
 

Chapter 3 

Comparing the Volatility Index and Index of Volatility  

for Europe and the USA 

 

This chapter construct indexes of volatility for the USA, and Europe by two ways 

are single index model consisting of univariate volatility model (ARCH, GARCH, GJR, 

EGARCH, and RiskmetricsTM) of portfolio return and a portfolio model which use multivariate 

volatility model (CCC, VARMA-GARCH, VARMA-AGARCH, and DCC) to forecast variance 

and covariance to compute portfolio risk.  Then compare indexes of volatility and volatility 

index (VIX for the USA and VSTOXX for Europe) by using the predictive power of Value-

at-Risk. Finally, this chapter finds out correlations of Value-at-Risk forecast calculated from 

various models. This chapter is a revised version from the original paper of Kunsuda 

Ninanussornkul, Michael McAleer, and Songsak Sriboonchitta; presented at the Second 

Conference of The Thailand Econometric Society, Chiang Mai, Thailand in Appendix A 

in 5 – 6 January 2009.  
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Abstract  

 

Volatility forecasting is an important task in financial markets. In 1993, the Chicago Board 

Options Exchange (CBOE) introduced the CBOE volatility index, VIX, and it quickly 

became the benchmark for stock market volatility. After 2003, the CBOE reported a new 

VIX, and changed the original VIX to VXO. The new VIX estimates reflect expected 

volatility from the prices of stock index options for a wide range of strike prices, not just at-

the money strikes, as in the original VIX, so that the model-free implied volatility is more 

likely to be informationally efficient than the Black-Scholes implied volatility. However, 

the new VIX uses the model-free implied volatility, which is not based on a specific 

volatility model. This paper constructs an index of volatility for Europe and the USA by 

using a single index model or the covariance matrix of the portfolio forecast the variance of 

a portfolio. Using univariate and multivariate conditional volatility models. A comparison 

between the volatility index and the index of volatility using predictive power of Value-at-

Risk will be made to determine the practical usefulness of these indexes. 

 

Keywords: Index of volatility, volatility index, single index, portfolio model, Value-at-Risk 
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3.1 Introduction 

Volatility forecasting is an important task in financial markets, and it has held 

the attention of academics and practitioners over the last two decades. Academics are 

interested in studying temporal patterns in expected returns and risk. For practitioners, 

volatility has an importance in investment, security valuation, risk management, and 

monetary policy making. Volatility is interpreted as uncertainty. It becomes a key 

factor to many investment decisions and portfolio creations because investors and 

portfolio managers want to know certain levels of risk. Volatility is also the most 

important variable in the pricing of derivative securities. (see Fleming, J., Ostdiek, B. 

and Whaley, R.E.(1995) and Poon, S. and Granger, C.W.J.(2003)) 

Volatility has an effect on financial risk management exercise for many 

financial institutions around the world since the first Basle Accord was established in 

1996. It is an important ingredient to calculate Value-at-Risk (VaR). Value-at-Risk 

may be defined as “a worst case scenario on a typical day”. If a financial institution’s 

VaR forecasts are violated more than can reasonably be expected, given the 

confidence level, the financial institution will hold a higher level of capital. (McAleer, 

M. (2008a)) 

In 1993, the Chicago Board Options Exchange (CBOE) introduced the CBOE 

volatility index, VIX, and it quickly became the benchmark for stock market 

volatility. After 2003, the CBOE reported a new VIX, and changed the original VIX 

to VXO. The new VIX estimates reflect expected volatility from the prices of stock 

index options for a wide range of strike prices, not just at-the-money strikes, as in the 

original VIX. Therefore, the model-free implied volatility is more likely to be 

informationally efficient than the Black-Scholes implied volatility. However, the new 
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VIX uses the model-free implied volatility, which is not based on a specific volatility 

model. (See, Jiang, G.J. and Tian, Y.S. (2005)) 

In Europe, there is also a volatility index. Its calculation method is the same 

method as CBOE’s. One type of volatility indices in Europe is the VSTOXX volatility 

index, which was introduced on 20 April 2005. It has provided a key measure market 

expectations of near-term volatility based on the Dow Jones EURO STOXX 50 

options prices. 

Most studies in the literature about construction and prediction the volatility 

index. (See Skiadopoulos, G.S.(2004) Moraux, F., Navatte, P. and Villa, C. (1999) 

and Fernades, M. and Medeiros, M.C.) 

