
 

 

 

 

Chapter 3 

Modelling Conditional Correlations in Crude Oil Returns 

 

 For over a decade, crude oil is the most important fundamental input for goods and 

service production and transportation. It is not only traded in spot transaction but also in 

terms of forward and futures contracts, and they are correlated. Since crude oil is very 

sensitive to demand and supply, and shocks or news, so their prices are substantially volatile. 

The purposes of this chapter are to model univariate and multivariate conditional volatility, 

and volatility spillovers for different crude oil returns, namely spot, forward and futures 

returns, within different markets, namely Brent, WTI and Dubai, according to the first and 

second objectives of this thesis 

  This chapter is an original paper presented at 2nd Conference of the Thailand 

Econometric Society, Chiang Mai, Thailand. 
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A B S T R A C T 
__________________________________________________________ 
This paper estimates univariate and multivariate conditional volatility 
and conditional correlation models of spot, forward and futures returns 
from three major benchmarks of international crude oil markets, namely 
Brent, WTI and Dubai, to aid in risk diversification. Conditional 
correlations are estimated using the CCC model of Bollerslev (1990), 
VARMA-GARCH model of Ling and McAleer (2003), VARMA-
AGARCH model of McAleer et al. (2009), and DCC model of Engle 
(2002). The paper also presents the ARCH and GARCH effects for 
returns and shows the presence of significant interdependences in the 
conditional volatilities across returns for each market. The estimates of 
volatility spillovers and asymmetric effects for negative and positive 
shocks on conditional variance suggest that VARMA-GARCH is 
superior to the VARMA-AGARCH model. In addition, the DCC model 
gives statistically significant estimates for the returns in each market, 
which shows that constant conditional correlations do not hold in 
practice. 

______________________              ____________________________________________________ 
 
1.  Introduction 
 
 Crude oil is arguably the world’s most 
influential physical commodity as it 
provides energy for all kinds of human 
activities in the form of refined energy 
products, such as liquefied petroleum 
gases (LPGs), gasoline and diesel. 
Consequently, crude oil is a dynamically 
traded commodity that affects many 
economies. For instance, Sadorsky (1999) 
found that oil price volatility shocks have 
asymmetric effects on the economy, 
namely changes in oil prices affect 
economic activity, but changes in 
economic activity has little impact on oil 
prices, so that oil price fluctuations have 
large macroeconomic impacts. Guo and 
Kliesen (2005) argued that changes in oil 
prices affect aggregate economic activity 
through changes in the dollar price of 
crude oil (relative price change), and 
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increases in uncertainty regarding future 
price. 
 Substantial research has been 
conducted on the volatility of spot, 
forward and futures prices. Models of 
crude oil price volatility can be univariate 
or multivariate. In the former case, Fong 
and See (2002) examined the temporal 
behaviour for daily returns for crude oil 
futures using a Markov switching model of 
conditional volatility. Lanza et al. (2006) 
used the AR(1)-GARCH(1,1) and AR(1)-
GJR(1,1) models to estimate conditional 
volatility based on forward and futures 
returns. Manera et al. (2006) used 
univariate ARCH and GARCH to estimate 
spot and forward returns. Standard 
diagnostic tests also showed that the 
AR(1)-GARCH(1,1) and AR(1)-GJR(1,1) 
specifications were statistically adequate 
for both the conditional mean and 
conditional variance.  
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 Sadorsky (2006) investigated the 
forecast performance of a large number of 
models. The fitted model for heating oil 
and natural gas volatility was TGARCH, 
whereas GARCH was used for crude oil 
and unleaded gasoline volatility. Lee and 
Zyren (2007) calculated historical 
volatility and GARCH models to compare 
the historical price volatility behavior of 
crude oil, motor gasoline and heating oil in 
U.S. markets since 1990. They combined 
the shifting variable in GARCH and 
TARCH models to capture the response 
from the changes in OPEC’s pricing 
behavior. Narayan and Narayan (2007) 
modelled crude oil price volatility using 
daily data by using the EGARCH model to 
gauge two features of crude oil price 
volatility, namely asymmetry and the 
persistence of shocks. 
 For the multivariate conditional 
volatility model, Lanza et al. (2006), 
modelled conditional correlations in the 
WTI oil forward and future returns using 
the CCC model of Bollerslev (1990) and 
DCC model of Engle (2002). They found 
that DCC could vary dramatically, being 
negative in four of ten cases and close to 
zero in another five cases. Only in the case 
of dynamic volatilities of the three-month 
and six-month future returns was the range 
of variation relatively narrow. Manera et 
al. (2006) estimated DCC in the returns for 
Tapis oil spot and one-month forward 
prices using CCC, VARMA-GARCH 
model of Ling and McAleer (2003), 
VARMA-AGARCH model of McAleer et 
al. (2009), and DCC, and also tested and 
compared volatility specifications.  
 Trojani and Audrino (2005) proposed a 
multivariate tree-structured DCC model by 
incorporating multivariate thresholds in 
conditional volatilities and correlations. 
They found in some Monte Carlo 
simulations that the model was able to 
capture GARCH-type dynamics and a 
complex threshold structure in conditional 
volatilities and correlations.  In the 
empirical data for international equity 
markets, the estimated conditional 

volatilities were strongly influenced by 
GARCH and multivariate threshold 
effects. They concluded that conditional 
correlations were determined by simple 
threshold structures, whereas no GARCH-
type effects could be identified. 
 The purpose of this paper is to estimate 
univariate and multivariate conditional 
volatility models for the returns on spot, 
forward and futures prices for the Brent, 
WTI and Dubai to aid in risk 
diversification in crude oil markets. The 
remained of the paper is organized as 
follows. Section 2 discusses the univariate 
and multivariate GARCH models to be 
estimated. Section 3 explains the data, 
descriptive statistics and unit root tests. 
Section 4 describes the empirical estimates 
and some diagnostic tests of the univariate 
and multivariate models. Section 5 
provides some concluding remarks. 
 
