
 

 

 

Chapter 4 

Modelling Spillover Effects and Forecasting Volatility in 

Crude Oil Spot, Forward and Futures Markets 

 

  Nowadays, the four major benchmarks in the world of international crude oil trading 

are: (1) West Texas Intermediate (WTI), (2) Brent, (3) Dubai and (4) Tapis. Crude oil prices 

are usually quoted in three different kinds of financial transactions, namely spot, forward and 

futures prices. Thus crude oil is a part of commodity finance. Since volatility is crucially 

important on finance and volatility spillovers that appears to be widespread in the financial 

markets, including energy market. The purpose of this chapter is to investigate the 

importance of volatility spillover effects and asymmetric effects of negative and positive 

shocks on the conditional variance when modelling crude oil volatility in returns on spot, 

forward and futures prices in Brent, WTI, Dubai and Tapis markets and across these markets. 

  This chapter is an original paper presented at 2nd Conference of the Thailand 

Econometric Society, Chiang Mai, Thailand. 
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A B S T R A C T 
______________________________________________________ 
 
Crude oil price volatility has been extensively analyzed for organized 
spot, forward and futures markets for over a decade and is crucial for 
forecasting volatility and Value-at-Risk (VaR). There are 4 major 
benchmarks in the international oil market, namely West Texas 
Intermediate (USA), Brent (North Sea), Dubai/Oman (Middle East) and 
Tapis (Asia-Pacific), all of which are likely to be highly correlated. This 
paper analyses the volatility spillover effects across and within the four 
markets using three multivariate GARCH models, namely the CCC 
model, VARMA-GARCH model and VARMA-AGARCH model. A 
rolling window approach is used to forecast 1-day ahead conditional 
correlations. The paper presents the evidence of volatility spillovers and 
asymmetric effect on the conditional variance in most pair of series. In 
addition, the forecasted conditional correlation between the pair of crude 
oil returns have both positive and negative trend. 

____________________             ________________________________________________ 
 
1.  Introduction 
 
 Over the past 20-30 years, oil has 
become the biggest traded commodity in 
the world. In the crude oil market, oil is 
sold under a variety of contract 
arrangements and in spot transactions, is 
also traded in futures markets which set 
the spot, forward and futures prices. Crude 
oil is usually sold close to the point of 
production, and is transferred as the oil 
flows from the loading terminal to the ship 
FOB (free on board). Thus, spot prices are 
quoted for immediate delivery of crude oil 
as FOB prices. Forward prices are the 
agreed upon price of crude oil in forward 
contracts. Futures price are prices quoted 
for delivering in a specified quantity of 
crude oil at a specific time and place in the 
future in a particular trading center.  
 
  * Correspondence author,  
    E-mail address: roengchaitan@gmail.com  

 The four major benchmarks in the 
world of international trading today are: 1) 
West Texas Intermediate (WTI), the 
reference crude for USA, (2) Brent, the 
reference crude oil for the North Sea, (3) 
Dubai, the benchmark crude oil for the 
Middle East and Far East, and (4) Tapis, 
the benchmark crude oil for the Asia-
Pacific region. Volatility (or risk) is 
crucially important in finance and is 
typically unobservable, and volatility 
spillovers appear to be widespread in the 
financial markets (Milunovich and Thorp, 
2006), including energy futures markets 
(Lin and Tamvakis, 2001). Consequently, 
a volatility spillover occurs when changes 
in volatility in one market produce a 
lagged impact on volatility in other 
markets, over and above local effects. 
 Accurate modelling of volatility is 
crucial in finance and for commodity. 
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Shocks to returns can be divided into 
predictable and unpredictable components. 
The most frequently analyzed predictable 
component in shocks to returns is the 
volatility in the time-varying conditional 
variance. The success of Generalized 
Autoregressive Conditional Heteroske-
casticity (GARCH) model of Engle (1982) 
and Bollerslev (1986) have subsequently 
led to a family of univariate and 
multivariate GARCH models which can 
capture different behavior in financial 
returns, including time-varying volatility, 
persistence and clustering of volatility, and 
the asymmetric effects of positive and 
negative shocks of equal magnitude. In 
modelling multivariate returns, such as 
spot, forward and futures returns, shocks 
to returns not only have dynamic 
interdependence in risks, but also in the 
conditional correlations which are key 
elements in portfolio construction and the 
testing of unbiasedness and the efficient 
market hypothesis. The hypothesis of 
efficient markets is essential for 
understanding optimal decision making, 
especially for hedging and speculation. 
 Substantial research has been 
conducted on spillover effects in energy 
futures markets. Lin and Tamvakis (2001) 
investigated volatility spillover effects 
between NYMEX and IPE crude oil 
contracts in both non-overlapping and 
simultaneous trading hours. They found 
that substantial spillover effects exist when 
both markets are trading simultaneously, 
although IPE morning prices seem to be 
affected considerably by the close of the 
previous day on NYMEX. Ewing et al 
(2002) examined the transmission of 
volatility between the oil and natural gas 
markets using daily returns data, and found 
that changes in volatility in one market 
may have spillovers to the other market. 
Sola et al (2002) analyzed volatility links 
between different markets based on a 
bivariate Markov switching model, and 
discovered that it enables identification of 
the probabilistic structure, timing and the 

