
 

 

Chapter 5 

Forecasting Value-at-Risk and Optimizing Capital Charges 

Using Single-Index and Long Memory Models 

 

Value-at-Risk (VaR) has become very popular in portfolio risk management 

since it illustrates obvious economics interpretation and relevant concepts. VaR can 

be defined as “a worst case scenario on a typical day”. Since volatility changes over 

time, to manage risk this change that can cause losses. VaR forecasts need to be 

provided to the appropriate regulatory authority before and after planing investment 

strategies and adopting their risk management systems. This chapter introduces the 

models used to measure and forecast VaR. The class of univariate GARCH, the 

fractionally integrated, and the simple long memory -- HAR -- models are employed. 

In order to evaluate performance of the models, a back-testing procedure is 

applied to the VaR forecasts from those models. The number of violations and daily 

capital charges are considered. The penalty structure for violations arising from risk 

taking is imposed by the Basel Accord. 

This chapter illustrates how to apply volatility into economics problems and 

demonstrates its significance. The invention of this chapter is inspired by ‘Value-at-

Risk in Single-Index of Southeast Asia Stock Markets’ by Chaiwan et al. (2009) 

presented at the 6th International Conference on Business and Information 2009. The 

original paper is included in Appendix C. 
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Abstract 

 

The variance of a portfolio or the volatility is the key item in financial time 

series analysis and risk management to reduce and diversify portfolio risk. In order to 

compare the performance of the univariate conditional volatility models (single-index 

models), the fractionally integrated and the long memory HAR models in forecasting 

Value-at-Risk (VaR) thresholds of a portfolio, we apply those models  in the portfolio 

returns of four stock market indexes in South-East Asia, namely the JKSE 

(Indonesia), KLCI (Malaysia), SETI (Thailand), and STI (Singapore). The size of the 

average capital charge and the magnitude of the average violations are used to 

compare the forecasting performance of both the univariate conditional volatility 

models and the long memory models. The results suggest that penalties imposed 

under the Basel Accord are too relaxed, and tend to favour the model that had an 

excessive number of violations -- the single-index model under the normal 

distribution assumptions --, than the long memory model. The univariate conditional 

volatility models seem to lead to lower daily capital charges. 
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5.1 Introduction 

An important task in financial time series have involved modelling and 

forecasting volatility since it is the key item in risk management. The most interesting 

financial assets for investors are common stocks which have higher risk than other 

assets, i.e. bonds. Typically in finances, commentators and traders define the price 

risks as volatility that can cause loss or gain from trading. There are many 

fantastically complex mathematical models for measuring the risk in their various 

portfolios, but the most widely used is called VaR -- Value-at-Risk. According to the 

amendment, the Basel II Accord attempts to encourage banks to hold their capital 

reserves to encounter their risks appropriately in financial investments, but banks are 

still free to specify their own model for VaR measurement (see Basel Committee on 

Banking Supervision (1988), (1995) for further details). Therefore the model 

providing accurate volatility measures to forecast VaR is important for banks’ self 

regulation. 

McAleer (2008) gives the analysis and has concerned about risk management 

under the Basel II Accord. The Ten Commandments for optimizing Value-at-Risk 

(VaR) and daily capital charges are presented in the 4th National Conference of 

Economists at Chiang Mai University, Thailand (2008). The suggestions and 

guidelines for risk management are that holding and managing cash is better than 

dealing with risky financial investments. McAleer, Jiménez-Martin and Peréz-Amaral 

(2009) also present the intended Ten Commandments to assist in risk management 

and importance of VaR forecasts.  

As mentioned in McAleer (2008), McAleer and da Veiga (2008a, 2008b), 

McAleer (2009), and McAleer, Jiménez-Martin and Peréz-Amaral (2009), the key 
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items for banks have their own VaR and the accuracy of the various volatility models 

(see Li, Ling and McAleer (2002), and McAleer (2005) for excellent reviews of the 

conditional volatility, Asai, McAleer and Yu (2006) for recent reviews of stochastic 

volatility, and the reviews of realized volatility models in McAleer and Medeiros 

(2008)), the number of violations from the VaR forecasts, the penalty of the Basel 

Accord k, and the daily capital charges. 

In order to obtain the accuracy VaR forecasts and less capital charges, banks 

should have their preferable volatility model. McAleer and da Veiga (2008a) 

developed a new parsimonious and computationally convenient portfolio spillover 

GARCH (PS-GARCH) model to capture portfolio spillover effects and allowing 

spillover effects to be included parsimoniously. They found the similarity of this 

model and multivariate volatility models to yield volatility and VaR threshold 

forecasts. McAleer and da Veiga (2008b) compare the performance of the single-

index and portfolio models in forecasting VaR thresholds. They found that the single-

index models lead to lower daily capital charges by taking into account the Basel 

Capital Accord penalties. The interesting matter from their results is that the penalties 

imposed under the Basel Accord are too lenient, and tend to favour models that had an 

excessive number of violations. 

In this paper, therefore, we will investigate the fit model for modelling and 

forecast volatility based on the univariate volatility models (single-index models) and 

the long memory models. Since many literatures show the persistence of shocks in 

volatility, the volatility has long memory property. We apply those models in order to 

measure and forecast volatility of the portfolio returns of four stock market indexes in 

South-East Asia, namely the JKSE (Indonesia), KLCI (Malaysia), SETI (Thailand), 
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and STI (Singapore). The size of the average capital charge and the magnitude of the 

average violations are used to compare the forecasting performance of both the 

univariate conditional volatility and the long memory models. 

