1 kttt hhdiagD = is a diagonal matrix of conditional variances, with m asset 

returns, and tF  is the information set available to time t. The conditional variance is 

assumed to follow a univariate GARCH model as in equation (2.2). When the 

univariate volatility models have been estimated, the standardized residuals, 

,/ ititit hy=η  are used to estimate the dynamic conditional correlations, as follows: 
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1211121 )1( −−− +′+−−= tttt QSQ φηηφφφ     (2.10) 

{ } { }2/12/1 )(()(( −−=Γ tttt QdiagQQdiag     (2.11) 

 

where S is the unconditional correlation matrix of theε . Equation (2.11) is used to 

standardize the matrix estimated in equation (2.10) to satisfy the definition of a 

correlation matrix. 1θ  and 2θ are scalar parameters. In financial time series, 01 =θ and 

12 =θ imply the long run conditional correlation matrix is constant which news has 

little practical effect in changing the purportedly dynamic conditional correlations. 

 

VARMA-GARCH  

Ling and McAleer (2003) proposed the VARMA-GARCH model, which 

assumes symmetry in the effects of positive and negative shocks on conditional 

volatility. The VARMA-GARCH model is given by 
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where ),...,(,),...,( 11 ′=′= mtttmttt yyy ηηη  is a sequence of independently and 

identically distributed random vectors.  

where ),...,(,),...,( 22
11 ′=′= mtttmttt hhH εεε

r , and W , riAi ,...,1=∀ , and 

sjB j ,...,1=∀ are mm×  matrices. As in the univariate GARCH model, VARMA-
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GARCH assumes that negative and positive shocks have identical impacts on the 

conditional variance.  

 

VARMA-AGARCH 

McAleer et al. (2009) extended the VARMA-GARCH model into the 

VARMA-AGARCH model which assumed asymmetric impacts of positive and 

negative shocks proposed the following specification of conditional variance. The 

VARMA-AGARCH model is given by 
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where iC  are m × m matrices for i = 1,…,r and It = diag(I1t, …, Imt), so that 
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The VARMA-AGARCH model is reduced to the VARMA-GARCH model 

when 0=iC  for all i.  

 

 

FIGARCH  

Baillie (1996), and Baillie, Bollerslev and Mikkelsen (1996) investigated a 

model with long-memory input for the conditional variance ht, by inserting the 
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additional filter dL)1( −  and short-memory filter (the autoregressive moving-average 

(ARMA)) and then making the GARCH more general known as the fractional 

integration (FI) GARCH model. Fractional integration achieves long memory 

parsimoniously by imposing a set of infinite-dimensional restrictions on the infinite 

variable lags. Those restrictions are transmitted by the fractional difference operators. 

The FIGARCH (1,d,1) model is defined by 
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where the differencing parameter d is between 0 and 1. The filter then represents 

fractional differencing which is defined by the binomial expansion as 
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FIEGARCH  

Bollerslev and Mikkelsen (1996) purposed the fractionally integrated GARCH 

(FIEGARCH) specifications. 

From the EGARCH model of Nelson (1991), the returns are assumed to have 

conditional distributions that are normal with constant mean and with variances. The 

FIEGARCH(p,d,q) model is specified as: 
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where tω  and th  denote conditional means and conditional variance respectively. The 

standardized residuals are ttt hez /= .      

 

ARFIMA-GARCH  

Ling and Li (1997a) proposed a fractionally integrated autoregressive model 

with conditional heteroskedasticity, ARFIMA(p,d,q)-GARCH(r,s). In this model, the 

dependent variable exhibits significant autocorrelation between observations widely 

separate in time. The specifications in the conditional mean equation, ty displays long 

memory, or long-term dependence which could be modelled by a fractionally 

integrated ARMA process, or ARFIMA process initially introduced by Granger 

(1980) and Granger and Joyeux (1980). The ARFIMA(p,d,q) is given by 
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This is discrete time process ty with standard normal distribution tz and the 

GARCH model as  
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Palma and Zevallos (2001) showed that in ARFIMA-GARCH model, the data 

have long memory if 0 < d < 0.5.  The squared data have intermediate-memory if        

0 < d < 0.25 and long memory if 0.25 < d < 0.5.  
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ARFIMA-FIEGARCH  

The combination of ARFIMA filters and conditionally heteroskedastic input 

with long-range dependency such as FIEGARCH model gives the ARFIMA-

FIEGARCH model. Robinson and Hidalgo (1997), and Palma and Zevallos (2001) 

showed the similar type of result for this context which the squares of the input 

sequence { tε } has a long memory with filter parameter 5.0* <+= yddd ε , then the 

process { ty } has long memory. εd  is the differencing parameter of long-memory 

input, FIEGARCH, and yd is the differencing parameter of long-memory filter, 

ARFIMA, where 5.0,0 << yddε .  

There are some problems with the fractionally integrated models. Fractional 

integration is easy for mathematic but hard for a clear economic interpretation. It is 

non trivial to estimate and not easily extendible to multivariate process. The 

application of the fractional difference operator requires a very long build up period 

which results in a loss of many observations. Also, these classes of fractionally 

integrated models are able to reproduce only the unifractial type of scaling. In order to 

simplify additive volatility models which can reproduce multiscaling process, Corsi 

(2009) introduced the Heterogeneous Autoregressive (HAR) model mentioned next. 