duration of the volatility transmission 
mechanism from one country to another.  
 Hammoudeh et al. (2003) examined 
the time series properties of daily spot and 
futures prices for three petroleum types 
traded at five commodity centers within 
and outside the USA by using multivariate 
vector error-correction models, causality 
models and the GARCH models. They 
found that WTI crude oil NYMEX 1-
month futures prices involves causality 
and volatility spillovers, NYMEX gasoline 
has bi-directional causality relationships 
among all the gasoline spot and futures 
prices, spot prices produce the greatest 
spillovers, and NYMEX heating oil for 1- 
and 3-month futures are particularly strong 
and significant. Hammoudeh et al. (2009) 
examined the dynamic volatility and 
volatility transmission in a multivariate 
setting for four Golf Cooperation Council 
economies, and analyzed the optimal 
weights and hedge ratios for sectoral 
portfolio holdings. 
 Of four major crude oil markets, only 
the most well known oil market, namely 
WTI and Brent, have spot, forward and 
futures prices, while the Dubai and Tapis 
markets have only spot and forward prices. 
It would seem that no research has yet 
tested the spillover effects, for each of 
spot, forward and futures crude oil prices 
in and across all markets.  
 Several multivariate GARCH models 
specify risk on one asset as depending 
dynamically on its own past and on the 
past of the other assets (see McAleer, 
2005). da Veiga, Chan and McAleer 
(2008) analysed the multivariate VARMA-
GARCH model of Ling and McAleer 
(2003) and VARMA-AGARCH model of 
McAleer, Hoti and Chan (2009), and 
found that they were to superior to the 
GARCH of Bollerslev (1986) and GJR of 
Glosten, Jagannathan and Runkle (1992).  
 In this paper we investigate the 
importance of volatility spillover effects 
and asymmetric effects of negative and 
positive conditional shocks on the 
conditional variance when modelling 
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crude oil volatility in returns on spot, 
forward and futures prices in Brent, WTI, 
Dubai and Tapis markets and across these 
markets by using multivariate conditional 
volatility models. The spillover effects 
between returns in the markets and across 
markets are also estimated. A rolling 
window is used to forecast 1-day ahead 
conditional correlations and to explain the 
conditional correlations movements, which 
are important for portfolio construction 
and hedging.  
 The plan of the paper is as followed. 
Section 2 discusses the univariate and 
multivariate GARCH models to be 
estimated. Section 3 explains the data, 
descriptive statistics and unit root tests. 
Section 4 describes the empirical estimates 
and some diagnostic tests of the univariate 
and multivariate models, and forecast       
1-day ahead conditional correlations. 
Section 5 provides some concluding 
remarks. 
 
2. Econometric models 
 
 This section presents the CCC model 
of Bollerslev (1990), the VARMA-
GARCH model of Ling and McAleer 
(2003) and VARMA-AGARCH model of 
McAleer, Hoti and Chan (2009). These 
models assume constant conditional 
correlations, and do not suffer from the 
problem of dimentionality, as compare 
with the VECH and BEKK models (see 
McAleer et al. (2008) and Carporin and 
McAleer (2009)). The VARMA-GARCH 
model of Ling and McAleer (2003), 
assumes symmetry in the effect of positive 
and negative shocks of equal magnitude on 
the conditional volatility, and is given by 

( )1t t t tY E Y F ε−= +                                  (1) 

( )( ) ( )t tL Y Lμ εΦ − = Ψ                         (2) 

t t tDε η=                                                  (3) 

,
1 1

r s

t t l t l l i t j
l l

H W A B Hε − −
= =

= + +∑ ∑r              (4) 

where ( )1 2
,diagt i tD h= , ( )1 ,...,t t mtH h h ′= , 

( )1 ,...,t t mtW ω ω ′= , ( )1 ,...,t t mtη η η ′=  is a 
sequence of independently and identically 

