
 
Chapter 2 

Methodology and Model Specification 

 

2.1 Methodology 

  According to the objectives that to estimate univariate and multivariate 

conditional volatility models, and volatility spillovers models for the returns on spot, 

forward and futures prices for the Brent, WTI, Dibai and Tapis, and to study the 

volatility spillovers between crude oil futures returns and oil company stock returns 

for the major oil companies, the methodology for modelling world crude oil price 

volatility and volatility spillovers are explained as follows.  

  First, the data used in this thesis are the daily synchronous closing price of 

spot, forward and futures crudes oil prices from four major crude oil markets, namely 

Brent, WTI, Dubai and Tapis, which are expressed in USD per barrel. Three of them 

are obtained from DataStream database service, while the price series for Tapis are 

collected from Reuters. The data 10 oil company stock prices, which are composed of 

the “supermajor” group of oil companies, namely Exxon Mobil (XOM, US), Royal 

Dutch Shell (RDS, The Netherlands), Chevron Corporation (CVX, US), 

ConocoPhillips (COP, US), BP (BP, UK) and Total S.A. (TOT, French), and other 

large oil and gas companies in the world, namely Petrobras (PBRA:Brasil), Lukoil 

(LKOH, Russia), Surgutneftegas (SNGS, Russia), and Eni S.p.A. (ENI, Italy), are also 

achieved from DataStream database services and expressed in local currencies. 
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  Second, the synchronous price returns i for each market j are computed on a 

continuous compounding basis as the logarithm of closing price at the end of the 

period minus the logarithm of the closing price at the beginning of the period, which 

is defined as 

 

( ), , , 1logij t ij t ij tr P P −=                                             (1), 

 

where ,ij tP  and , 1ij tP −  are the closing prices of crude oil price i in market j for days t  

and 1−t , respectively. 

  Third, the plot of synchronous price returns and their descriptive statistics, 

namely mean, maximum, minimum, standard deviation, skewness, kurtosis and 

Jarque-Bera Lagrange multiplier statistics, are expressed in order to check whether  

the distributions of these returns are volatility clustering and has a normal distribution.  

  Four, test for a unit root in every return series. The Augmented Dickey-Fuller 

(ADF) statistic and Phillips-Perron statistic (PP) are applied in the test. They are a 

negative number, which are more negative, the stronger to rejection of the hypothesis 

that there is unit root at some level of confidence.  

 

   Augmented Dickey-Fuller test: (Dickey and Fuller (1979)) 

   To test the unit root against the alternative of stationarity of the return 

series the ADF test is given as follows: 

 

1 1
1

p

t t i t t
i

y t y yα β θ φ ε− −
=

Δ = + + + Δ +∑                                   (2), 



11 
 

 

where α is constant, β  is the coefficient on a time trend and p  is the log order of the 

autoregressive process. The presence of the deterministic element α  and tβ  

determine the difference regression. Imposing the constraints 0α =  and 0β =  

corresponds to modelling a random walk and using constraint 0α =  similar to 

modelling random walk with drift, and equation (2) resemble to modelling both drift 

and a linear time trend model. The parameter of interest in all the regression equations 

is θ , if 0θ =  the return series contains a unit root. Therefore, under the null 

hypothesis is 0θ =  against alternative hypothesis is 0θ < , it is rejected when 

compare with MacKinnon critical value (MacKinnon  (1991, 1996)), means that the 

return series is stationary. 