2. Econometric models   
 
Univariate conditional volatility model 
 
 Following Engle (1982), consider the 
time series ( )1 ε−= +t t t ty E y , where 

( )1t tE y−  is the conditional expectation of 

ty  at time 1t − and tε  is the associated 
error. The generalized autoregressive 
conditional heteroskedastity (GARCH) 
model of Bollerslev (1986) is given as 
follows: 
 t t thε η=      ,      (0,1)t Nη �                (1) 

2

1 1
− −

= =

= + +∑ ∑
p q

t j t j j t j
j j

h hω α ε β                  (2) 

where 0ω > , 0≥jα  and 0≥jβ  are 
sufficient conditions to ensure that the 
conditional variance 0th > . The parameter 

jα  represents the ARCH effect, or the 
short-run persistence of shocks to returns, 
and jβ  represents the GARCH effect, 
where +j jα β  measures the persistence of 
the contribution of shocks to return i to 
long run persistence.  
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 Equation (2) assumes that the 
conditional variance is a function of the 
magnitudes of the lagged residuals and not 
their signs, such that a positive shock 
( )0tε >  has the same impact on 
conditional variance as a negative shock 
( )0tε < of equal magnitude. In order to 
accommodate differential impacts on the 
conditional variance of positive and 
negative shocks, Glosten et al. (1992) 
proposed the asymmetric GARCH, or GJR 
model, which is given by 

( )( ) 2

1 1

r s

t j j t j t j j t j
j j

h I hω α γ ε ε β− − −
= =

= + + +∑ ∑                             

(3) 
where 

0, 0
1, 0

it
it

it

I
ε
ε

≥⎧
= ⎨ <⎩

 

is an indicator function to differentiate 
between positive and negative shocks. 
When 1r s= = , sufficient conditions to 
ensure the conditional variance, 0th > , are 

0ω > , 1 0α ≥ , 1 1 0α γ+ ≥  and 1 0β ≥ . The 
short run persistence of positive and 
negative shocks are given by 1α  and 
( )1 1α γ+ , respectively. When the 
conditional shocks, tη , follow a symmetric 
distribution, the short run persistence is 

1 1 2α γ+ , and the contribution of shocks 
to expected long-run persistence is 

1 1 12α γ β+ + . 
  In order to estimate the parameters of 
model (1)-(3), maximum likelihood 
estimation is used with a joint normal 
distribution of tη . However, when tη  does 
not follow a normal distribution or the 
conditional distribution is not known, 
quasi-MLE (QMLE) is used to maximize 
the likelihood function.  
 Bollerslev (1986) showed the 
necessary and sufficient condition for the 
second-order stationarity of GARCH is 

1 1
1

r s

i i
i i
α β

= =

+ <∑ ∑ . For the GARCH(1,1) 

model, Nelson (1991) obtained the log-

moment condition for strict stationary and 
ergodicity as ( )( )2

1 1log 0tE α η β+ < , 

which is important in deriving the 
statistical properties of the QMLE. For 
GJR(1,1), Ling and McAleer (2002a, 
2002b) presented the necessary and 
sufficient condition for ( )2

tE ε < ∞  as 

1 1 12 1α γ β+ + < . McAleer et al. (2007) 
established the log-moment condition for 
GJR(1,1) as ( )( )( )2

1 1 1log α γ η η β+ +t tE I
 

0< , and showed that it is sufficient for 
consistency and asymptotic normality of 
the QMLE. 
 
Multivariate conditional volatility model 
 
 The typical specification underlying 
the multivariate conditional mean and 
conditional variance in returns are given as 
follows: 

( )1t t t ty E y F ε−= +                                  (4) 

t t tDε η=  

where ( )1 ,...,t t mty y y ′= , ( )1 ,...,t t mtη η η ′=  
is a sequence of independently and 
identically distributed (i.i.d.) random 
vectors, tF  is the past information 

available to time t, ( )1 2 1 2
1 ,...,t mD diag h h= , 

m is the number of returns, and 1,...,t n= , 
(see Li, Ling and McAleer (2005), and 
Bauwens et al. (2006). The constant 
conditional correlation (CCC) model of 
Bollerslev (1990) assumes that the 
conditional variance for each return, ith , 

1,..,i m= , follows a univariate GARCH 
process, that is 

2
, ,

1 1

r s

it i ij i t j ij i t j
j j

h hω α ε β− −
= =

= + +∑ ∑              (5) 

where ijα  represents the ARCH effect, or 
short run persistence of shocks to return i, 
and ijβ  represents the GARCH effect, or 
the contribution of shocks to return i to 
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long run persistence, namely 

1 1

r s

ij ij
j j

α β
= =

+∑ ∑ .  