(iid) random vectors, ( )2 2,...,t it mtε ε ε ′=
r , tA  

and lB  are m m×  matrices with typical 
elements ijα  and ijβ , respectively, for 
, 1,...,i j m= , ( ) ( )( )t itI diag Iη η=  is an 

m m×  matrix. ( ) 1 ...mL I LΦ = −Φ −  
p

pL−Φ   and ( ) 1 ... q
m qL I L LΨ = −Ψ − −Ψ  

are polynomials in L, the lag operator, and 
tF  is the past information available to time 

t. lα  represents the ARCH effect, and lβ  
represents the GARCH effect. Spillover 
effects or the independence of conditional 
variance across crude oil returns are given 
in the conditional volatility for each asset 
in the portfolio. Based on equation (3), the 
VARMA-GARCH model also assumes 
that the matrix of conditional correlations 
is given by ( )t tE ηη′ = Γ . If 1m = , 
equation (4.4) reduces to the univariate 
GARCH model of Bollerslev (1986): 

2 2

1 1

p q

t i t i i t i
i i

h hω α ε β− −
= =

= + +∑ ∑                    (5)  

 The VARMA-GARCH model assumes 
that negative and positive shocks of equal 
magnitude have identical impacts on the 
conditional variance. An extension of the 
VARMA-GARCH model to accommodate 
asymmetric impacts of the positive and 
negative shocks is the VARMA-AGARCH 
model of McAleer, Hoti and Chan (2009), 
which captures asymmetric spillover 
effects from other crude oil returns. An 
extension of (4) to accommodate 
asymmetries with respect to itε  is given by 

1 1 1

r r s

t l t l l t l t l l t l
l l l

H W A C I B Hε ε− − − −
= = =

= + + +∑ ∑ ∑r r  (6) 

in which it ithε η=  for all i and t, lC are 

m m×  matrices and ( )itI η  is an indicator 
variable distinguishing between the effects 
of positive and negative shocks of equal 
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magnitude on conditional volatility, such 
that 

( )
0, 0
1, 0

it
it

it

I
ε

η
ε

>⎧
= ⎨ ≤⎩

                               (4) 

 When, 1m = , equation (4) reduces to 
the asymmetric univariate GARCH, or 
GJR model of Glosten et al. (1992): 

( )( ) 2

1 1

r s

t j j t j t j j t j
j j

h I hω α γ ε ε β− − −
= =

= + + +∑ ∑   (8) 

For the underlying asymptotic theory, see 
McAleer et al. (2007) and, for an 
alternative asymmetric GARCH model, 
namely EGARCH, see Nelson (1991). 
 If 0lC = , with lA  and lB  being 
diagonal matrices for all l, then VARMA-
AGARCH reduces to: 

, ,
1 1

r s

it i l i t l l i t l
l l

h hω α ε β− −
= =

= + +∑ ∑                (9) 

which is the constant conditional 
correlation (CCC) model of Bollerslev 
(1990). As given in equation (7), the CCC 
model does not have volatility spillover 
effects across different financial assets, 
and hence is intrinsically univariate in 
nature. In addition, CCC also does not 
capture the asymmetric effects of positive 
and negative shocks on conditional 
volatility. 
 The parameters in model (1), (4), (6) 
and (9) can be obtained by maximum 
likelihood estimation (MLE) using a joint 
normal density, namely 

( )1

1

1ˆ arg min log
2

n

t t t t
t

Q Q
θ

θ ε ε−

=

′= +∑      (10) 

where θ  denotes the vector of parameters 
to be estimated on the conditional log-
likelihood function, and tQ  denotes the 
determinant of tQ , the conditional 
covariance matrix. When tη  does not 
follow a joint multivariate normal 
distribution, the appropriate estimators are 
defined as the Quasi-MLE (QMLE). 
 In order to forecast 1-day ahead 
conditional correlation, we use rolling 
windows technique and examine the time-
varying nature of the conditional 

correlations using VARMA-GARCH and 
VARMA-AGARCH. Rolling windows are 
a recursive estimation procedure whereby 
the model is estimated for a restricted 
sample, then re-estimated by adding one 
observation at the end of the sample and 
deleting one observation from the 
beginning of the sample. The process is 
repeated until the end of the sample. In 
order to strike a balance between 
efficiency in estimation and a viable 
number of rolling regressions, the rolling 
window size is set at 2008 for all data sets. 
 