This paper would like to construct an index of volatility by using conditional 

volatility models by: (1) fitting a univariate volatility model to the portfolio returns 

(hereafter called the single index model (see McAleer, M. and da Veiga, B. 

(2008a,2008b)), and (2) using a multivariate volatility model to forecast the 

conditional variance of each asset in the portfolio as well as the conditional 

correlations between all asset pairs in order to calculate the forecasted portfolio 

variance (hereafter called the portfolio model) for the USA and Europe. Then, 

comparison between the index of volatility and the volatility index will be made by 

using the predictive power of Value-at-Risk. 

The organization of the paper is as follows: section 3.2 presents the index of 

volatility and section 3.3 shows volatility index. The data and estimation are in 

Section 3.4. Empirical results, Value-at-Risk, and conclusion are in Section 3.5, 3.6, 

and 3.7, listed respectively. 

 



 31

3.2 Index of Volatility 

This paper uses the price sector indices of S&P 500 for the USA and STOXX 

for Europe. There are 10 sector indices, however this paper aggregates price sector 

indices to be 3 sectors by using market capitalization as a weighted variable. For 

example, if we would like to aggregate sector 1, 2, 3 together, the model is as follows: 

 

1 1 2 2 3 3
123

1 2 3

× + × + ×
=

+ +
t t t t t t

t
t t t

MV P MV P MV PP
MV MV MV

   (3.1) 

 

where P123t is the aggregate price sector index of sector 1,2, and 3, MVit is market 

capitalization of sector i (i = 1, 2, 3), and Pit is price sector index of sector i (i = 1, 2, 3). 

Then we compute returns of each sector as follows: 

 

, , , 1100 log( / )−= ×i t i t i tR P P      (3.2) 

 

where Pi,t and Pi,t-1 are the closing prices of sector i (i = 1, 2, 3) at days t and t-1, Then 

we construct index of volatility by two model follows: 

 

3.2.1 Single index model 

This paper constructs a single index model following these steps: 

(1) Compute portfolio returns by using market capitalization at the first 

day as a weighted variable, as follows: 
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1 1 2 2 3 3

1 2 3

× + × + ×
=

+ +
t t t

t
MV r MV r MV rPort

MV MV MV
   (3.3) 

 

where Portt is portfolio returns, MVi is market capitalization of sector i (i = 1, 2, 3), 

and  rit is returns of sector i (i = 1, 2, 3). 

(2) Estimating univariate volatility of portfolio returns from the first 

step by mean equation have constant term and autoregressive term (AR(1)) in all 

models. The univariate volatility is the index of volatility. Moreover, this paper 

computes RiskmetricsTM by using the exponentially weighted moving average model 

(EWMA) of portfolio returns. 

 

Univariate Volatility 

ARCH 

Engle, R.F. (1982) proposed the Autoregressive Conditional 

Heteroskedasticity of order p, or ARCH(p), follows: 

 

2

1
−

=

= +∑
p

t j t j
j

h ω α ε       (3.4) 

 

where 0 0> ≥jandω α  

GARCH 

Bollerslev, T. (1986) generalized ARCH(p) to the GARCH(p,q), model 

as follows: 
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2

1 1
− −

= =

= + +∑ ∑
p q

t j t j i t i
j i

h hω α ε β      (3.5) 

 

where 0,>ω 0jα ≥ for j = 1,…,p and 0≥iβ  for i = 1,…,q are sufficient to ensure 

that the conditional variance ht > 0. 

The model also assumes positive shock ( 0tε > ) and negative shock 

( 0tε < ) of equal magnitude have the same impact on the conditional variance. 

GJR 

Glosten, L.R., et al. (1993) accommodate differential impact on the 

conditional variance of positive and negative shocks of equal magnitude. The 

GJR(p,q) model is given by: 

 

( ) 2

1 1

( )
p q

t j j t j t j i t i
j i

h I hω α γ ε ε β− − −
= =

= + + +∑ ∑    (3.6) 

 

where the indicator variable, ( )tI ε , is defined as:
1, 0

( )
0, 0

≤⎧
= ⎨ >⎩

t
t

t

I
ε

ε
ε

. If p = q = 1, 

0>ω , 1 0α ≥ , 1 1 0α γ+ ≥ , and 1 0β ≥ then it has sufficient conditions to ensure that the 

conditional variance ht  > 0. The short run persistence of positive (negative) shocks is 

given by ( )1 1 1α α γ+ . When the conditional shocks, tη , follow a symmetric 

distribution, the short run persistence is 1 1 / 2α γ+ , and the contribution of shocks to 

long run persistence is 1 1 1/ 2α γ β+ + . 
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EGARCH 