 The conditional correlation matrix of 
CCC is ( ) ( )1t t t tE F Eηη ηη−′ ′Γ = = , where 

{ }itρΓ =  for , 1,...,i j m= . From (4), 

t t t t tD Dε ε ηη′ ′= , ( )1 2diag t tD Q= , and 

( )1ε ε −′ = = Γt t t t t tE F Q D D , where tQ  is the 
conditional covariance matrix. The 
conditional correlation matrix is defined as 

1 1
t t tD Q D− −Γ = , and each conditional 

correlation coefficient is estimated from 
the standardized residuals in (4) and (5). 
Therefore, there is no multivariate 
estimation involved for CCC, which 
involves m univariate GARCH models, 
except in the calculation of the conditional 
correlations. 
 Although the CCC specification in (5) 
is a computationally straightforward 
“multivariate” GARCH model, it assumes 
independence of the conditional variances 
across returns and does not accommodate 
asymmetric behavior. In order to 
incorporate interdependencies, Ling and 
McAleer (2003) proposed a vector 
autoregressive moving average (VARMA) 
specification of the conditional mean in 
(4), and the following specification for the 
conditional variance: 

1 1

r s

t i t i j t j
i j

H W A B Hε − −
= =

= + +∑ ∑r                (6) 

where ( )1 ,...,t t mtH h h ′= , ( )2 2
1 ,...t mtε ε ε ′=

r , 
and W, iA  for 1,..,i r=  and jB  for 

1,..,j s=  are m m×  matrices. As in the 
univariate GARCH model, VARMA-
GARCH assumes that negative and 
positive shocks have identical impacts on 
the conditional variance. In order to 
separate the asymmetric impacts of the 
positive and negative shocks, McAleer, 
Hoti and Chan (2009) proposed the 
VARMA-AGARCH specification for the 
conditional variance, namely 

1 1 1

r r s

t i t i i t i t i j t j
i i j

H W A C I B Hε ε− − − −
= = =

= + + +∑ ∑ ∑r r  (7) 

where iC  are m m×  matrices for 1,..,i r= , 
and ( )1diag ,...,t t mtI I I= , where  

0, 0
1, 0

it
it

it

I
ε
ε

>⎧
= ⎨ ≤⎩

. 

If 1m = , (6) collapses to the asymmetric 
GARCH, or GJR model. Moreover, 
VARMA-AGARCH reduces to VARMA-
GARCH when 0iC =  for all i. If 0iC =  
and iA  and jB  are diagonal matrices for 
all i and j, then VARMA-AGARCH 
reduces to the CCC model. The parameters 
of model (4)-(7) are obtained by maximum 
likelihood estimation (MLE) using a joint 
normal density. When tη  does not follow a 
joint multivariate normal distribution, the 
appropriate estimator is QMLE. 
  Unless tη  is a sequence of iid random 
vectors, or alternatively a martingale 
difference process, the assumption that the 
conditional correlations are constant may 
seen unrealistic. In order to make the 
conditional correlation matrix time 
dependent, Engle (2002) proposed a 
dynamic conditional correlation (DCC) 
model, which is defined as 

1| (0, )t t ty Q−ℑ � ,  1,2,...,=t n                (8) 
,= Γt t t tQ D D                                            (9) 

where ( )1diag ,...,t t ktD h h=  is a diagonal 
matrix of conditional variances, and tℑ  is 
the information set available to time t. The 
conditional variance, ith , can be defined as 
a univariate GARCH model as follows: 

, ,
1 1

p q

it i ik i t k il i t l
k l

h hω α ε β− −
= =

= + +∑ ∑           (10).   

 If tη  is a vector of i.i.d. random 
variables, with zero mean and unit 
variance, tQ  in (9) is the conditional 
covariance matrix (after standardization, 

it it ity hη = ). The itη  are used to 
estimate the dynamic conditional 
correlations, as follows: 
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{ } { }1/2 1/2( ( ) ( ( )t t t tdiag Q Q diag Q− −Γ =   (11)
  

  

where the k k×  symmetric positive 
definite matrix tQ  is given by 

1 2 1 1 1 2 1(1 )t t t tQ Q Qθ θ θ η η θ− − −′= − − + +    (12)                         
in which 1θ  and 2θ  are scalar parameters 
to capture the effects of previous shocks 
and previous dynamic conditional 
correlations on the current dynamic 
conditional correlation, and 1θ  and 2θ  are 
non-negative scalar parameters. As tQ  is a 
conditional on the vector of standardized 
residuals, (12) is a conditional covariance 
matrix, and Q  is the k k×  unconditional 
variance matrix of tη . For further details, 
and critique of the DCC model, see 
Caporin and McAleer (2009). 
 
3. Data  
 
 The data used in this paper are the 
daily synchronous closing price of spot, 
forward and futures crude oil prices from 
three major crude oil markets, namely 

Brent, WTI and Dubai. The 4,659 price 
observations from 2 January 1991 to 10 
November 2008 are obtained from the 
DataStream database service. The returns 
of crude oil prices i of market j at time t in 
a continuous compound basis are 
calculated as ( ), , , 1logij t ij t ij tr P P −= , where 

,ij tP  and , 1ij tP −  are the closing prices of 
crude oil price i in market j for days t  and 

1−t , respectively. The univariate and 
multivariate conditional volatility models 
are estimated using the EViews 6 
econometric software package. 
 The descriptive statistics for the crude 
oil returns series are summarized in Table 
1. The sample mean is quite small, but the 
corresponding variance of returns is much 
higher. Both negative skewness and high 
kurtosis suggest that returns are not 
distributed normally. Similarly, the null 
hypothesis of normality is also rejected for 
the sample return series by the Jarque-Bera 
test Lagrange multiplier statistic. 