3. Data 
 
 The univariate and multivariate 
GARCH models are estimated using 3,007 
observations of daily data on crude oil 
spot, forward and futures prices in the 
Brent, WTI (West Texas Intermediate), 
Dubai and Tapis markets for the period 30 
April 1997 to 10 November 2008. All 
prices are expressed in US dollars. In WTI 
market, prices are crude oil-WTI spot 
cushing price ($/BBL), crude oil-WTI one-
month forward price ($/BBL) and 
NYMEX one-month futures prices, while 
the prices in the Brent market are crude 
oil-Brent spot price FOB ($/BBL), crude 
oil-Brent one-month forward price 
($/BBL) and one-month futures prices. In 
the Dubai market, the prices are crude oil-
Arab Gulf Dubai spot price FOB ($/BBL) 
and crude oil-Dubai one-month forward 
price ($/BBL), where as in the Tapis 
market, the prices are crude oil-Malaysia 
Tapis spot price FOB ($/BBL) and crude 
oil-Tapis one-month forward price 
($/BBL). Three of them are obtained from 
DataStream database service, while the 
series for Tapis are collected from Reuters. 
 The synchronous price returns i for 
each market j are computed on a 
continuous compounding basis as the 
logarithm of closing price at the end of the 
period minus the logarithm of the closing 
price at the beginning of the period, which 
is defined as: ( ), , , 1logij t ij t ij tr P P −= . 
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Figure 1: Logarithm of daily spot, forward and futures of Brent, WTI, Dubai and Tapis 
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Table 1: Descriptive statistics for crude oil price returns 
Returns Mean Max Min S.D. Skewness Kurtosis Jarque-Bera 
rbresp 0.043 15.164 -12.601 2.347 -0.0007 5.341 686.6157 
rbrefor 0.043 12.044 -12.534 2.146 -0.141 4.939 480.941 
rbrefu 0.043 12.898 -10.946 2.212 -0.124 4.934 476.538 
rwtisp 0.043 15.873 -13.795 2.412 -0.129 6.479 1524.764 
rwtifor 0.042 13.958 -12.329 2.316 -0.182 5.204 625.414 
rwtifu 0.043 14.546 -12.939 2.349 -0.151 6.318 1390.425 
rdubsp 0.043 14.705 -12.943 2.199 -0.179 5.844 1029.861 
rdubfor 0.040 13.767 -12.801 2.115 -0.308 5.718 973.0103 
rtapsp 0.038 11.081 -10.483 2.000 -0.183 5.373 722.053 
rtapfor 0.038 12.071 -12.869 2.076 -0.289 5.567 867.187 

Note: Entries in bold are significant at the 1% level. 
 

Table 2: Unit Root test for sample returns  

Returns 
ADF test (t-statistic) Phillips-Perron test 

None Constant Constant 
and Trend None Constant Constant 

and Trend 
rbresp -54.264 -54.274 -54.265 -54.301 -54.298 -54.291 
rbrefor -57.076 -57.092 -57.083 -57.088 -57.100 -57.091 
rbrefu -57.944 -57.958 -57.949 -57.901 -57.919 -57.909 
rwtisp -41.065 -41.079 -41.073 -55.652 -55.677 -55.667 
rwtifor -56.618 -56.626 -56.617 -56.697 -56.715 -56.705 
rwtifu -55.872 -55.881 -55.872 -56.011 -56.030 -56.020 
rdubsp -59.130 -59.145 -59.135 -59.090 -59.129 -59.119 
rdubfor -59.664 -59.677 -59.667 -59.542 -59.573 -59.564 
rtapsp -59.059 -59.072 -59.062 -58.955 -58.956 -58.947 
rtapfor -59.949 -59.961 -59.951 -59.747 -59.775 -59.766 

Note: Entries in bold are significant at the 1% level. 
 