Nelson, D. (1991) proposed the Exponential GARCH (EGARCH) 

model, which incorporates asymmetries between positive and negative shocks on 

conditional volatility. The EGARCH model is given by: 

 

1 1 1

log log
p p q

t i t i i t i j t j
i i j

h hω α η γ η β− − −
= = =

= + +∑ ∑ ∑   (3.7) 

 

In equation (3.7), t iη − and t iη − capture the size and sign effects, 

respectively, of the standardized shocks. EGARCH in (3.7) uses the standardized 

residuals. As EGARCH uses the logarithm of conditional volatility, there are no 

restrictions on the parameters in (3.7). As the standardized shocks have finite 

moments, the moment conditions of (3.7) are straightforward. 

Lee, S.W. and Hansen, B.E. (1994) derived the log-moment condition 

for GARCH (1,1) as  

 

2
1 1(log( )) 0tE αη β+ <       (3.8) 

 

This is important in deriving the statistical properties of the QMLE. 

McAleer, M., et al. (2007) established the log-moment condition for GJR(1,1) as 

 

2
1 1 1(log(( ( )) )) 0t tE Iα γ η η β+ + <     (3.9) 
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The respective log-moment conditions can be satisfied even when 

1 1 1α β+ > (that is, in the absence of second moments of the unconditional shocks of 

the GARCH(1,1) model) and when 1 1/ 2 1α γ β+ + < (that is, in the absence of second 

moments of the unconditional shocks of the GJR(1,1) model). 

RiskmetricsTM 

RiskmetricsTM (1996) developed a model which estimates the 

conditional variances and covariances based on the exponentially weighted moving 

average (EWMA) method, which is, in effect, a restricted version of the ARCH(∞ ) 

model. This approach forecasts the conditional variance at time t as a linear 

combination of lagged conditional variance and the squared unconditional shock at 

time t-1. The RiskmetricsTM model estimate the conditional variances follow: 

 

2
1 1(1 )t t th hλ λ ε− −= + −       (3.10)  

 

where λ  is a decay parameter. RiskmetricsTM (1996) suggests that λ  should be set at 

0.94 for purposes of analyzing daily data. 

 

3.2.2 Portfolio model 

This paper constructs the portfolio model by following these steps: 

(1) Estimate multivariate volatility of three sectors for Europe and the 

USA by mean equation so that they have constant term and autoregressive term 

(AR(1)) in all models. Then compute variance and covariance matrix. 
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(2) Compute index of volatility by using market capitalization at the 

first observation is a weighted variable. This paper has three sectors so that we have 

the three conditional variances and three covariance estimated. It follows that: 

 

1 2 3

2 2 2
1 2 3 1 2 12 1 3 13 2 3 232 2 2= + + + + +t t t t t t tIVol h h h h h hλ λ λ λ λ λ λ λ λ   (3.11) 

 

where IVolt is index of volatility, hit is conditional variances of sector i (i=1,2,3), hijt is 

covariance of sector i (i=1,2,3), and 1
1

1 2 3

=
+ +

MV
MV MV MV

λ , 2
2

1 2 3

=
+ +

MV
MV MV MV

λ , 

and 3
3

1 2 3

=
+ +

MV
MV MV MV

λ . 

The number of covariance increases dramatically with m, the number 

of assets in the portfolio. Thus, for m = 2, 3, 4, 5, 10, 20, the number of covariance is 

1, 3, 6, 10, 45, 190, respectively. This increases the computation burden significantly. 

(See details in McAleer, M. (2008a)) 

 

Multivariate volatility 

VARMA-GARCH 

The VARMA-GARCH model of Ling, S. and McAleer, M. (2003), 

assumes symmetry in the effects of positive and negative shocks of equal magnitude on 

conditional volatility. Let the vector of returns on m (≥2) financial assets be given by: 

 

1( | )−= +t t t tY E Y F ε       (3.12) 

=t t tDε η        (3.13) 
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1 1
− −

= =

= + +∑ ∑rp q

t k t k l t l
k l

H A B Hω ε     (3.14) 

 

where 1/ 2
1 1 , 1( ,..., ) , ( ,..., ) , ( ), ( ,..., ) ,′ ′ ′= = = =t t mt m t i t t t mtH h h D diag hω ω ω η η η

2 2
1( ,..., ) ,′=

r
t t mt kAε ε ε and lB  are ×m m  matrices with typical elements ijα  and ijβ , 

respectively, for i,j=1,…,m, and Ft is the past information available to time t. 