 
Table 1: Descriptive statistics for crude oil price returns 

Returns Mean Max Min S.D. Skewness Kurtosis Jarque-Bera
rbresp 0.043 15.164 -12.601 2.347 -0.0007 5.341 686.6157
rbrefor 0.043 12.044 -12.534 2.146 -0.141 4.939 480.941
rbrefu 0.043 12.898 -10.946 2.212 -0.124 4.934 476.538
rwtisp 0.043 15.873 -13.795 2.412 -0.129 6.479 1524.764
rwtifor 0.042 13.958 -12.329 2.316 -0.182 5.204 625.414
rwtifu 0.043 14.546 -12.939 2.349 -0.151 6.318 1390.425
rdubsp 0.043 14.705 -12.943 2.199 -0.179 5.844 1029.861
rdubfor 0.040 13.767 -12.801 2.115 -0.308 5.718 973.0103
rtapsp 0.038 11.081 -10.483 2.000 -0.183 5.373 722.053
rtapfor 0.038 12.071 -12.869 2.076 -0.289 5.567 867.187

Note: Entries in bold are significant at the 1% level 
 

Table 2: Unit Root test for sample returns  

Returns 
ADF test (t-statistic) Phillips-Perron test 

None Constant Constant 
and Trend None Constant Constant 

and Trend 
rbresp -54.264 -54.274 -54.265 -54.301 -54.298 -54.291
rbrefor -57.076 -57.092 -57.083 -57.088 -57.100 -57.091
rbrefu -57.944 -57.958 -57.949 -57.901 -57.919 -57.909
rwtisp -41.065 -41.079 -41.073 -55.652 -55.677 -55.667
rwtifor -56.618 -56.626 -56.617 -56.697 -56.715 -56.705
rwtifu -55.872 -55.881 -55.872 -56.011 -56.030 -56.020
rdubsp -59.130 -59.145 -59.135 -59.090 -59.129 -59.119
rdubfor -59.664 -59.677 -59.667 -59.542 -59.573 -59.564
rtapsp -59.059 -59.072 -59.062 -58.955 -58.956 -58.947
rtapfor -59.949 -59.961 -59.951 -59.747 -59.775 -59.766

Note:  Entries in bold are significant at the 1% level. 
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Figure 1:  Logarithm of daily spot, forward and futures Returns of Brent, WTI and 
                  Dubai market 
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Table 3: Univariate volatility model of crude oil returns in Brent market  

 
Panel 3b. AR(1)-GJR(1,1) and ARMA(1,1)-GJR(1,1) estimates 

zReturns 
Mean equation Variance equation Log- 

Moment 
Second 
moment AIC SIC c AR(1) MA(1) ω̂  α̂  γ̂  β̂  

Spot 0.023 
0.803 

0.025 
1.594 

 0.035 
3.317 

0.031 
3.139 

0.031 
2.249 

0.947 
118.816 

-0.0031 0.994 4.262 4.270 

 0.022 
0.794 

-0.799 
-5.190 

0.816 
5.520  

0.030 
3.039 

0.029 
3.076 

0.029 
2.225 

0.951 
121.227 

-0.0026 0.995 4.261 4.271 

Forward 0.032 
1.277 

-0.033 
-1.960 

 0.032 
3.564 

0.043 
3.035 

0.012 
0.755 

0.944 
102.014 

-0.0031 0.993 4.103 4.111 

 0.032 
1.371 

0.597 
3.249 

-0.632 
-3.556  

0.031 
3.438 

0.043 
3.095 

0.011 
0.751 

0.945 
101.950 

-0.0029 0.994 4.102 4.111 

Futures 0.036 
1.402 

-0.019 
-1.200 

 0.035 
3.752 

0.065 
4.952 

-0.014 
-0.898 

0.935 
118.747 

-0.0029 0.993 4.141 4.150 

 0.035 
1.482 

0.742 
4.448 

-0.765 
-4.765  

0.033 
3.644 

0.063 
4.988 

-0.012 
-0.874 

0.937 
118.017 

-0.0027 0.994 4.141 4.150 

Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and 
Wooldridge (1992) robust t- ratios. (2) Entries in bold are significant at the 5% level 
 
 The logarithm of crude oil prices are 
plotted in Figure 1. It is clear that there is 
substantial clustering of volatilities, such 
that a turbulent trading day tends to be 
followed by another turbulent day, while a 
tranquil period tends to be followed by 
another tranquil period. 
 The empirical results of the unit root 
tests for the sample returns in each market 
are summarized in Table 2. The 
Augmented Dickey-Fuller (ADF) and 
Phillips-Perron (PP) tests are used to test 
for unit roots in the individual series. The 
large negative values in all cases indicate 
rejection of the null hypothesis at the 1% 
level, such that all returns are stationary. 
 