 

5.2 Model Specifications 

In this section, the univariate conditional volatility models and the long 

memory models are introduced for forecasting Value-at-Risk. We consider the models 

using daily returns and several specifications for the conditional variance of shocks. 

The series of daily returns are known to be conditional heteroskedastic. They 

are modelled by   

 

ttty εμ +=        (5.1) 

ttt zσε =        (5.2) 

)( 1−= tt Ic ημ        (5.3) 

)( 1−= tt Ih ησ        (5.4) 

 

where )( 1−⋅ tIc and )( 1−⋅ tIh are functions of past information, 1−tI , and depend on an 

unknown of parameter η . tz  is an independently and identically distributed (iid) with 

a mean zero and a unit variance. tμ  and 2
tσ  are the condition mean and variance of 

returns ty  respectively. 

The series of daily returns are known to have serial correlation that can be 

solved by constructing a white noise process, the ARMA(p,q) process. This process 

can be written using the lag operator as 
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tt LyL εθμφ )()( =−       (5.5) 

 

where p
pLLL φφφ +++= ...1)( 1 and q

qLLL θθθ +++= ...1)( 1  are the autoregressive 

and moving-average operators, respectively. tμ  equals equation (5.6) as  
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Now the various models that are used to measure volatility for VaR forecasts 

are straightforward introduced. In this paper, we consider the RiskMetricTM model, the 

univariate models such as the ARCH and GARCH models, the GJR, the EGARCH 

model, the long memory models; FIGARCH, FIEGARCH, ARFIMA-GARCH, 

ARFIMA-EGARCH, ARFIMA-FIGARCH, ARFIMA-FIEGARCH, and HAR 

models. 

 

RiskmetricsTM  

RiskMetricsTM of J. P. Morgan (1996) is a standard in the market risk 

measurement due to its simplicity. Basically, the RiskMetricsTM model is a model 

where the ARCH and GARCH coefficients are fixed to 0.06 and 0.94 respectively, 

which is given by 
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Therefore the RiskMetricsTM model is not required to estimate any unknown 

parameter. However, it is simply for practitioners to use.  

 

ARCH 

Engle (1982) proposed the autoregressive conditional heteroscedasticity of 

order q, or ARCH (q), defined as  
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The parameters 0,0 >> αω  are sufficient to ensure positive in the conditional 

variance 0>th  when q = 1. The iα  represents the ARCH effect that captures the 

short-run persistence of shocks. 

 

GARCH 

Bollerslev (1986) generalized ARCH (q) to the GARCH (p,q) model, given by 

 

jt

p

j
jit

q

i
it hh −

=
−

=
∑∑ ++=

1

2

1
βεαω                 (5.9) 

 

where the parameters 0,0 >> αω  and 0≥β  are sufficient conditions to ensure 

positive in the conditional variance, 0>th . The coefficient α  is the ARCH effect 

which indicates the short run persistence of shocks and the coefficient β  is the 

GARCH effect which indicates the long run persistence of shocks, namely βα + .  
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GJR 

Glosten, Jagannathan, and Runkle (1992) proposed the model to accommodate 

differential impact on the conditional variance between positive and negative shocks, 

here after the GJR model, given by 
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where the parameters 0,0,0 ≥+≥> γααω and 0≥β  are sufficient conditions to 

ensure positive in the conditional variance, 0>th . )( itI −ε  is an indicator function 

which equals 1 if it−ε < 0 and 0 otherwise. The coefficient γ  indicates the asymmetric  

effects, the positive shocks and negative shocks on conditional variance. In practical, 

the expected value of γ  for financial time series data is greater than or equals to 0 

( 0≥γ ) because negative shocks (decreases in returns) increase volatility (risk), 

namely αγα ≥+ . The parameter γ  can measure the short run persistence of shocks 

by 
2
γα +  and the long run persistence of shocks by 

2
γβα ++ . It is important that 

the GJR model does not present leverage which negative shocks increase volatility 

and positive shocks decrease volatility in the same size effects. 

 

EGARCH 

Nelson (1991) introduced the Exponential GARCH (EGARCH) model which 

is re-expressed by Bollerslev and Mikkelsen (1996) as follows 
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where the parameters α , β , and γ  are different from those of GARCH and GJR 

models. The t iη −  and t iη − capture the size and sign effects of the standardized shocks, 

respectively. The asymmetry is indicated by γ , if 0=γ there is no asymmetry, if 

0<γ , and γαγ −<<  leverage is exist which negative shocks increase volatility and 

and positive shocks decrease volatility in the same size effects. This model allows 

asymmetric and leverage effects.  

 

FIGARCH  

Baillie (1996), and Baillie, Bollerslev and Mikkelsen (1996) investigated a 

model with long-memory input for the conditional variance ht, by inserting the 

additional filter dL)1( −  and short-memory filter, ARMA, and then making the 

GARCH more general known as the fractional integration (FI) GARCH model. The 

FIGARCH(1,d,1) model is defined by 
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while the differencing parameter d is between 0 and 1. The filter then represents 

fractional differencing which is defined by the binomial expansion as 
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FIEGARCH  

Bollerslev and Mikkelsen (1996) purposed the fractionally integrated GARCH 

(FIEGARCH) specifications. 