Spillover effects are given in the conditional volatility for each asset in the portfolio, 

specifically where kA  and lB  are not diagonal matrices. For the VARMA-GARCH 

model, the matrix of conditional correlations is given by ( )′ = Γt tE ηη . 

VARMA-AGARCH 

An extension of the VARMA-GARCH model is the VARMA-

AGARCH model of McAleer, M., et al. (2009), which assumes asymmetric impacts 

of positive and negative shocks of equal magnitude, and is given by: 

 

1 1 1
− − − −

= = =

= + + +∑ ∑ ∑r rp p q

t k t k k t k t k l t l
k k l

H A C I B Hω ε ε   (3.15) 

 

where Ck are ×m m  matrices for k = 1,…,p and I( tη )=diag(I( itη )) is an ×m m  matrix, 

so that ,

,

0, 0
1, 0

>⎧⎪= ⎨ ≤⎪⎩

k t

k t

I
ε

ε
. VARMA-AGARCH reduces to VARMA-GARCH when Ck =0 

for all k. 

CCC 

If the model given by equation (3.15) is restricted so that Ck = 0 for all k, 

with Ak and Bl being diagonal matrices for all k,l, then VARMA-AGARCH reduces to: 
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, ,
1 1

− −
= =

= + +∑ ∑
p q

it i i i t k i i t l
k l

h hω α ε β     (3.16) 

 

Which is the constant conditional correlation (CCC) model of 

Bolerslev, T. (1990), for which the matrix of conditional correlations is given 

by ( )′ = Γt tE ηη . As given in equation (3.16), the CCC model does not have volatility 

spillover effects across different financial assets, and does not allow conditional 

correlation coefficients of the returns to vary over time. 

DCC 

Engle, R.F. (2002) proposed the Dynamic Conditional Correlation 

(DCC) model. The DCC model can be written as follows: 

 

1| (0, ), 1,...,− =�t t ty F Q t T      (3.17) 

,= Γt t t tQ D D        (3.18) 

 

where 1/ 2 1/ 2
1( ,..., )t t mtD diag h h= is a diagonal matrix of conditional variances, with m 

asset returns, and Ft is the information set available at time t. The conditional variance 

is assumed to follow a univariate GARCH model, as follows: 

 

, , , ,
1 1

− −
= =

= + +∑ ∑
p q

it i i k i t k i l i t l
k l

h hω α ε β     (3.19) 
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When the univarate volatility models have been estimated, the 

standardized residuals, /=
it it ity hη , are used to estimate the dynamic conditional 

correlations, as follows: 

 

1 2 1 1 1 2 1(1 ) − − −′= − − + +t t t tQ S Qφ φ φη η φ     (3.20) 

{ } { }1/ 2 1/ 2( ( ) ( ( )t t t tdiag Q Q diag Q− −Γ =
   (3.21) 

 

where S is the unconditional correlation matrix of the returns shocks, and equation (3.21) 

is used to standardize the matrix estimated in (3.20) to satisfy the definition of a 

correlation matrix. For details regarding the regularity conditional and statistical 

properties of DCC and the more general GARCC model, see McAleer, M., et at. (2008).  

 

3.3 Volatility Index 

This paper uses the Chicago Board Options Exchange (CBOE) volatility index 

(VIX) to represent the volatility index for the USA, and uses The Dow Jones EURO 

STOXX 50 volatility index (VSTOXX) to represent the volatility index for Europe. It 

provides a key measure of market expectations of near-term volatility based on the 

Dow Jones EURO STOXX 50 options prices. The Dow Jones EURO STOXX 50 

index is a Blue-chip representation of sector leaders in the Euro zone. The index 

covers Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, 

Luxembourg, The Netherlands, Portugal, and Spain. 