Table 3: Univariate ARMA(1,1)-GARCH(1,1) 
 Mean equation Variance equation 

Returns C AR(1) MA(1) ω  α̂  β̂  
rbresp  0.088 

2.179
-0.981 

-95.091 
0.988 

119.046 
0.069 
2.585 

0.039 
4.292 

0.949 
83.066 

rbrefor 0.084 
2.407

0.236 
0.596 

-0.277 
-0.707 

0.084 
2.708 

0.042 
4.281 

0.940 
68.425 

rbrefu 0.081 
2.281

0.092 
0.259 

-0.141 
-0.399 

0.062 
2.396 

0.042 
4.451 

0.946 
77.153 

rwtisp 0.072 
1.698 

-0.949 
-18.055 

0.955 
19.298 

0.101 
2.502 

0.046 
3.698 

0.938 
58.264 

rwtifor 0.078 
2.063 

0.350 
0.888 

-0.387 
-0.998 

0.144 
2.731 

0.055 
4.448 

0.919 
48.541 

rwtifu 0.085 
2.142 

-0.971 
-32.149 

0.969 
30.750 

0.189 
2.971 

0.065 
3.633 

0.902 
36.669 

rdubsp 0.090 
2.771 

0.019 
0.083 

-0.099 
-0.434 

0.048 
2.303 

0.049 
5.355 

0.942 
85.548 

rdubfor 0.086 
2.696 

0.052 
0.227 

-0.134 
-0.593 

0.061 
2.571 

0.048 
4.331 

0.939 
69.601 

rtapsp 0.067 
2.217 

0.153 
0.493 

-0.211 
-0.687 

0.076 
2.419 

0.047 
3.818 

0.935 
53.855 

rtapfor 0.058 
1.856 

0.173 
0.742 

-0.246 
-1.072 

0.056 
2.618 

0.041 
4.314 

0.946 
80.476 

Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and 
Wooldridge (1992) robust t- ratios. (2)  Entries in bold are significant at the 5% level. 
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 Table 1 presents the descriptive 
statistics for the returns series of crude oil 
prices. The average return of spot, forward 
and futures in Brent, WTI and Dubai are 
similar, while Tapis has the lowest average 
of returns. The normal distribution has a 
skewness statistic equal to zero and a 
kurtosis statistic of 3, but these crude oil 
returns series has high kurtosis, suggesting 
the presence of fat tails, and negative 
skewness statistics signifying the series 
has a longer left tail (extreme losses) than 
right tail (extreme gain). Jarque-Bera 
Lagrange multiplier statistics of crude oil 
returns in each market are statistically 
significant, thereby signifying that the 
distributions of these prices are not 
normal, which may be due to the presence 
of the extreme observations. 
 Figure 1 presents the plot of 
synchronous crude oil price returns. These 
indicate volatility clustering or period of 
high volatility followed by periods of 
tranquility, such that crude oil returns 
oscillate in a range smaller than the normal 
distribution. However, there are some 

circumstances where crude oil returns 
fluctuate in a much wider scale than is 
permitted under normality. 
 The unit root tests for all crude oil 
returns in each market are summarized in 
table 2. The Augmented Dickey-Fuller 
(ADF) and Phillips-Perron (PP) test were 
used to test the null hypothesis of a unit 
root against the alternative hypothesis of 
stationarity.  The test yield large negative 
values in all cases for level such that the 
individual return series reject the null 
hypothesis at the 1% significant level, so 
that all returns series are stationary. 
 Since the univariate ARMA-GARCH 
is nested to the VARMA-GARCH model, 
and ARMA-GJR is nested to VARMA-
AGARCH with conditional variance 
specified in (5) and (8), the univariate 
ARMA-GARCH and ARMA-GJR models 
are estimated. It is sensible to extend 
univariate models to their multivariate 
counterpart if the properties of univariate 
models are satisfied. All estimation is 
conducted using the EViews 6 
econometric software package. 

 
Table 4: Univariate ARMA(1,1)-GJR (1,1) 