4. Estimation 
 
 Univariate estimates of conditional 
volatilities, GARCH(1,1) and GJR(1,1), 
with different mean equation models based 
on spot, forward and futures returns in 
each market are given in Tables 3-5, which 
reports the respective QMLE and the 
Bollerslev-Woodridge (1992) robust t-
ratios. The log-moment and second 
moment conditions are also presented to 
confirm the statistic properties of the 
estimates. The second moments of 
GARCH(1,1) and GJR(1,1),  namely 

1 1α β+  and 1 1 12α γ β+ + , are less than 1, 
and the estimated log-moments of 
GARCH(1,1) and GJR(1,1), which are 

Panel 3a. AR(1)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) estimates 

Returns 
Mean equation Variance equation Log- 

Moment 
Second 
moment AIC SIC c AR(1) MA(1) ω̂  α̂  β̂  

Spot 0.042 
1.468 

0.026 
1.648 

 0.035 
3.395  

0.050 
5.847  

0.944 
110.768 

-0.0043 0.994 4.265 4.272 

 0.041 
1.452 

-0.807 
-5.601  

0.825 
5.964  

0.031 
3.112  

0.048 
5.629  

0.947 
110.849 

-0.0037 0.995 4.264 4.273 

Forward 0.038 
1.491 

-0.032 
-1.978  

 0.032 
3.657  

0.050 
5.897  

0.943 
110.737 

-0.0046 0.993 4.103 4.109 

 0.038 
1.575 

0.608 
3.365  

-0.642 
-3.681  

0.031 
3.523  

0.049 
5.799  

0.944 
109.983 

-0.0043 0.993 4.102 4.110 

Futures 0.028 
1.059 

-0.021 
-1.291 

 0.034 
3.760  

0.057 
7.451  

0.937 
126.898 

-0.0048 0.994 4.142 4.149 

 0.029 
1.175 

0.736 
4.459  

-0.760 
-4.787  

0.032 
3.653  

0.056 
7.275  

0.938 
125.755 

-0.0046 0.994 4.141 4.149 
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given as ( )( )2
1 1log tE αη β+  and 

1(log(E α +
 

( ) 2
1 1))t tIγ η η β+ , respectively, 

are less than 0, so that the QMLE are 
consistent and asymptotically normal (see 
McAleer (2005) and McAleer et al. 
(2007)). 
 The univariate GARCH estimates for 
Brent market are given in Table 3. The 
coefficients in the mean equations in Panel 
3a are not all statistically significant. The 
mean equation of AR(1)-GARCH(1,1) is 
significant only for forward returns, while 
ARMA(1,1)-GARCH(1,1) is significant in 
all returns series. In addition, the 
coefficient in the conditional variance 
equations for both AR(1)-GARCH(1,1) 

and ARMA(1,1)-GARCH(1,1) are all 
significant. Consequently, ARMA(1,1)-
GARCH(1,1) is preferred to AR(1)-
GARCH(1,1). 
 In the case of the asymmetric 
GARCH(1,1) model in Panel 3b, only the 
coefficients in the mean equation for 
ARMA(1,1) are significant. The estimates 
of the asymmetric effect for the univariate 
model are not statistically significant 
except for spot returns. 
 The results for univariate estimation of 
the WTI market are reported in Table 4. 
The robust t ratios show that the 
ARMA(1,1)-GARCH(1,1) specifi-cation 
for all returns is statistically adequate in 
both the conditional mean and

 
 

Table 4: Univariate volatility model of crude oil returns in WTI market  

 
Panel 4b. AR(1)-GJR(1,1) and ARMA(1,1)-GJR(1,1) estimates 

Returns 
Mean equation Variance equation Log- 

Momen
t 

Second 
momen

t 
AIC SIC c AR(1) MA(1) ω̂  α̂  γ̂  β̂  

Spot 0.029 
1.005 

-0.016 
-0.916 

 0.055 
3.306  

0.067 
3.865  

-0.012 
-0.656 

0.931 
80.209  

-0.0039 0.992 4.346 4.354 

 0.029 
0.999 

-0.362 
-1.080 

0.356 
1.057 

0.054 
3.193  

0.067 
3.842  

-0.013 
-0.697 

0.931 
79.394  

-0.0038 0.992 4.346 4.356 

Forward 0.027 
0.988 

-0.022 
-1.383 

 0.039 
3.671  

0.048 
3.673  

0.011 
0.769 

0.939 
112.825 

-0.0031 0.993 4.246 4.254 

 0.026 
0.947 

-0.555 
-2.177 

0.543 
2.118  

0.035 
3.444  

0.047 
3.573  

0.010 
0.709 

0.941 
112.522 

-0.0028 0.993 4.246 4.255 

Futures 0.029 
1.049 

-0.001 
-0.049 

 0.041 
3.748  

0.050 
4.038  

0.014 
1.018 

0.936 
105.812 

-0.0030 0.993 4.250 4.258 

 0.028 
1.027 

-0.520 
-1.004 

0.529 
1.027 

0.037 
3.554  

0.049 
3.965  

0.013 
0.965 

0.938 
106.468 

-0.0027 0.994 4.250 4.259 

Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and 
Wooldridge (1992) robust t- ratios. (2) Entries in bold are significant at the 5% level 