 

  Phillips-Perron statistic (PP): (Phillips and Perron (1988)) 

    PP test allows fairly mild assumption that does not assume the specific 

type of serial correlation and heteroskedastity in the disturbances, and can have higher 

power than the ADF test under a wide range of circumstance. The PP test is based on 

the statistic: 

 

( ) ( )( )1 2
0 0

0
1 2

0 0

ˆ

2

T f se
t t

f f sφ φ

γ φγ −⎛ ⎞
= −⎜ ⎟

⎝ ⎠
                                   (3), 

 

where φ̂  is the estimate, and tφ  is the t-ratio of φ , ( )ˆse φ  is coefficient standard error, 

and s  is the standard error of the test regression. In addition, 0γ  is a consistent 
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estimate of the error variance in (2). The remaining 0f  is an estimator of the residual 

spectrum at frequency zero and T  is number of observation. Under the null 

hypothesis is 0θ = , which if it is rejected when compare with MacKinnon lower- tail 

critical and p-value, means that the return series is stationary. 

  Five, a wide range of univariate and multivariate volatility models have been 

used to estimate and forecast volatility and volatility spillovers with symmetric and 

asymmetric effects. These models are presented in model specification part. 

 

2.2 Model Specification 

 2.2.1 Univariate Conditional Volatility Models 

   Following Engle (1982), consider the time series ( )1 ε−= +t t t ty E y , where 

( )1t tE y−  is the conditional expectation of ty  at time 1t − and tε  is the associated 

error. The generalized autoregressive conditional heteroskedastity (GARCH) model 

of Bollerslev (1986) is given as follows: 

 

 t t thε η=      ,      (0,1)t Nη �                                    (4) 

2

1 1
− −

= =

= + +∑ ∑
p q

t j t j j t j
j j

h hω α ε β                                      (5) 

 

where 0ω > , 0≥jα  and 0≥jβ  are sufficient conditions to ensure that the 

conditional variance 0th > . The parameter jα  represents the ARCH effect, or the 

short-run persistence of shocks to returns, and jβ  represents the GARCH effect, 
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where +j jα β  measures the persistence of the contribution of shocks to return i to 

long run persistence.  

   Equation (5) assumes that the conditional variance is a function of the 

magnitudes of the lagged residuals and not their signs, such that a positive shock 

( )0tε >  has the same impact on conditional variance as a negative shock ( )0tε < of 

equal magnitude. In order to accommodate differential impacts on the conditional 

variance of positive and negative shocks, Glosten, et al. (1993) proposed the 

asymmetric GARCH, or GJR model, which is given by 

 

( )( ) 2

1 1

r s

t j j t j t j j t j
j j

h I hω α γ ε ε β− − −
= =

= + + +∑ ∑                            (6) 

 

where 

 

0, 0
1, 0

it
it

it

I
ε
ε

≥⎧
= ⎨ <⎩

 

 

is an indicator function to differentiate between positive and negative shocks. When 

1r s= = , sufficient conditions to ensure the conditional variance, 0th > , are 0ω > , 

1 0α ≥ , 1 1 0α γ+ ≥  and 1 0β ≥ . The short run persistence of positive and negative 

shocks are given by 1α  and ( )1 1α γ+ , respectively. When the conditional shocks, tη , 

follow a symmetric distribution, the short run persistence is 1 1 2α γ+ , and the 

contribution of shocks to expected long-run persistence is 1 1 12α γ β+ + . 
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    In order to estimate the parameters of model (4)-(6), maximum likelihood 

estimation is used with a joint normal distribution of tη . However, when tη  does not 

follow a normal distribution or the conditional distribution is not known, quasi-MLE 

(QMLE) is used to maximize the likelihood function.  

   Bollerslev (1986) showed the necessary and sufficient condition for the 

second-order stationarity of GARCH is 
1 1

1
r s

i i
i i
α β

= =

+ <∑ ∑ . For the GARCH(1,1) 

model, Nelson (1991) obtained the log-moment condition for strict stationary and 

ergodicity as ( )( )2
1 1log 0tE αη β+ < , which is important in deriving the statistical 

properties of the QMLE. For GJR(1,1), Ling and McAleer (2002a, 2002b) presented 

the necessary and sufficient condition for ( )2
tE ε < ∞  as 1 1 12 1α γ β+ + < .     