The method to calculate volatility index follows: 
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Step 1: Calculate 2
1σ and 2

2σ  (1= the near term options, 2 = the next term options*) 

 

2
2

2
0

2 1( ) 1RTi
i i

i i

K Fe Q K
T K T K

σ
⎡ ⎤Δ

= − −⎢ ⎥
⎣ ⎦

∑    

   

Where σ  is  VIX/100             VIX = σ  x 100 

 T Time to expiration 

 F Forward index level derived from index option prices 

  (Note: F = Strike price+ eRT x (Call price – Put price) 

 Ki Strike price of ith out-of-the-money options; a call if Ki > F and  

  a put if Ki < F 

iKΔ  Interval between strike prices-half the distance between the 

strike on either side of Ki: ( )1 1 / 2+ −Δ = −i i iK K K  

(Note: KΔ  for the lowest strike is simply the difference between the lowest strike and 

the next higher strike. Likewise, KΔ  for the highest strike is the difference between 

the highest strike and the next lower strike.) 

K0  First strike below the forward index level, F 

R  Risk-free interest rate to expiration 

Q(Ki) The midpoint of the bid-ask spread for each option with strike Ki. 

Step 2: Interpolate 2
1σ and 2

2σ  to arrive at a single value with a constant 

maturity of 30 days to expiration. Then take the square root of that value. 

                                                 
*

 The new VIX generally uses put and call options in the two nearest-term expiration months in order 
to bracket a 30-day calendar period. However, with 8 days left to expiration, the new VIX ”rolls” to the 
second and third contract months in order to minimize pricing anomalies that might occur close to 
expiration. 
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2 1

2 1 2 1

30 302 2 365
1 1 2 2

30

T T

T T T T

N N N N NT T
N N N N N

σ σ σ
⎧ ⎫⎡ ⎤ ⎡ ⎤− −⎪ ⎪= + ×⎢ ⎥ ⎢ ⎥⎨ ⎬− −⎢ ⎥ ⎢ ⎥⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

   

 

Where 
1TN  = Number of minutes to expiration of the near term options  

 
2TN  = Number of minutes to expiration of the next term options 

 30N  = Number of minutes in 30 days 

 365N  =  Number of minutes in a 365-day year 

Step 3: multiply by 100 to get VIX. 

 

100VIX σ= ×    

 

3.4 Data and Estimation 

 

3.4.1 Data 

The data used in the paper is the daily closing price sector indices of 

the S&P 500 and STOXX for the USA and Europe, respectively. The price sector 

indices of the S&P 500 and STOXX have 10 sectors, as shown in Table 3.1. 

However, this paper aggregates the price sector index by grouping sectors 1, 2, and 3 

together, grouping sectors 4, 5, and 6 together, and grouping sectors 7, 8, 9, and 10 

together. All the data is obtained from DataStream. The sample ranges from 23 

January 1995 through 6 November 2008 with 3,476 observations for the USA, and 1 

January 1992 through 6 November 2008 with 4,333 observations for Europe. 
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Two characteristics of the data, namely normality and stationarity, will 

be investigated before estimate univariate and multivariate analyses. Normality is an 

important issue in estimation since it is typically assumed in the maximum likelihood 

estimation (MLE) method; otherwise, the quasi-MLE (QMLE) method should be 

used. Stationarity is an important characteristic for time series data. If data is 

nonstationary, it will be necessary to difference the data before estimation because if 

not, the result will be spurious regression. 

The normality of the variables can be seen from the Jarque-Bera (J-B) 

Lagrange multiplier test statistics in Table 3.2. As the probability associated with the 

J-B statistics is zero, it can be seen that the returns data is not normally distributed. 

For the stationarity of data, this paper uses the Augmented Dicky 

Fuller (ADF) test. The test is given as follows: 

 

1
1

− −
=

Δ = + Δ +∑
p

t t i t i t
i

y y yθ φ ε      (3.22) 

1
1

− −
=

Δ = + + Δ +∑
p

t t i t i t
i

y y yα θ φ ε     (3.23) 

1
1

p

t t i t i t
i

y t y yα β θ φ ε− −
=

Δ = + + + Δ +∑     (3.24) 

 

where equation (3.22) has no intercept and trend, equation (3.23) has intercept but no 

trend, and equation (3.24) has intercept and trend. The null hypothesis in equations 

(3.22), (3.23) and (3.24) are θ = 0, which means that yt is nonstationary (Dickey and 

Fuller, 1979). However, the ADF test accommodates serial correlation by explicitly 

modeling the structure of serial correlation, but not heteroscedasticity, while the 

Phillips-Perron (PP) tests accommodates both serial correlation and heteroscedasticity 
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using non-parametric techniques. The PP test has also been shown to have higher 

power in finite samples than the ADF test (Phillips and Perron, 1988). 