Returns 
Mean equation Variance equation 

C AR(1) MA(1) ω  α̂  γ̂  β̂  
rbresp  0.054 

1.367 
-0.981 

-91.730 
0.988 

114.293 
0.069 
2.5514 

0.0116 
0.974 

0.042 
2.792 

0.955 
85.638 

rbrefor 0.063 
1.814 

0.178 
0.454 

-0.224 
-0.573 

0.086 
2.687 

0.019 
1.498 

0.035 
2.419 

0.944 
68.125 

rbrefu 0.069 
1.942 

0.059 
0.169 

-0.111 
-0.318 

0.059 
2.349 

0.029 
2.329 

0.017 
1.252 

0.951 
79.661 

rwtisp 0.059 
1.730 

0.954 
17.911 

-0.963 
-19.727 

0.597 
3.814 

0.064 
2.104 

0.059 
1.782 

0.802 
18.291 

rwtifor 0.058 
1.560 

0.3439 
0.9369 

-0.385 
-1.068 

0.137 
2.772 

0.029 
2.046 

0.035 
2.069 

0.927 
53.349 

rwtifu 0.060 
1.521 

-0.9709 
-30.237 

0.969 
29.056 

0.187 
3.054 

0.039 
1.812 

0.042 
1.964 

0.905 
37.680 

rdubsp 0.064 
1.970 

0.034 
0.154 

-0.117 
-0.539 

0.052 
2.579 

0.022 
1.797 

0.036 
2.445 

0.949 
89.095 

rdubfor 0.065 
2.031 

0.049 
0.221 

-0.135 
-0.616 

0.069 
2.699 

0.023 
1.566 

0.034 
2.229 

0.944 
63.537 

rtapsp 0.052 
1.661 

0.1438 
0.445 

-0.199 
-0.628 

0.072 
2.886 

0.019 
2.037 

0.037 
2.665 

0.944 
70.250 

rtapfor 0.043 
1.372 

0.169 
0.724 

-0.242 
-1.053 

0.055 
3.132 

0.017 
2.045 

0.032 
2.457 

0.953 
107.102 

Notes: (1) The two entries for each parameter are their respective parameter estimates and Bollerslev and 
Wooldridge (1992) robust t- ratios. (2)  Entries in bold are significant at the 5% level. 
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Table 5: Log-moment and second moment condition for ARMA(1,1)-GARCH(1,1) 
and ARMA(1,1)-GJR(1,1) 

Return ARMA-GARCH ARMA-GJR 
Log-Moment Second moment Log-Moment Second moment 

rbresp  -0.0060 0.988 -0.0058 0.987 
rbrefor -0.0087 0.982 -0.0084 0.980 
rbrefu -0.0061 0.988 -0.0050 0.988 
rwtisp -0.0089 0.984 -0.0492 0.895 
rwtifor -0.0131 0.974 -0.0114 0.973 
rwtifu -0.0173 0.967 -0.0153 0.965 
rdubsp -0.0051 0.991 -0.0048 0.989 
rdubfor -0.0068 0.987 -0.0069 0.984 
rtapsp -0.0093 0.982 -0.0082 0.982 
rtapfor -0.0063 0.987 -0.0056 0.986 

 
4. Empirical results  
 
 From Tables 3 and 4, the univariate 
ARMA(1,1)-GARCH(1,1) and ARMA 
(1,1)-GJR(1,1) models are estimated to 
check whether the conditional variance 
follows the GARCH process. In Table 3, 
not all the coefficients in mean equations 
of ARMA(1,1)-GARCH(1,1) are 
significant, whereas all the coefficients in 
the conditional variance equation are 
statistically significant. Table 4 shows that 
the long-run coefficients are all 
statistically significant in the variance 
equation, but  rbrefu (brent futures return), 
rwtisp (WTI spot return), rwtifor (WTI 
forward return), rtapsp (Tapis spot return), 
and rtapfor (Tapis forward return) are only 
significant in the short run. In addition, the 
asymmetric effects of negative and 
positive shocks on conditional variance are 
generally statistically significant. 
 In order to check the sufficient 
condition for consistency and asymptotic 
normality of QMLE for GARCH and GJR 
model, the second moment conditions are 

1 1 1α β+ <  and ( )1 12 1α γ β+ + < , 
respectively. Table 5 shows that all of the 
estimated second moment conditions are 
less than one. In order to derive the 
statistical properties of the QMLE, Lee 
and Hausen (1997) derived the log-
moment condition for GARCH(1,1) as 

( )( )2
1 1log 0tE αη β+ < , while McAleer et 

al. (2007) established the log-moment 
condition for GJR(1,1) as 

( )( )( )2
1 1 1log α γ η η β+ +t tE I  0< . Table 5 

shows that the estimated log-moment 
condition for both models are satisfied for 
all returns. 
 For the spot, forward and futures 
returns of four crude oil markets, there are 
ten series of returns to be analyzed. 
Consequently, 45 bivariate models need to 
be estimated. The calculated constant 
conditional correlations between the 
volatility of two returns within markets 
and across markets using the CCC model 
and the Bollerslev and Wooldridge (1992) 
robust t- ratios are presented in Table 6. 
The highest estimated constant conditional 
correlation is 0.935 between, namely the 
standardized shocks in Brent spot returns 
(rbresp) and Brent forward returns 
(rbrefor). 
 Corresponding multivariate estimates 
of conditional variance from the 
VARMA(1,1)-GARCH(1,1) and VARMA 
(1,1)-AGARCH(1,1) models are also  
estimated. The estimates of volatility and 
asymmetric spillovers are presented in 
Table 7, which shows that the volatility 
spillovers for VARMA-GARCH and 
VARMA-AGARCH are evident in 32 and 
31 of 45 cases, respectively. The 
significant interdependences in the 
conditional volatility among returns are 
both 3 of 45 cases for VARMA-GARCH 
and VARMA-AGARCH. In addition, 
asymmetric effects are evident in 27 of 45 
cases. Consequently, the evidence of 
volatility spillovers and asymmetric effects 
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     Table 6: Constant conditional correlation for CCC-GARCH(1-1) model 
Returns rbresp rbrefor rbrefu rwtisp rwtifor rwtifu rdubsp rdubfor rtapsp rtapfor 
rbresp 1.000 0.935 