Panel 4a. AR(1)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) estimates 

Returns 
Mean equation Variance equation Log- 

Moment 
Second 
moment AIC SIC c AR(1) MA(1) ω̂  α̂  β̂  

Spot 0.0212 
0.683 

-0.017 
-0.986 

 0.055 
3.363 

0.061 
5.634  

0.931 
83.514  

-0.0063 0.992 4.346 4.353 

 0.024 
0.965 

0.842 
9.754  

-0.871 
-11.201  

0.050 
3.296 

0.059 
5.586  

0.933 
86.009  

-0.0057 0.992 4.344 4.352 

Forward 0.033 
1.216 

-0.022 
-1.367 

 0.040 
3.711 

0.055 
6.810  

0.937 
116.961 

-0.0050 0.992 4.246 4.253 

 0.032 
1.160 

-0.572 
-2.327  

0.561 
2.265  

0.037 
3.489 

0.053 
6.633  

0.940 
117.146 

-0.0045 0.993 4.246 4.254 

Futures 0.037 
1.330 

-3.43E-05 
-0.002 

 0.041 
3.812 

0.058 
6.203  

0.935 
107.793 

-0.0051 0.993 4.250 4.257 

 0.037 
1.342 

-0.957 
-30.672  

0.959 
31.052  

0.042 
3.884 

0.059 
6.273  

0.934 
107.696 

-0.0053 0.993 4.251 4.259 
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conditional variance equations, but the 
coefficients in the conditional mean 
equation of AR(1)-GARCH(1,1) are 
insignificant. The univariate GJR models 
are presented in Panel 4b in Table 4, where 
only the forward returns for ARMA-
GARCH are significant. However, 
asymmetries between negative and 
positive shocks on the conditional variance 
are not observed. 
 For the Dubai market in Table 5, the 
coefficients in the mean equation for spot 
and forward returns in Panels 5a and 5b 
are significant only for AR(1)-
GARCH(1,1) and AR(1)-GJR(1,1). Panel 
5a shows that the coefficients in the 
conditional variance equation for AR(1)-
GARCH(1,1) are all statistically 
significant, whereas in Panel 5b, the 
conditional variance coefficients are 
significant only in spot returns.  These 
results show that there is an asymmetric 
effect between negative and positive 
shocks on the conditional variance. 

 Table 6 presents the constant 
conditional correlations for the spot, 
forward and futures returns in each market 
by using the CCC model based on the 
univariate GARCH(1,1) estimates. Three 
returns in the Brent and WTI markets in 
Panels 6a and 6b provide six conditional 
correlations, while two returns in the 
Dubai market in Panel 6c give one 
conditional correlation. The highest 
estimated conditional correlation in the 
Brent market is 0.940, namely between the 
standardized shocks to the volatility of 
spot and forward returns. In the case of the 
WTI market, the highest estimated 
conditional correlation for Brent is 0.883, 
namely between the standardized shocks to 
the volatility of spot and futures returns, 
and futures and forward returns. The 
conditional correlation between spot and 
forward returns for the Tapis market is 
0.936.  

  
Table 5: Univariate volatility model of crude oil returns in Dubai market  

 
Panel 5b. AR(1)-GJR(1,1) and ARMA(1,1)-GJR(1,1) estimates 

Returns 
Mean equation Variance equation Log- 

Momen
t 

Second 
momen

t 
AIC SIC c AR(1) MA(1) ω̂  α̂  γ̂  β̂  

Spot 0.036 
1.478 

-0.067 
-4.162 

 0.046 
3.391  

0.031 
2.874  

0.030 
2.412 

0.944 
107.349 

-0.0045 0.99 4.153 4.162 

 0.038 
1.610 

0.323 
1.800 

-0.393 
-2.246  

0.042 
3.405  

0.031 
2.907  

0.029 
2.457 

0.944 
107.267 

-0.0045 0.999 4.153 4.163 

Forward 0.039 
1.659 

-0.069 
-4.334 

 0.040 
3.758  

0.038 
3.152  

0.024 
1.866 

0.939 
105.081 

-0.0045 0.989 4.064 4.072 

 0.040 
1.829 

0.387 
2.445  

-0.458 
-2.996  

0.039 
3.745  

0.038 
3.249  

0.024 
1.878 

0.940 
105.641 

-0.0044 0.99 4.063 4.073 

Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and 
Wooldridge (1992) robust t- ratios. (2) Entries in bold are significant at the 5% level 
 

Panel 5a. AR(1)-GARCH(1,1) and ARMA(1,1)-GARCH(1,1) estimates 

Returns 
Mean equation Variance equation Log- 

Moment 
Second 
moment AIC SIC c AR(1) MA(1) ω̂  α̂  β̂  

Spot 0.053 
2.162  

-0.064 
-4.122  

 0.045 
3.384 

0.052 
6.448  

0.938 
106.264 

-0.0059 0.99 4.156 4.163 

 0.053 
2.286  

0.329 
1.776 

-0.397 
-2.197  

0.044 
3.386 

0.052 
6.397  

0.938 
106.082 

-0.0059 0.99 4.156 4.164 

Forward 0.052 
2.206  

-0.068 
-4.344  

 0.039 
3.691 

0.054 
6.885  

0.937 
113.271 

-0.0057 0.991 4.065 4.072 

 4.072 
2.367  

0.399 
2.529  

-0.469 
3.084  

0.038 
3.659 

0.054 
6.833  

0.937 
113.141 

-0.0056 0.991 4.064 4.073 
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Table 6: Constant conditional correlation (CCC) based on GARCH(1,1) model 
Panel 6a Brent 

Returns rbresp rbrefor rbrefu 
rbresp 1.000   
rbrefor 0.940 1.000  
rbrefu 0.784 0.783 1.000 

 
Panel 6b WTI 

Returns rwtisp rwtifor rwtifu 
rwtisp 1.000   
rwtifor 0.837 1.000  
rwtifu 0.883 0.883 1.000 

 
Panel 6c Dubai 

Returns rdubsp rdubfor 
rdubsp 1.000  
rdubfor 0.936 1.000 

Note: Entries in bold are significant at 5%. 
 