McAleer, et al. (2007) established the log-moment condition for GJR(1,1) as 

( )( )( )2
1 1 1log α γ η η β+ +t tE I

 
0< , and showed that it is sufficient for consistency and 

asymptotic normality of the QMLE. 

 

 2.2.2 Multivariate Conditional Volatility Model 

   The typical specification underlying the multivariate conditional mean and 

conditional variance in returns are given as follows: 

 

( )1t t t ty E y F ε−= +                                                 (7) 

t t tDε η=  

( )1var |t t t tF D Dε − = Γ  



15 
 

 

where ( )1 ,...,t t mty y y ′= , ( )1 ,...,t t mtη η η ′=  is a sequence of independently and 

identically distributed (i.i.d.) random vectors, tF  is the past information available up 

to time t, ( )1 2 1 2
1diag ,...,t mD h h= , m is the number of returns, and 1,...,t n= , (see 

Chan, et al. (2003), and Bauwens, et al. (2006). The constant conditional correlation 

(CCC) model of Bollerslev (1990) assumes that the conditional variance for each 

return, ith , 1,..,i m= , follows a univariate GARCH process, that is 

 

2
, ,

1 1

r s

it i ij i t j ij i t j
j j

h hω α ε β− −
= =

= + +∑ ∑                                      (8) 

 

where ijα  represents the ARCH effect, or short run persistence of shocks to return i, 

and ijβ  represents the GARCH effect, or the contribution of shocks to return i to long 

run persistence, namely 
1 1

r s

ij ij
j j

α β
= =

+∑ ∑ .  

   The conditional correlation matrix of CCC is ( ) ( )1t t t tE F Eηη ηη−′ ′Γ = = , 

where { }itρΓ =  for , 1,...,i j m= . From (7), t t t t tD Dε ε ηη′ ′= , ( )1 2diag t tD Q= , and 

( )1ε ε −′ = = Γt t t t t tE F Q D D , where tQ  is the conditional covariance matrix. The 

conditional correlation matrix is defined as 1 1
t t tD Q D− −Γ = , and each conditional 

correlation coefficient is estimated from the standardized residuals in (7) and (8). 

Therefore, there is no multivariate estimation involved for CCC, which involves m 

univariate GARCH models, except in the calculation of the conditional correlations. 
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   Although the CCC specification in (8) is a computationally straightforward 

“multivariate” GARCH model, it assumes independence of the conditional variances 

across returns and does not accommodate asymmetric behavior. In order to 

incorporate interdependencies, Ling and McAleer (2003) proposed a vector 

autoregressive moving average (VARMA) specification of the conditional mean in 

(7), and the following specification for the conditional variance: 

 

1 1

r s

t i t i j t j
i j

H W A B Hε − −
= =

= + +∑ ∑r                                         (9) 

 

where ( )1 ,...,t t mtH h h ′= , ( )2 2
1 ,...t mtε ε ε ′=

r , and W, iA  for 1,..,i r=  and jB  for 

1,..,j s=  are m m×  matrices. As in the univariate GARCH model, VARMA-

GARCH assumes that negative and positive shocks have identical impacts on the 

conditional variance. In order to separate the asymmetric impacts of the positive and 

negative shocks, McAleer, Hoti and Chan (2009) proposed the VARMA-AGARCH 

specification for the conditional variance, namely 

 

1 1 1

r r s

t i t i i t i t i j t j
i i j

H W A C I B Hε ε− − − −
= = =

= + + +∑ ∑ ∑r r                            (10) 

 

where iC  are m m×  matrices for 1,..,i r= , and ( )1diag ,...,t t mtI I I= , where  

 

0, 0
1, 0

it
it

it

I
ε
ε

>⎧
= ⎨ ≤⎩

. 
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If 1m = , (9) collapses to the asymmetric GARCH, or GJR model. Moreover, 

VARMA-AGARCH reduces to VARMA-GARCH when 0iC =  for all i. If 0iC =  

and iA  and jB  are diagonal matrices for all i and j, then VARMA-AGARCH reduces 

to the CCC model. The parameters of model (7)-(10) are obtained by maximum 

likelihood estimation (MLE) using a joint normal density. When tη  does not follow a 

joint multivariate normal distribution, the appropriate estimator is QMLE. 