(126.157) 
0.762 

(74.699) 
0.696 

(57.939) 
0.756 

(87.222) 
0.713 

(61.139) 
0.576 

(45.118) 
0.586 

(57.787) 
0.259 

(13.994) 
0.254 

(14.047) 
rbrefor  1.000 0.778 

(75.679) 
0.723 

(66.055) 
0.786 

(99.892) 
0.740 

(64.702) 
0.740 

(64.702) 
0.609 

(44.895) 
0.263 

(16.679) 
0.253 

(14.199) 
rbrefu   1.000 0.824 

(148.267) 
0.839 

(90.429) 
0.843 

(104.926) 
0.430 

(37.236) 
0.443 

(22.395) 
0.187 

(11.102) 
0.176 

(10.188) 
rwtisp    1.000 0.873 

(108.318) 
0.920 

(199.900) 
0.390 

(22.564) 
0.398 

(18.390) 
0.176 

(9.418) 
0.161 

(8.286) 
rwtifor     1.000 0.902 

(160.272) 
0.421 

(20.303) 
0.437 

(24.507) 
0.126 

(6.294) 
0.115 

(6.329) 
rwtifu      1.000 0.403 

(19.881) 
0.410 

(21.240) 
0.176 

(10.239) 
0.164 

(9.031) 
rdubsp       1.000 0.958 

(169.158) 
0.466 

(19.442) 
0.455 

(20.383) 
rdubfor        1.000 0.468 

(22.445) 
0.457 

(16.468) 
rtapsp         1.000 0.930 

(139.082)
rtapfor          1.000 

       Notes:    (1) The two entries for each parameter are their respective estimated conditional correlation and Bollerslev and Wooldridge (1992) robust  
                                                 t-ratios. 
                                           (2) Entries in bold are significant at the 5% level. 
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Table 7: Summary of volatility spillovers and asymmetric effect of negative and 
positive shocks 

No. Returns Number of volatility spillover Number of 
Asymmetric effects VARMA-GARCH VARMA-GJR 

1 rbresp_rbrefor 0 0 1 
2 rbresp_rbrefu 1(← ) 1(← ) 0 
3 rbrefor_rbrefu 1(← ) 1(← ) 0 
4 rbresp_rwtisp 1(→ ) 1(→ ) 1 
5 rbrefor_rwtisp 0 0 1 
6 rbrefu_rwtisp 0 0 0 
7 rbresp_rwtifor 0 0 1 
8 rbrefor_rwtifor 0 0 1 
9 rbrefu_rwtifor 0 0 0 
10 rwtisp_rwtifor 0 0 0 
11 rbresp_rwtifu 1(← ) 1(← ) 1 
12 rbrefor_rwtifu 0 0 1 
13 rbrefu_rwtifu 0 0 0 
14 rwtisp_rwtifu 0 0 0 
15 rwtifor_rwtifu 1(← ) 0 0 
16 rbresp_rdubsp 0 0 2 
17 rbrefor_rdubsp 1(→ ) 1(→ ) 1 
18 rbrefu_rdubsp 0 1(→ ) 0 
19 rwtisp_rdubsp 2 ( � ) 2( � ) 1 
20 rwtifor_rdubsp 1(→ ) 1(→ ) 1 
21 rwtifu_rdubsp 1(→ ) 1(→ ) 1 
22 rbresp_rdubfor 1(→ ) 1(→ ) 0 
23 rbrefor_rdubfor 1(→ ) 1(→ ) 0 
24 rbrefu_rdubfor 1(→ ) 1(→ ) 0 
25 rwtisp_rdubfor 1(← ) 1(← ) 1 
26 rwtifor_rdubfor 1(→ ) 1(→ ) 0 
27 rwtifu_rdubfor 1(→ ) 1(→ ) 0 
28 rdubsp_rdubfor 1(→ ) 0 1 
29 rbresp_rtapsp 1(→ ) 1(→ ) 2 
30 rbrefor_rtapsp 1(→ ) 1(→ ) 2 
31 rbrefu_rtapsp 1(→ ) 1(→ ) 1 
32 rwtisp_rtapsp 2 ( � ) 2 ( � ) 1 
33 rwtifor_rtapsp 1(→ ) 1(→ ) 1 
34 rwtifu_rtapsp 1(→ ) 1(→ ) 1 
35 rdubsp_rtapsp 1(→ ) 1(→ ) 2 
36 rdubfor_rtapsp 1(→ ) 1(→ ) 2 
37 rbresp_rtapfor 1(→ ) 1(→ ) 1 
38 rbrefor_rtapfor 1(→ ) 1(→ ) 1 
39 rbrefu_rtapfor 1(→ ) 1(→ ) 0 
40 rwtisp_rtapfor 2 ( � ) 2 ( � ) 0 
41 rwtifor_rtapfor 0 0 0 
42 rwtifu_rtapfor 1(→ ) 1(→ ) 0 
43 rdubsp_rtapfor 1(→ ) 1(→ ) 1 
44 rdubfor_rtapfor 1(→ ) 1(→ ) 1 
45 rtapsp_rtapfor 1(→ ) 1(→ ) 1 