From the EGARCH model of Nelson (1991), the returns are assumed to have 

conditional distributions that are normal with constant mean and with variances. The 

FIEGARCH(1,d,1) model is defined by 

 

)()](1[)1()()log( 1
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])[()( 112111 −−−− −+= tttt zEzzzg θθ     (5.15) 

 

where tω  and th  denote conditional means and conditional variance respectively. 1θ  

is a sign effect and 2θ is a size effect. And the standardized residuals are 

 

ttt hez /=        (5.16) 

 

ARFIMA-GARCH  

Ling and Li (1997 ) proposed a fractionally integrated autoregressive model 

with conditional heteroskedasticity, ARFIMA(p,d,q)-GARCH(r,s). The specifications 

in the conditional mean equation, ty displays long memory, or long-term dependence 

which could be modelled by a fractionally integrated ARMA process, or ARFIMA 

process initially introduced by Granger (1980) and Granger and Joyeux (1980). The 

ARFIMA(p,d,q) is given by 
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ttt
d LyLL εθμφ )()()1)(( =−−     (5.17) 

 

This is discrete time process ty with standard normal distribution tz and the 

GARCH model as  
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If ,5.0<d  and ,1
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i
i βα then { ty } is invertible and stationary. Palma and 

Zevallos (2001) showed that in ARFIMA-GARCH model, the data have long memory 

if 0 < d < 0.5.  The squared data have intermediate-memory if 0 < d < 0.25 and long 

memory if 0.25 < d < 0.5. An ARFIMA-EGARCH gives the same conclusions. 

 

ARFIMA-FIEGARCH  

The combination of ARFIMA filters and conditionally heteroskedastic input 

with long-range dependency such as FIEGARCH model gives the ARFIMA-

FIEGARCH model. Robinson and Hidalgo (1997), and Palma and Zevallos (2001) 

showed the similar type of result for this context which the squares of the input 

sequence { tε } has a long memory with filter parameter 5.0* <+= yddd ε , then the 

process { ty } has long memory. εd is the differencing parameter of long-memory 

input, FIEGARCH, and yd is the differencing parameter of long-memory filter, 

ARFIMA, where 5.0,0 << yddε .  
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HAR  

Corsi (2009) proposed the Heterogeneous Autoregressive (HAR) model as an 

alternative model for realized volatilities. The HAR(h) model is based on the 

following process in the mean equation (see Chang et al. (2009)). 

 

h
yyyy

y htttt
ht

121
,

... +−−− ++++
=     (5.19) 

 

where typical values of h in financial time series are 1 for daily, 5 for weekly, and 20 

for monthly data that referred to HAR(1), HAR(1,5), and HAR(1,5,20), respectively. 

The models of HAR(1), HAR(1,5), and HAR(1,5,20) are given by 

  

ttt yy εφφ ++= −121       (5.20) 

  tttt yyy εφφφ +++= −− 5,13121      (5.21) 

ttttt yyyy εφφφφ ++++= −−− 20,145,13121    (5.22) 

 

5.3 Data and Estimations 

The data used in this paper are explained in this section. In addition to forecast 

the VaR, the portfolio returns are also described as follows:   

 

 5.3.1 Data 

The daily closing price indexes are employed based on four stock 

markets in South-East Asia. They are JKSE (Jakarta Stock Exchange Index), KLCI 

(Kuala Lumpur Composite Index), SETI (Stock Exchange of Thailand Index), and 
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STI (Straits Times Index), as available on DataStream. We select these stock markets 

from the index values. Those are very high values and potential investment 

alternatives compared with other markets in South-East Asia. The index values of 

each market from Bloomberg are shown in Figure 5.1. The latest stock exchange 

founded in 1999 is Singapore Exchange (SGX), therefore the data are collected at that 

starting time. We consider for a long time period from September 1, 1999 to April 27, 

2009, giving a total of 2,519 return observations. All stock indexes are computed and 

converted into a common currency, namely the US dollar for controlling exchange 

rate risk purpose by the Morgan Stanley Capital International (MSCI).  

 

5.3.2 Volatility forecasts 

To forecast the conditional volatility, we first adjust the closing price to 

obtain the returns for each market by taking logarithmic different. Several reasons to 

use daily data are mentioned in McAleer (2009). In addition, the rationale to employ 

daily data in modelling volatility transmission is mentioned in McAleer and da Veiga 

(2008a, 2008b). The continuously compounded returns for each index i at time t are 

calculated as  
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where pi,t is the price of index i at time t. pi,t-1 is the price of index i at time t-1. Each 

return series of index i is calculated for portfolio returns by assuming as the portfolio 

weights are equal and constant overtime. Therefore, the portfolio returns at time t of 



 

 

119

four stock markets are the sum the weights of 0.25 multiply by the returns of index i 

at time t. The plots of the daily returns for portfolio are shown in Figure 5.2 and of the 

volatility for porfolio in Figure 5.3. 

Figure 5.2 shows that portfolio returns exhibit the clustering. The 

descriptive statistics of each series is provided in Table 5.2. The results show the 

excess kurtosis in all series that indicates a fat-tailed distribution compared to a 

standard normal distribution with a kurtosis of 3. Then, an appropriate model to 

model volatility is necessary to estimate. All series have similar constant means at 

close to zero. The maximum values of percentage changes of index returns range 

approximately between 5.4% and 15.1%. The maximum value of percentage changes 

of portfolio returns is 0.08%. The minimum values of percentage changes of index 

returns range approximately between -20.0% and -9.8%. The minimum value of 

percentage changes of portfolio returns is -0.08%. Finally, The Jarque-Bera test 

strongly rejects the null hypothesis of normally distributed returns.  