The PP test estimates as follows: 

 

1t t t ty y xθ δ ε− ′Δ = + +       (3.25) 

 

the test is evaluated using a modified t-ratio of the form: 

 

( ) ( )( )1/ 2
0 00

1/ 2
0 0

ˆ
ˆ

2
T f se

t t
f f sα α

γ αγ −⎛ ⎞
= −⎜ ⎟

⎝ ⎠
   

   

where α̂  is the estimate, tα  is the t-ratio of α̂ , ( )ˆse α  is the standard error of α̂ , and 

s is the standard error of the regression. In addition, 0γ  is a consistent estimate of the 

error variance in (3.25). The remaining 0f  is an estimator of the residual spectrum at 

frequency zero. The PP test is known as the non-augmented Dickey-Fuller test. The 

results of test stationary by using ADF test and PP test for the USA and Europe in 

Table 3.3 show that all the returns are stationary at the 1% level. 

 

3.4.2 Estimation 

The parameters in models (3.4), (3.5), (3.6), (3.7), (3.14), (3.15), 

(3.16), and (3.19) can be obtained by maximum likelihood estimation (MLE) using a 

joint normal density, as follows: 

 

1

1

1ˆ arg min (log | | )
2

−

=

′= +∑
n

t t t t
t

Q Q
θ

θ ε ε     (3.26) 
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where θ  denotes the vector of parameters to be estimated in the conditional log-

likelihood function, and | |tQ  denotes the determinant of tQ , the conditional 

covariance matrix. When
t

η does not follow a joint normal distribution, equation 

(3.26) is defined as the Quasi-MLE (QMLE). 

 

3.5 Empirical Results 

This paper use ARCH(1), GARCH(1,1), GJR(1,1), and EGARCH(1,1) models 

to estimate the single index model, and we assume that mean equation of all models 

have autoregressive terms (AR(1)). The results are shown in Table 3.4. The two 

entries for each parameter are the parameter estimate and Bollerslev-Wooldridge 

(1992) robust t-ratios. In the USA, mean equation is significant only in constant 

terms. Variance equation estimates are significant for all models except for ARCH 

effect in GJR model. For Europe, mean equation is significant in both constant terms 

and AR(1) terms, except the ARCH(1) model and all models in variance equation are 

significant. GJR dominates GARCH and ARCH. So, there is asymmetry, while 

EGARCH shows there is asymmetry but not leverage in Europe and the USA. 

The portfolio model is estimated by using multivariate volatility as given in 

Tables 3.5 to 3.12. The multivariate volatility used in this paper is CCC, DCC, 

VARMA-GARCH, and VARMA-AGARCH. The results of VARMA-GARCH for 

the USA and Europe in Table 3.5 and 3.6, respectively, show negative effect of shock 

or news from RSP53FHI (RSP53CCE) sector to RSP53CCE (RSP53FHI) sector. In 

RSP53IMTU sector have negative effect of shock or news and positive effect of 

volatility spillover from RSP53FHI sector.  
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VARMA-GARCH for Europe is given in Table 3.6. The results show negative 

effect of shock or news from RSTFIIM sector to RSTABB sector and RSTCCF sector 

and negative effect of shock or news from RSTABB sector to RSTFIIM sector. 

Moreover, the results show volatility spillover from RSTFIIM sector to RSTABB 

sector and from RSTABB sector to RSTFIIM.   

The results VARMA-AGARCH for the USA and Europe are given in Tables 

3.7 and 3.8.  Asymmetric effects are significant only for RSP53CCE sector for the 

USA and RSTABB sector for Europe. 

In the USA, constant conditional correlations between the conditional 

volatilities of RSP53CCE sector and RSP53FHI sector for the CCC, VARMA-

GARCH, and VARMA-AGARCH in Table 3.9 are identical at 0.789. Constant 

conditional correlations between the conditional volatilities of RSP53CCE sector and 

RSP53IMTU sector for the three models above are identical at 0.639. RSP53CCE 

sector and RSP53IMTU sector have constant conditional correlations between the 

conditional volatilities for the three models which are identical at 0.689. 

Constant conditional correlations between the standardized residuals, of 

RSTABB sector and RSTCCF sector, RSTABB sector and RSTFIIM sector, and 

RSTCCF sector and RSTFIIM sector for the CCC, VARMA-GARCH, and VARMA-

AGARCH in Table 3.10 are identical at 0.86, 0.88, and 0.84, respectively, in Europe. 