Notes:  The symbols →  (← ) means the direction of volatility spillover from A returns to B return (B return to 
A return), �  means they are interdependence, and 0 means no volatility spillover effect between pair 
of returns. 
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Figure 2: The forecast of conditional correlations between pair of returns resulted form the VARMA-GARCH and VARMA-
AGARCH models 
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Figure 2: The forecast of conditional correlations between pair of returns resulted form the VARMA-GARCH and VARMA-
AGARCH models (Continued) 
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Figure 2: The forecast of conditional correlations between pair of returns resulted form the VARMA-GARCH and VARMA-
AGARCH models (Continued) 
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of negative and positive shocks on 
conditional variance suggested that 
VARMA-AGARCH is superior to 
VARMA-GARCH and CCC models. 
 The estimated of the conditional 
variances based on the VARMA-GARCH 
and VARMA-AGARCH models reported 
in Table 7 suggest the presence of 
volatility spillovers between Brent and 
WTI returns, namely volatility spillovers 
from Brent futures returns to spot and 
Brent forward returns, from Brent spot 
returns to WTI spot returns, from WTI 
futures returns to Brent spot returns, and 
from WTI futures returns to Brent spot 
returns. In addition, the results show that 
most of the Dubai and Tapis returns have 
volatility spillover effects from Brent and 
WTI returns. These evidences are in 
agreement with the knowledge that the 
Brent and WTI markets are two “marker” 
crudes that set the crude oil prices and 
influence the other crude oil markets. 
 The conditional correlation forecasts 
are obtained from a rolling window 
technique. Figures 2 plots the dynamic 
paths of the conditional correlations from  
VARMA-GARCH and VARMA-
AGARCH. All the conditional correlations 
display significant variability, which 
suggests that the correlation are positive 
for all pairs of crude oil returns, and 
rtapsp_rtapfor has the highest correlation, 
at 0.98. In addition, the conditional 
correlation forecasts of some pairs of crude 
oil returns exhibit an upward trend in 22 of 
45 cases and a downward trend in 20 of 45 
cases. These evidences should also be 
considered in diversifying a portfolio 
containing these assets. 
 
5. Conclusion 
 
 The empirical analysis in the paper 
examined the spillover effect models in the 
returns on spot, forward and futures prices 
of four major benchmarks in the 
international oil market, namely West 
Texas Intermediate (USA), Brent (North 
Sea), Dubai/Oman (Middle East) and 

Tapis (Asia-Pacific) for the period 30 
April 1997 to 10 November 2008. 
Alternative multivariate conditional 
volatility models were used, namely the 
CCC model of Bollerslev (1990), 
VARMA-GARCH of Ling and McAleer 
(2003) and VARMA-AGARCH of 
McAller et al (2009). Both the ARCH and 
GARCH estimates were significant for all 
returns in the ARMA(1,1)-GARCH(1,1) 
models. However, in case of the 
ARMA(1,1)-GJR(1,1) models, only 
GARCH estimates were statistically 
significant, and most of the estimates of 
the asymmetric effect are significant. 
Based on the asymptotic standard error, 
the VARMA(1,1)-GARCH(1,1) and 
VARMA-AGARCH models showed 
evidence of volatility spillovers and 
asymmetric effects of negative and 
positive shocks on conditional variance, 
which suggested that VARMA-AGARCH 
was superior to both VARMA-GARCH 
and CCC. 
 The paper also presented some 
volatility spillover effects from Brent and 
WTI returns, and from Brent and WTI 
crude oil markets to the Dubai and Tapis 
markets, which confirms that the Brent and 
WTI crude oil markets are the world 
reference for crude oil. The paper also 
compared 1-day ahead conditional 
correlation forecasts resulted from 
VARMA-GARCH and VARMA-
AGARCH using rolling window approach, 
and showed that the conditional correlation 
forecast exhibited both upward trend and 
downward trend.  
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