 

Then, the univariate conditional volatility models are estimated, forecasted, 

and fitted to portfolio returns known as single-index models (see McAleer and da 

Veiga (2008a, 2008b)). We also fit the long memory models to portfolio returns in 

comparison purpose how the performance of those single-index and long memory 

models in forecasting VaR. Both the univariate conditional volatility models and long 

memory models are used to estimate the variance of portfolio returns directly. The 

estimations are undertaken under the distributional assumptions of shocks as (1) 

normal and (2) t, with estimated degrees of freedom. The portfolio returns are 

modelled as a stationary ARMA(1,1) process for both the univariate GARCH models 
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and the long memory models. In addition, the alternative HAR(h) models are used 

together with the univariate conditional volatility models including GARCH(1,1), 

GJR(1,1), and EGARCH(1,1) models to capture long run persistence of  shocks. 

Finally, we forecast the 1-day-ahead conditional variance of portfolio returns 

and VaR threshold. To be compatible, the number of forecast with efficiency in 

estimation, we set the sample size at 2,000 (T=2,000), giving a forecasting period 

from May 2, 2007 to April 27, 2009. The daily capital charge and the number of 

violations are used to evaluate the forecasts of the VaR threshold, next. 

 

5.3.3 Value-at-Risk (VaR), Daily capital charge and Violation magnitude. 

Value-at-Risk 

A VaR threshold is the lower bound of a confidence interval for the 

mean. Suppose the daily returns ty  following the conditional mean and a random 

component tε , i.e. tε ∼ ),( ttD σμ with the unconditional mean tμ  and the standard 

deviation tσ . Then VaR can be measured with various methods. The VaR threshold 

for ty can be calculated by  

 

tttt IyEVaR ασ−= − )( 1      (5.24) 

 

where α is the critical value from the distribution of tε  to get the appropriate 

confidence level. tσ  can be replaced by any estimate of the conditional variance to 

get an appropriate VaR (see McAleer and da Veiga (2008a) for more detail). 
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Daily capital charge and the number of violations 

In practice, Basel II Accord requires banks hold their capital reserves 

appropriate to the risk the banks expose themselves to through their investment 

practices. In other words, the greater risk to which the banks are exposed, the greater 

the amount of capital the banks need to hold called capital charges. The Basel Accord 

imposes penalties in the form of higher multiplicative factor k on banks. In order to 

optimize the capital charges or minimize problem, the number of violations and the 

VaR forecasts are taken into account and defined by (see McAleer (2009), and 

McAleer, Jiménez-Martin and Peréz-Amaral (2009) for more detail). 

 

{ }
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,)3(sup
−
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ttVaRk

VaRVaRkDCCMinimize   (5.25) 

 

where  

DCC  = daily capital charges, which is the higher of 60)3( VaRk+−  or 
1−

−
t

VaR , 

VaRt  = Value-at-Risk for day t, as in (5.24), 

60VaR  = mean VaR over the previous 60 working days, 

k      = the Basel Accord violation penalty, that is greater than or equal zero but  

less than or equal one ( 10 ≤≤ k ), in Table 5.1. 

 

In this context, Banks can control their daily capital charges by a good 

quality of volatility in VaR and the value of k arising from the violation penalty. 
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5.4 Empirical Results 

In this section, we divide the empirical results into (1) the results of the 

estimations and (2) the daily capital charge and the violation magnitude as follows: 

 

5.4.1 Model Estimations 

We report the estimations for the single-index models and the long 

memory -- the fractionally integrated and the HAR --, models in Table 5.5, 5.6, and 

5.7, respectively. Table 5.5 summarizes the estimations from RiskmetricsTM, 

ARCH(1), GARCH(1,1), GJR(1,1), and EGARCH(1,1) models, estimated under the 

normal distributional assumptions and t-distribution. The parameters are estimated 

using maximum likelihood estimation (MLE) method. The results show that most 

estimates of all single-index models are highly statistically significant at 1% level. 

The single-index models estimated under assumption that returns follow a t-

distribution perform far better, judged by optimizing the information criterion of 

either Akaike (1974) or Schwarz (1978), denoted as AIC and SIC, respectively. Those 

criteria are given as  

 

AIC = 
n
k

n
LogL 22 +−       (5.26) 

SIC = 
n

k
n

LogL )log(22 +−       (5.27) 

 

with the k parameters estimated from n observations.  

The parameters γ in GJR and θ1 and θ2 in EGARCH models which are 

significantly different from zero indicate that the volatility of portfolio returns have 
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asymmetric effects for GJR and the asymmetric and leverage effects of shocks for 

EGARCH which negative shocks increase volatility and positive shocks decrease 

volatility. 