 The estimates of the dynamic 
conditional correlations (DCC) and the 
descriptive statistics for DCC across the 
shocks to returns in each market are 
presented in Table 7, Panels 7a and 7b, 
respectively. Based on the Bollerslev and 
Wooldridge (1992) robust t-ratios, the 
estimates of the DCC parameters, 1̂θ  and 

2̂θ , in each market are always statistically 
significant. This indicates that the 
assumption of constant conditional 
correlation for all shocks to returns is not 
supported empirically. In addition, the 
mean of the dynamic conditional 
correlations of each pair is identical to the 
constant conditional correlation estimates 
reported in Table 6. The short run 
persistence of shocks on the dynamic 
conditional correlations is greatest for WTI 
at 0.264, while the largest long run 
persistence of shocks to the conditional 
correlations is for Brent, namely 0.995 = 
0.027 + 0.968. 
 The corresponding multivariate 
estimates for the VARMA(1,1)-GARCH 
and VARMA(1,1)-AGARCH models for 
each market are given in Tables 8 to 10. It 
is clear from Table 8, Panel a, that the 
forward returns are significant only for 
ARCH and GARCH, while the spot and 
futures returns are only significant for 

ARCH. Moreover, there are significant 
interdependences in the conditional 
volatility between spot and forward 
returns, and between spot and futures 
returns. The results in Panel b show that 
the ARCH and GARCH effects are 
significant in the conditional volatility 
model for spot, forward and futures 
returns. There are also significant 
interdependences in the conditional 
volatility model between spot and futures 
returns. In addition, as the asymmetric 
effects for each return in Panel 8a are 
insignificant, if follows that the VARMA-
GARCH model dominates its asymmetric 
counterpart, VARMA-AGARCH. 
 Table 9, Panel a, for Brent market 
presents the VARMA-GARCH model, in 
which the ARCH and GARCH effects are 
significant in the conditional volatility 
model for spot, forward and futures 
returns. Also present are the spillover 
effects across the spot, forward and futures 
returns. In contrast, Panel 9b shows that 
the ARCH and GARCH effects are 
insignificant, except for the GARCH effect 
for forward returns. In addition, the 
asymmetric spillover effects for each of 
the returns are not statistically significant, 
such that VARMA-AGARCH is 
dominated by VARMA-GARCH. 
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Figure 2: Dynamic conditional correlation 
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Table 7: Dynamic conditional correlation (DCC) based on GARCH(1,1) model 
Panel 7a. DCC: estimates of Q model   

Returns 
1̂θ  2̂θ  

rbresp_rbrefor_rbrefu 0.027 
5.140 

0.968 
135.802 

rwtisp_rwtifor_rwtifu 0.264 
9.544 

0.446 
14.070 

rdubsp_rdubfor 0.095 
3.321 

0.894 
26.858 

Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and 
Wooldridge (1992) robust t- ratios. (2) Entries in bold are significant at 5%. 
Panel 7b. DCC descriptive statistics 

Returns Mean Max Min S.D. Skewness Kurtosis 
rbresp_rbrefor 0.939 0.991 0.648 0.041 -2.315 11.474 
rbresp_rbrefu 0.782 0.951 0.267 0.113 -1.077 3.803 
rbrefor_rbrefu 0.785 0.957 0.272 0.113 -1.087 3.861 
rwtisp_rwtifor 0.837 0.989 -0.346 0.113 -3.894 25.590 
rwtisp_rwtifu 0.883 0.995 -0.423 0.099 -4.625 32.601 
rwtifor_rwtifu 0.882 0.992 -0.272 0.093 -4.705 35.334 
rdubsp_rdubfor 0.941 0.998 -0.131 0.106 -4.135 24.456 

 
Table 8: Brent market 

Panel a. VARMA(1,1)-GARCH(1,1) model 
Returns ω  brespα  breforα  brefuα  brespβ  breforβ  brefuβ  

rbresp 0.034 
(4.085) 

0.018 
(1.735) 

-0.011 
(-0.509) 

0.049 
(3.163) 

0.962 
(79.990) 

0.005 
(0.231) 

-0.028 
(-2.140) 

rbrefor 0.215 
(1.390) 

-0.019 
(-0.690) 

-0.033 
(-1.377) 

0.147 
(4.703) 

0.407 
(3.179) 

-0.164 
(-0.882) 

0.487 
(2.777) 

rbrefu -0.002 
(-0.079) 

-0.040 
(-9.420) 

0.071 
(3.656) 

0.046 
(2.465) 

0.095 
(3.252) 

-0.026 
(-0.472) 

0.854 
(16.441) 

Panel b.VARMA(1,1)-AGARCH(1,1) model    
Returns ω  brespα  breforα  brefuα  γ  brespβ  breforβ  brefuβ  
rbresp 0.030 

3.870 
0.001 
0.129 

-0.011 
-0.535 

0.048 
3.336 

0.026 
2.395 

0.967 
101.050 

0.005 
0.229 

-0.027 
-2.155 

rbrefor 0.105 
1.934 

-0.014 
-0.619 

-0.017 
-0.436 

0.105 
3.608 

0.032 
0.929 

0.160 
2.379 

0.644 
5.101 

0.043 
0.760 

rbrefu 0.012 
0.630 

-0.031 
-2.677 

0.057 
2.654 

0.049 
2.466 

-0.011 
-0.626 

0.062 
2.624 

-0.031 
-0.711 

0.897 
21.709 

Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and 
Wooldridge (1992) robust t- ratios. (2) Entries in bold are significant at 5%. 
 