   In order to forecast 1-day ahead conditional correlation, we use rolling 

windows technique and examine the time-varying nature of the conditional 

correlations using VARMA-GARCH and VARMA-AGARCH. Rolling windows are 

a recursive estimation procedure whereby the model is estimated for a restricted 

sample, then re-estimated by adding one observation at the end of the sample and 

deleting one observation from the beginning of the sample. The process is repeated 

until the end of the sample. In order to strike a balance between efficiency in 

estimation and a viable number of rolling regressions, the rolling window size is set at 

2008 for all data sets. 

   However, many empirical studies have presented that the conditional 

correlations are not constant over time. For example, Solnik, et al. (1996) and Hunter 

and Simon (2005) showed that the US and other major bond market returns 

correlations are not constant, but are influenced by fundamentals and market 

conditions. De Santis and Gerard (1998), Longin and Solnik (2001), found that equity 

correlations increase (decrease) during bear (rally) markets. Cappiello, et al. (2006) 

presented evidence that conditional correlation between equity and bond returns 

decline when stock markets suffer from financial turmoil. 
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   Since the correlations can change over time, it is unavoidable to model the 

dynamic conditional correlations across assets. In case of volatility spillovers, the 

dynamic conditional correlations are also important in constructing multivariate 

models that incorporate mean and volatility spillovers. Two dynamic conditional 

correlation models are the DCC model of Engle (2002) and the GARCC model of 

McAleer, et al. (2008).  

    Unless tη  is a sequence of iid random vectors, or alternatively a 

martingale difference process, the assumption that the conditional correlations are 

constant may seen unrealistic. In order to make the conditional correlation matrix time 

dependent, Engle (2002) proposed a dynamic conditional correlation (DCC) model, 

which is defined as 

 

     1| (0, )t t ty Q−ℑ �      ,     1,2,...,=t n                        (11) 

,= Γt t t tQ D D                                                         (12) 

 

where ( )1 2 1 2
1diag ,...,t mD h h=  is a diagonal matrix of conditional variances, and tℑ  is 

the information set available to time t. The conditional variance, ith , can be defined as 

a univariate GARCH model as follows: 

 

, ,
1 1

p q

it i ik i t k il i t l
k l

h hω α ε β− −
= =

= + +∑ ∑  .                                 (13) 
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   If tη  is a vector of i.i.d. random variables, with zero mean and unit 

variance, tQ  in (12) is the conditional covariance matrix (after standardization, 

it it ity hη = ). The itη  are used to estimate the dynamic conditional correlations, as 

follows: 

 

{ } { }1/2 1/2( ( ) ( ( )t t t tdiag Q Q diag Q− −Γ =
  

                                 (14) 

 

where the k k×  symmetric positive definite matrix tQ  is given by 

 

1 2 1 1 1 2 1(1 )t t t tQ Q Qθ θ θ η η θ− − −′= − − + +                                  (15) 

 

in which 1θ  and 2θ  are scalar parameters to capture the effects of previous shocks and 

previous dynamic conditional correlations on the current dynamic conditional 

correlation, and 1θ  and 2θ  are non-negative scalar parameters. When 1 2 0θ θ= = , Q   

in (15) is equivalent to the CCC model. As tQ  is a conditional on the vector of 

standardized residuals, (15) is a conditional covariance matrix, and Q  is the k k×  

unconditional variance matrix of tη . DCC are not linear but can often be estimated 

very simply with two step method based on the likelihood function the first is a series 

of univariate GARCH estimates and the second the correlation estimate. For further 

details, and critique of the DCC model, see Caporin and McAleer (2009).  

   

 