Table 5.6 summarizes the estimations from the fractionally integrated 

models consisting of FIGARCH(1,d,1), FIEGARCH(1,d,1), ARFIMA-

GARCH(1,d,1), ARFIMA-EGARCH(1,d,1), ARFIMA-FIGARCH(1,d,1), and 

ARFIMA-FIEGARCH(1,d,1) models, estimated under the normal distributional 

assumptions and t-distribution. The results show that most estimates of 

FIGARCH(1,d,1) and FIEGARCH(1,d,1) models are highly statistically significant at 

1% level. In the long memory models estimated under t-distribution perform far 

better, same as the single-index models, judged by AIC and SIC. The maximum 

likelihood estimates of d from FIGARCH(1,d,1) and FIEGARCH(1,d,1) with t-

distribution are 0.23 and 0.04 respectively, less than 0.25 which indicate the 

intermediate-memory in volatility of the portfolio returns. The size effect,φ , being 

insignificant and the sing effect, θ1, being negative, in FIEGARCH(1,d,1) models 

indicate the volatility of portfolio returns have asymmetric effects ,but no leverage 

effects of shocks. Most estimates of ARFIMA-GARCH(1,d,1), ARFIMA-

EGARCH(1,d,1), ARFIMA-FIGARCH(1,d,1), and ARFIMA-FIEGARCH(1,d,1) 

models are highly statistically significant at 1% level, especially in variance equation. 

The maximum likelihood estimates of d* from ARFIMA-FIGARCH(1,d,1) and 

ARFIMA-FIEGARCH(1,d,1) with t-distribution are 0.23 and 0.04 respectively, less 

than 0.25 which indicate the intermediate-memory in volatility of the portfolio 

returns, the same results in FIGARCH and FIEGARCH models. However, 

differencing parameter d in long-memory filter ARFIMA in ARFIMA-GARCH(1,d,1) 
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and ARFIMA-EGARCH(1,d,1) are not significantly different from zero. The size 

effect,α , being insignificant and the sing effect, θ1, being negative, in ARFIMA-

EGARCH(1,d,1) and ARFIMA-FIEGARCH(1,d,1) models indicate that the volatility 

of portfolio returns have asymmetric effects, but no leverage effects of shocks. 

Overall, from the goodness of fit criteria, AIC and SIC, the fractionally 

integrated models are preferred to conditional volatility GARCH-type models for 

volatility estimations in this portfolio returns. However, from the highly statistically 

significant estimations, the FIGARCH model performs far better for volatility 

modelling. 

Table 5.7 summarizes the estimations from the long memory HAR 

models consisting of HAR(1), HAR(1,5), and HAR(1,5,20) models, estimated under 

the normal distributional assumptions and t-distribution. The results show that most 

estimates of GARCH(1,1) for the HAR(1) and HAR(1,5) are highly highly 

statistically significant at 1% level. The magnitude of asymmetric effects are 

evaluated by GJR(1,1) model. The estimated asymmetry coefficients are positive and 

statistically significant for HAR(1) and HAR(1,5) which the deceases in porfolio 

increase volatility. Furthermore, the evidences from EGARCH(1,1) for the HAR(1), 

the HAR(1,5), and the HAR(1,5,20) models, show that the size effect, )( φα or , being 

insignificant and the sing effect, 1θ , being negative, indicates the asymmetric effects 

but no leverage as well as the long memory fractionally integrated models. Over all, 

the estimated under t-distribution perform far better, same as the single-index models, 

judged by AIC and SIC. 
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5.4.2 VaR, Daily capital charge and Violation magnitude 

We consider the application of the volatility models to Value-at-Risk. 

We use the estimated coefficients in the previous in the single-index, the fractionally 

integrated and the alternative HAR models to forecast VaR. We use the VaR forecasts 

to identify the number of violations from the negative returns exceed the VaR 

forecasts. These numbers of violations can indicate the Basel Accord violation penalty 

(k) to optimize the daily capital charges. Table 5.3 and 5.4 give the mean daily capital 

charges for each model. The worst-performing model that gives average daily capital 

charges of 16.68% is the FIGARCH under t-distribution model. The best-performing 

model which gives average daily capital charges of 6.64% is the ARCH model under 

a normal distribution. 

We have the same results as McAleer and da Veiga (2008b) in the 

context of distributional assumptions of the estimations. We find that apart from 

RiskmetricsTM model, both the single-index and the long memory including 

fractionally integrated and HAR models which are estimated assuming a t-distribution 

tend to give higher capital charges than the parallel models estimated under a normal 

distribution. Therefore, the penalties imposed under the Basel Accord may not be 

severe enough, as all of models with the normally distributed give a higher number of 

violations. In conclusion, the Basel Accord prefers models which give an excessive 

number of violations. 

 Table 5.3 and Table 5.4 also reports the maximum and average absolute 

deviations of violations from the VaR forecasts. The worst-performing model that 

gives the largest maximum absolute deviations at 5.304 is the GARCH model under a 

normal distributed assumption.  The best-performing model that gives the lowest 
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maximum absolute deviations at 0.779 is the long memory model ARFIMA-

FIGARCH model under a t-distributed assumption. While, for the average absolute 

deviation values, the worst-performing model that gives the highest average absolute 

deviations at 1.334 is the GARCH for HAR(1) model under a t-distributed 

assumption. On the contrary, the best-performing model that gives the basis average 

absolute deviations at 0.402 is the GARCH for HAR(1,5) model under a normal 

distributed assumption. 

These results seem to be contradictory between those values of absolute 

deviations and the mean capital charges. Table 5.3 and Table 5.4 make it clear that 

increasing the number of violations leads to lower mean daily capital charges. 

Therefore, there is a trade-off between the number of violations and daily capital 

charges, with a higher number of violations leading to a higher penalty and lower 

daily capital charges through lower VaR. Also, it is not clear which model is 

appropriate for capital optimization. However, the numbers of violations should be 

highly considerable in the sense of accuracy forecast. The long memory models seem 

to lead to lower the numbers of violations.  