 Table 10 presents the VARMA-
GARCH and VARMA-AGARCH 
estimates for Dubai. It is clear that the 
ARCH and GARCH effects for spot and 
forward returns are significant, and there is 
a significant display of interdependences 
in the conditional volatilities between the 
spot and forward returns. In Panel 10b the 
ARCH and GARCH effects are 
statistically significant only for forward 
returns, but the ARCH effect is significant 
for spot returns. There is also the presence 
of interdependences between spot and 

forward returns, while the asymmetric 
spillover effects for each of the returns is 
insignificant. Consequently, VARMA-
GARCH is preferred to VARMA-
AGARCH. 
 
5. Conclusion 
 
 This paper estimated four multivariate 
volatility models, namely CCC, DCC, 
VARMA-GARCH and VARMA-
AGARCH, for the spot, forward and 
futures returns for three major benchmark  
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Table 9: WTI market 
Panel a. VARMA(1,1)-GARCH(1,1) model 

Returns ω  rwtispα  wtiforα  wtifuα  wtispβ  wtiforβ  wtifuβ  
rwtisp 0.005 

(0.062) 
0.041 

(0.818) 
0.113 

(2.331) 
-0.016 

(-0.279) 
0.640 

(4.001)
0.202 

(1.184) 
0.058 

(0.643) 
rwtifor 0.026 

(5.365) 
-0.006 

(-1.311) 
0.020 

(1.976) 
0.031 

(2.669)
0.009 

(1.452) 
0.979 

(186.055) 
-0.036 

(-4.697) 
rwtifu -0.010 

(-0.179) 
-0.013 

(-1.851) 
0.064 

(1.829) 
0.038 

(1.075) 
0.046 

(1.534) 
0.141 

(0.876) 
0.728 

(4.583) 
Panel b.VARMA(1,1)-AGARCH(1,1) model     
Returns ω  wtispα  wtiforα  wtifuα  γ  wtispβ  wtiforβ  wtifuβ  
rwtisp -0.007 

(-0.078) 
0.012 

(0.314) 
0.119 

(2.395)
-0.011 

(-0.195) 
0.045 

(0.843) 
0.607 

(3.805)
0.237 

(1.349) 
0.058 

(0.596) 
rwtifor 0.026 

(5.641) 
-0.004 

(-0.960) 
0.017 

(1.277) 
0.029 

(2.448)
0.006 

(0.743) 
0.007 

(1.178) 
0.979 

(185.808) 
-0.035 

(-4.502) 
rwtifu -0.008 

(-0.146) 
-0.012 

(-1.760) 
0.062 

(1.757) 
0.029 

(0.676) 
0.023 

(0.658) 
0.041 

(1.380) 
0.146 

(0.978) 
0.727 

(4.948)
Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and 
Wooldridge (1992) robust t- ratios. (2) Entries in bold are significant at 5%.  
 

Table 10: Dubai market 
Panel a. VARMA(1,1)-GARCH(1,1) model 

Returns ω  dubspα  dubforα  dubspβ  dubforβ  
rdubsp 0.035 

(6.403)
0.004 

(0.524) 
0.051 

(4.672) 
0.976 

(106.169) 
-0.038 

(-4.757) 
rdubfor 0.093 

(1.070) 
0.050 

(1.069) 
0.012 

(0.260) 
0.220 

(0.598) 
0.665 

(1.526) 
Panel b.VARMA(1,1)-AGARCH(1,1) model   

Returns ω  dubspα  dubforα  γ  dubspβ  dubforβ  
rdubsp 0.032 

(5.510) 
-0.011 

(-1.123) 
0.051 

(5.409) 
0.021 

(2.421) 
0.975 

(106.637) 
-0.031 

(-3.650) 
rdubfor 0.084 

(1.653) 
0.040 

(0.884) 
0.002 

(0.052) 
0.037 

(1.164) 
0.139 

(1.016) 
0.758 

(4.639) 
Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and 
Wooldridge (1992) robust t- ratios. (2) Entries in bold are significant at 5%. 
 

international crude oil markets, namely 
Brent, WTI and Dubai. The returns for the  
period 2 January 1991 to 10 November 
2008 were estimated using multivariate 
conditional volatility and conditional 
correlation models. Both the univariate 
ARCH and GARCH components of the 
GARCH(1,1) and GJR(1,1) models were  
significant for all returns, whereas most of 
the estimated asymmetric effects for 
GJR(1,1) were not significant.  
 The calculated constant conditional 
correlations across the conditional 
volatilities of returns using the CCC model 
were high. The paper also presented the 
ARCH and GARCH effects for returns, 
and significant interdependences in the 

conditional volatilities across returns in 
each market. The estimates of volatility 
spillovers and asymmetric effects for 
negative and positive shocks on the 
conditional variances suggested that the 
VARMA-GARCH model was superior to 
the asymmetric VARMA-AGARCH. In 
addition, the estimates of the DCC mode 
for returns in each market were 
statistically significant. In short, constant 
conditional correlations were not 
supported in the empirical examples. Such 
estimates of the dynamic conditional 
correlations of shocks to returns associated 
with spot, forward and futures prices can 
be used as an aid to risk diversification in 
crude oil market. 
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