 

HAR  

Corsi (2009) proposed the Heterogeneous Autoregressive (HAR) model as an 

alternative model for realized volatilities. This model comes from the basic idea of 

“Heterogeneous Market Hypothesis” of Müller et al. (1993), which recognize the 

presence of heterogeneity derived from the difference in the time horizon or the 



 23

different autoregressive structures presented at each time scale (see McAleer and 

Medeiros (2008) for details). The basic idea is that agents with different time horizons 

perceive, react and cause different types of volatility components. In this case, the 

three volatility components are the short-term with daily frequency, the medium-term 

made of portfolio manager who rebalance their positions weekly, and the long-term 

with characteristic time of months. The HAR(h) model is based on the following 

process in the mean equation (see Chang et al. (2009)). 
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where typical values of h in financial market are 1 for daily, 5 for weekly, and 20 for 

monthly data that referred to HAR(1), HAR(1,5), and HAR(1,5,20), respectively. The 

models of HAR(1), HAR(1,5), and HAR(1,5,20) are given by 
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  tttt yyy εφφφ +++= −− 5,13121      (2.25) 

ttttt yyyy εφφφφ ++++= −−− 20,145,13121    (2.26) 

 

2.4 Model Estimations and Distributions 

Following the GARCH specification, the return process can be written as 

   

ttty εμ +=        (2.27) 
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ttt hz=ε        (2.28) 

 

The process is assumed no serial correlation in daily returns. Otherwise, an 

AR(1) or MA(1) or ARMA(1,1) could be added in equation (2.27). 

Equation (2.27) is estimated with some appropriate specification for volatility, 

th , as given above. Typically, the GARCH models are estimated using maximum 

likelihood (ML) approach. The likelihood function is a function of the parameters set. 

We assume the process in equation (2.27) estimated under the normal distributional 

assumptions and the student-t-distribution. 

If the mean equation is expressed as in equation (2.27) and equation (2.28), the 

log-likelihood function of the standard normal distribution is given by 
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where T  is the number of observations. 

The log-likelihood function of the student-t distribution is given by 
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where υ  is the degree of freedom, ∞≤<υ2  and (.)Γ  is the gamma function. 
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In the absence of normality of tz , however, the GARCH models are estimated 

using maximum likelihood approach to obtain Quasi-Maximum Likelihood 

Estimators (QMLE) with the normal likelihood function. The log-likelihood function 

of the standard normal distribution is given by 
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where T  is the number of observations. 

Even though tz  is not normally distributed, QMLE is consistent. The log-

moment condition for consistency of QMLE is discussed in McAleer et al. (2007). 

 

2.5 Forecasts 

Estimating is useful to understand the mechanism and is a critical issue in 

forecasting, indeed, forecasting is crucial to implement the volatility models. 

Forecasts can be distinguished between in-sample and out-of-sample. In-sample 

forecast is based on parameters estimated using all data in the sample and assumed to 

be stable across time. Out-of-sample forecast is a robustness designed whether 

forecast is closer to reality. 

In this section, the forecasts of the conditional volatility models are provided. 

For GARCH model, the optimal h-step-ahead forecast of the conditional variance is 

given by 
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Equation (2.32) is computed recursively. Similarly, one can obtain the h-step-

ahead forecast of the conditional variance of an ARCH and FIGARCH models. 

 

2.6 Value-at-Risk, Daily capital charge, and the number of violations 

In financial risk management, Value-at-Risk (VaR) is widely used measure of 

loss on a portfolio. This is the area where volatility models play an important role and 

an application. The VaR measures are required only if the banks decide their own 

models for calculating VaR related to capital requirement. 

 

Value-at-Risk 

A VaR threshold is the lower bound of a confidence interval for the mean. 

Suppose the daily returns ty  following the conditional mean and a random 

component tε , i.e. tε ∼ ),( ttD σμ with the unconditional mean tμ  and the standard 

deviation tσ . Then we can estimate VaR with various methods. The VaR threshold for 

ty can be calculated by  

 

tttt IyEVaR ασ−= − )( 1       (2.33) 

 

where α is the critical value from the distribution of tε  to get the appropriate 

confidence level. tσ  can be replaced by any estimate of the conditional variance to 

get an appropriate VaR (see McAleer and da Veiga (2008a) for more details). 
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Daily capital charge and the number of violations 

Basel II Accord requires banks hold their capital reserves appropriate to the 

risk the banks expose themselves to their investment practices. In other words, the 

greater risk to which the banks are exposed, the greater the amount of capital the 

banks will need to hold capital charges. The Basel Accord imposes penalties in the 

form of higher multiplicative factor k on banks. In order to optimize the capital 

charges or minimize problem, the number of violations and the VaR forecasts are 

taken into account and defined by (see McAleer (2009), and McAleer, Jiménez-

Martin and Peréz-Amaral (2009) for more detail). 
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where  

DCC  = daily capital charges, which is the higher of 60)3( VaRk+−  or 
1−

−
t

VaR , 

VaRt  = Value-at-Risk for day t, as in (2.33), 

60VaR  = mean VaR over the previous 60 working days, 

k      = the Basel Accord violation penalty, that is greater than or equal zero but  

less than or equal one ( 10 ≤≤ k ), in Table 2.1. 

 

Banks can control their daily capital charges by a good quality of volatility in 

VaR and the value of k arising from the violation penalty. Table 2.1 shows the Basel 

Accord penalty zones. 
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Table 2.1  Basel Accord penalty zones 

Zone Number of Violations k 

Green 0 to 4 0.00 

Yellow 5 0.40 

 6 0.50 

 7 0.65 

 8 0.75 

 9 0.85 

Red 10+ 1.00 

Note: The number of violations is given for 250 business days. 

 

 

 