 

5.5 Concluding Remarks 

In conclusion, we investigate (1) the performance of VaR forecasts in between 

the single-index and the long memory models for portfolio returns. (2) the daily 

capital charges and VaR models in order to reach the preferable model. 

In the empirical example, the portfolio comprised four stock market indexes in 

South-East Asia, namely the JKSE, KLCI, SETI, and STI, for the period from 

October 1, 2007 to April 27, 2009, giving a total of 2,519 return observations. On the 
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basis of the empirical results, the estimation results show that the long memory 

models yield superior in portfolio volatility forecasts based on the goodness of fit 

criteria, AIC and SIC. However, in this study we exclude the multivariate volatility 

models that should be used to forecast the conditional variance and the conditional 

correlations between all index pairs, in order to capture the spillover effects. In the 

context of daily capital charges, it was found that the conditional volatility models 

under the normal distributional assumptions lead to lower daily capital charges by 

taking into account the Basel Accord penalties. Finally, the results suggest that 

penalties imposed under the Basel Accord are too relaxed, and tend to favour models 

that had an excessive number of violations. So, it is necessary to change the penalty 

structure under the Basel Accord, otherwise there is likely to take high risk 

excessively. 
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Table 5.1  Basel Accord penalty zones 

Zone Number of Violations k 

Green 0 to 4 0.00 

Yellow 5 0.40 

 6 0.50 

 7 0.65 

 8 0.75 

 9 0.85 

Red 10+ 1.00 
Note: The number of violations is given for 250 business days. 
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Table 5.2  Descriptive Statistics of all return series and portfolio 

 JKSE KLCI SETI STI PORT 

Mean 0.0269 0.0132 0.0046 -0.0048 0.0003 

Maximum 15.0419 5.5463   10.5206 8.5634 0.0755 

Minimum -19.9468 -11.2789 -18.0844 -9.8093 -0.0753 

Std. Dev. 2.2704 1.1254 1.8869 1.4619 0.0126 

Skewness -0.3595 -0.5422 -0.5770 -0.2981 -0.4297 

Kurtosis 9.9880 10.5374 10.4319 7.8136 8.4083 

Jarque-Bera 5179.63 6086.52 5937.10 2469.29 3146.23 
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Table 5.3  DCC and AD of Violations for Single-Index and Long Memory Models 

Model Number of 
Violations 

Mean Daily 
Capital Charge 

AD of Violations 

   Maximun Mean 
RiskmetricsTM 21 13.876 4.811 0.854 
ARCH 51 6.645 0.967 1.294 
ARCH-t 19 14.441 2.711 0.597 
GARCH 25 11.344 5.304 0.769 
GARCH-t 4 14.503 1.697 1.220 
GJR 20 9.922 1.122 0.409 
GJR-t 4 12.714 1.404 0.757 
EGARCH 22 9.424 3.019 0.582 
EGARC-t 4 12.153 1.172 0.682 
FIGARCH 18 13.142 1.227 0.439 
FIGARCH-t 2 16.684 0.797 0.797 
FIEGARCH 10 13.583 1.347 0.583 
FIEGARCH-t 6 11.619 0.925 0.611 
ARFIMA-GARCH 25 11.085 5.172 0.749 
ARFIMA-GARCH-t 4 14.461 1.665 1.193 
ARFIMA-EGARCH 22 9.339 2.979 0.572 
ARFIMA-EGARCH-t 3 12.031 0.916 0.611 
ARFIMA-FIGARCH 18 13.124 1.217 0.434 
ARFIMA-FIGARCH-t 2 16.669 0.779 0.779 
ARFIMA-FIEGARCH 10 13.421 1.301 0.559 
ARFIMA-FIEGARCH-t 7 13.142 0.877 0.535 

Notes:  (1) The daily capital charge, 60*)3( VaRkDCCt +−= where 60VaR  is the average VaR over 
the last 60 business days, or replace by the greater of the previous day’s VaR. k is the 
penalty. 

            (2) AD is the absolute deviation of the violations from the VaR forecasts. 
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Table 5.4  DCC and AD of Violations for HAR Models 

Model Number of 
Violations 

Mean Daily 
Capital Charge 

AD of Violations 

   Maximun Mean 
HAR(1)-GARCH 24 11.333 1.833 0.592 
HAR(1)-GARCH-t 4 14.511 1.935 1.334 
HAR(1)-GJR 22 9.796 1.342 0.466 
HAR(1)-GJR-t 4 12.575 1.481 0.907 
HAR(1)-EGARCH 20 9.255 1.372 0.471 
HAR(1)-EGARCH-t 4 12.087 1.033 0.851 
HAR(1,5)-GARCH 41 8.756 1.982 0.402 
HAR(1,5)-GARCH-t 16 14.766 3.000 0.910 
HAR(1,5)-GJR 44 8.748 1.897 0.446 
HAR(1,5)-GJR-t 16 14.805 2.979 0.957 
HAR(1,5)-EGARCH-t 15 13.347 2.651 0.884 
HAR(1,5,20)-GARCH 39 7.863 4.524 0.820 
HAR(1,5,20)-GARCH-t 24 12.699 3.478 1.125 
HAR(1,5,20)-GJR 54 7.499 2.841 0.646 
HAR(1,5,20)-GJR-t 24 12.805 3.195 1.069 
HAR(1,5,20)-EGARCH-t 24 12.117 2.401 0.956 

Notes:  (1) The daily capital charge, 60*)3( VaRkDCCt +−= where 60VaR  is the average VaR over 
the last 60 business days, or replace by the greater of the previous day’s VaR. k is the 
penalty. 

            (2) AD is the absolute deviation of the violations from the VaR forecasts. 
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Table 5.5  Estimation Results for Single-Index Models 

Model Mean equation  Variance equation       LL 

 μ AR(1) MA(1)  ω  α β γ θ1 θ2 α+β df AIC SIC 
RiskmetricsTM  0.063 0.463 -0.313    0.06 0.94      -2878.566 
 3.248 4.928 -3.076           2.883 2.879 
ARCH  0.035 0.444 -0.249  0.928  0.182     0.1818  -2920.413 
 1.041 6.135 -3.127  43.31  7.039       2.925 2.921 
ARCH-t  0.071 0.454 -0.307  0.917  0.233     0.2325 4.290 -2803.167 
 2.790 0.454 -2.922  13.61  4.363      9.772 2.809 2.804 
GARCH 0.076 0.468 -0.317  0.041  0.093 0.875    0.9671  -2844.226 
 2.868 4.052 -2.494  6.932  9.536 87.53      2.850 2.845 
GARCH-t 0.092 0.461 -0.334  0.041  0.090 0.876    0.9657 5.377 -2755.761 
 3.878 3.670 -2.479  3.365  5.378 40.13     9.228 2.763 2.757 
GJR 0.051 0.457 -0.299  0.059  0.035 0.864 0.094     -2833.757 
 1.787 3.894 -2.348  8.191  3.461 82.74 6.426     2.841 2.835 
GJR-t 0.077 0.460 -0.330  0.056  0.026 0.866 0.106    5.537 -2746.806 
 3.201 3.751 -2.506  4.170  1.449 37.97 3.852    9.232 2.755 2.748 
EGARCH 0.043 0.487 -0.343  0.166  -0.150 0.945  -0.077 0.205   -2828.989 
 1.518 4.075 -2.609  3.287  -1.079 124.7  -5.830 6.934   2.837 2.830 
EGARCH-t 0.070 0.465 -0.339  11.980  -0.110 0.950  -0.081 0.187  5.642 -2744.389 
 2.935 3.699 0.135  3.938  -0.4784 74.15  -3.178 3.941  9.127 2.753 2.745 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 

  (2) Entries in bold are significant at the 99% level. 
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Table 5.6  Estimation Results for Long Memory Models  

Model Mean equation   Variance equation     LL 

 μ d AR(1) MA(1)  ω d φ β θ1 θ2 df AIC SIC 
FIGARCH 0.074  0.506 -0.352  0.244 0.253 -0.384 -0.231    -2837.883 
 2.646  4.460 -2.829  5.150 8.612 -3.068 -1.674    2.845 2.839 
FIGARCH-t 0.089  0.468 -0.338  0.239 0.235 -0.352 -0.232   5.472 -2750.240 
 3.726  3.701 -2.493  2.772 5.527 -1.422 -0.870   9.390 2.758 2.751 
FIEGARCH-t 0.071  0.462 -0.338  8.227 0.042 -0.063 0.911 -0.087 0.161 5.771 -2738.299 
 2.967  3.599 -2.460  4.240 2.870 -0.242 33.20 -3.241 3.645 8.675 2.748 2.739 
      ω  α β  α+β    
ARFIMA-GARCH 0.077 0.005 0.458 -0.313*  0.041  0.092 0.874  0.9670  -2844.221 
 2.788 0.119 2.834 -2.147*  6.636  9.201 82.43    2.851 2.845 
ARFIMA-GARCH-t 0.101 0.039 0.361 -0.2721  0.041  0.090 0.875  0.9652 5.358 -2755.313 
 3.201 0.935 1.440 -1.162  3.375  5.363 39.77   9.254 2.763 2.756 
      ω  α β θ1 θ2   
ARFIMA-EGARCH 0.039 0.044 0.392 -0.290  0.171  -0.161 0.946 -0.080 0.204  -2828.538 
 1.082 0.985 1.727 -1.365  3.292  -1.158 126.3 -5.760 6.851  2.837 2.829 
ARFIMA-EGARCH-t 0.073* 0.050 0.315 -0.238  12.134  -0.122 0.952 -0.084 0.186 5.633 -2743.637 
 0.031* 1.227 1.049 -0.839  3.924  -0.539 75.53 -3.210 3.932 9.142 2.754 2.745 
      ω d φ β θ1 θ2   
ARFIMA-FIGARCH 0.078* 0.029 0.453* -0.327  0.246 0.252 -0.385 -0.234    -2837.733 
 2.339* 0.583 2.440* -1.923  5.141 8.538 -3.008 -1.672    2.846 2.839 
ARFIMA-FIGARCH-t 0.099 0.047 0.328 -0.244  0.243 0.234 -0.363 -0.245   5.444 -2749.569 
 3.025 1.170 1.167 -0.920  2.802 5.526 -1.470 -0.922   9.406 2.758 2.750 
ARFIMA-FIEGARCH-t 0.073* 0.047 0.324 -0.245  8.303 0.042 -0.075 0.913 -0.090 0.160 5.762 -2737.618 
 2.372* 1.146 1.089 -0.876  4.229 2.862 -0.2913 34.09 -3.267 3.632 8.657 2.749 2.739 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 

  (2) Entries in bold, and bold * are significant at the 99% level, and the 95% level, respectively. 
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Table 5.7  Estimation Results for HAR Models 

Model Mean equation  Variance equation      LL 

 φ1 φ2 φ3  ω α β γ θ1 θ2 df α+β AIC SIC 
HAR(1)-GARCH 0.065 0.160   0.041 0.092 0.875     0.967 -2845.235 
 3.119 6.611   3.984 6.776 49.99      2.852 2.847 
HAR(1)-GARCH-t 0.081 0.137   0.040 0.089 0.877    5.371 0.966 -2756.675 
 4.225 6.043   3.159 5.210 38.40    8.571  2.764 2.759 
HAR(1)-GJR 0.047* 0.168   0.060 0.035* 0.863 0.093     -2834.645 
 2.199 6.886   4.575 2.324 43.91 4.048     2.842 2.837 
HAR(1)-GJR-t 0.070 0.139   0.057 0.027 0.866 0.103   5.517  -2747.887 
 3.602 6.182   3.744 1.546 35.99 3.594   8.370  2.756 2.750 
HAR(1)-EGARCH 0.043* 0.154   0.161* -0.100 0.942  -0.073 0.198   -2831.853 
 1.989 6.272   1.959 -0.563 72.11  -3.848 5.354   2.840 2.834 
HAR(1)-EGARCH-t 0.066 3.475   11.98 -0.096 0.949  -0.076 0.189 5.661  -2745.676 
 3.475 5.975   3.776 -0.431 69.24  -3.361 3.938 8.312  2.755 2.746 
HAR(1,5)-GARCH -0.016 -0.208 1.225  0.051 0.145 0.802     0.946 -2535.650 
 -0.932 -8.441 27.00  4.149 6.743 28.31      2.547 2.541 
HAR(1,5)-GARCH-t -0.002 -0.181 1.132  0.052 0.137 0.804    6.782 0.941 -2478.572 
 -0.135 -7.638 24.62  3.113 5.201 20.60    7.156  2.491 2.484 
HAR(1,5)-GJR -0.023 -0.204 1.208  0.046 0.110 0.816 0.049     -2534.727 
 -1.295 -8.146 25.57  3.914 3.542 27.57 1.413     2.547 2.541 
HAR(1,5)-GJR-t -0.010 -0.176 1.109  0.044 0.084 0.828 0.075   6.817  -2476.787 
 -0.609 -7.406 23.64  3.111 2.647 23.42 1.990   7.153  2.490 2.483 
HAR(1,5)-EGARCH-t -0.015 -0.175 1.111  17.08 -0.015 0.943  -0.049 0.244 7.000  -2473.444 
 -0.959 -7.474 24.14  4.002 -0.068 52.40  -1.824 4.546 7.077  2.487 2.479 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 

  (2) Entries in bold, and bold * are significant at the 99% level, and the 95% level, respectively. 
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Table 5.7  Estimation Results for HAR Models (Continued) 

Model Mean equation   Variance equation      LL 

 φ1 φ2 φ3 φ4  ω α β γ θ1 θ2 df α+β AIC SIC 
HAR(1,5,20)-GARCH -0.008 -0.211 1.255 -0.112  0.050 0.140 0.805     0.944 -2504.814 
 -0.471 -8.455 24.13 -1.407  4.028 6.627 27.96      2.536 2.530 
HAR(1,5,20)-GARCH-t 0.0001 -0.182 1.139 -0.030  0.054 0.134 0.802    6.659 0.936 -2446.052 
 0.0076 -7.684 22.11 -0.379  3.018 5.063 19.44    7.263  2.478 2.470 
HAR(1,5,20)-GJR -0.015 -0.207 1.238 -0.100  0.047 0.111 0.816 0.041     -2504.163 
 -0.816 -8.240 22.83 -1.237  3.868 3.631 27.31 1.183     2.536 2.529 
HAR(1,5,20)-GJR-t -0.007 -0.178 1.121 -0.029  0.047 0.088 0.824 0.065   6.693  -2444.582 
 -0.403 -7.509 21.48 -0.370  3.030 2.804 22.02 1.804   7.257  2.477 2.469 
HAR(1,5,20)-EGARCH-t -0.013 -0.178 1.122 -0.031  14.97 0.082 0.931  -0.045 0.237 6.994  -2440.790 
 -0.768 -7.574 21.60 -0.407  3.859 0.327 38.81  -1.707 4.378 7.089  2.474 2.465 
Notes:  (1) The two entries for each parameter are their respective estimate and t-ratios, and df indicates t-distribution parameter. 

  (2) Entries in bold, and bold * are significant at the 99% level, and the 95% level, respectively. 
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Figure 5.1  The Market Size of Stock Markets in South-East Asia 
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Figure 5.2  Daily returns for portfolio 
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Figure 5.3  Volatility of returns for portfolio 
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Distribution of Daily Returns (PORT)
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Figure 5.4  The distribution of portfolio returns in South-East Asia 
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Figure 5.5  Portfolio Returns and VaR Threshold Forecasts 
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Figure 5.5  Portfolio Returns and VaR Threshold Forecasts (Continued) 
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Figure 5.5  Portfolio Returns and VaR Threshold Forecasts (Continued) 