From Tables 3.11 and 3.12, we can see that estimated coefficient is significant 

in both the USA and Europe market. Therefore the conditional correlations of the 

overall returns are dynamic.  
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3.6 Value-at-Risk 

Value-at-Risk (VaR) needs to be provided to the appropriate regulatory 

authority at the beginning of the day, and is then compared with the actual returns at 

the end of the day. (see McAleer, M. (2008a)) 

For the purposes of the Basel II Accord penalty structure for violations arising 

from excessive risk taking, a violation is penalized according to its cumulative 

frequency of occurrence in 250 working days, which is shown in Table 3.13. 

A violation occurs when VaRt > negative returns at time t. Suppose that 

interest lies in modeling the random variable Yt, which can be decomposed as follows 

(see McAleer, M. and da Veiga, B. (2008a): 

 

1( | )−= +t t t tY E Y F ε       (3.26) 

 

This decomposition suggests that Yt is comprised of a predictable component, 

1( | )−t tE Y F , which is the conditional mean, and a random component, tε . The 

variability of Yt, and hence its distribution, is determined entirely by the variability of 

tε . If it is assumed that tε  follows a distribution such that: 

 

( , )�t t tDε μ σ        (3.27) 

where tμ and tσ are the unconditional mean and standard deviation of tε , respectively, 

the VaR threshold for Yt can be calculated as: 

 

1( | )−= −t t t tVaR E Y F ασ  
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where α is the critical value from the distribution of tε to obtain the appropriate 

confidence level. Alternatively, tσ can be replaced by alternative estimates of the 

conditional variance to obtain an appropriate VaR. (see Section 3.2 and 3.3) 

The Basel II encourages the optimization problem with the number of 

violations and forecasts of risk as endogenous choice variables, which are as follows: 

 

{ }60 1{ , }
max (3 ) ,

t
t tk VaR

Minimize DCC k VaR VaR −= − + −   (3.28) 

 

where DCC is daily capital charges, k is a violation penalty ( 0 1≤ ≤k ) (see Table 

3.13), 60VaR is mean VaR over the previous 60 working days, and VARt is Value-at-

Risk for day t. 

This paper calculates VaR from the period of 4 January 1999 up to 6 

November 2008 for Europe because VSTOXX has data starting from 4 January 1999. 

In the USA, we calculate VaR from the period of 24 January 1995 up to 6 November 

2008. In order to simplify the analysis, we assumed that the portfolio returns are 

constant weights by using market capitalization at the first daily data. 1( | )−t tE Y F  is 

the expected returns for all models, and α is the critical value from the distribution of 

tε to obtain the appropriate confidence level of 1%. 

Figures 3.1 – 3.4 show the VaR forecasts and realized returns of each single 

index models and portfolio models for the USA and Europe, respectively. 

Table 3.14 shows the mean daily capital charge for the USA, in the single 

index models, ARCH(1) model has the highest at 12.353% and EGARCH(1,1) model 

has the lowest at 11.053% if compared with other ARCH-type models. However, the 
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RiskmetricsTM model has the lowest at 10.855% in the single index models. ARCH(1) 

model has minimum number of violations at 21 times, and the lowest mean of 

absolute deviation of the violation from the VaR forecast at 1.736%. The 

RiskmetricsTM model has maximum number of violations at 33 times, and the 

EGARCH(1,1) model has the highest mean of absolute deviation of the violation from 

the VaR forecast at 2.257%. GJR(1,1) has maximum number of violations at 25 times, 

which compares with the ARCH-type model.  

In the portfolio models, DCC model has the lowest mean daily capital charge 

at 9.383%, the lowest the mean of absolute deviation of the violations from the VaR 

forecast at 1.563%, and the minimum number of violations at 16 times for all 

observations. VARMA-GARCH model has the highest mean daily capital charge at 

9.599% and the highest the mean of absolute deviation of the violations from the VaR 

forecast at 1.867%. The CCC model has the maximum number of violations at 20 

times for all observations. Table 3.14 also shows the model which uses VIX to 

calculate VaR has meant the daily capital charge is 10.091%, and the number of 

violations is 23 times for all observations.  

The mean daily capital charge for Europe is shown in Table 3.15, in the single 

index models, ARCH(1) model has the highest at 15.437%, and minimum number of 

violations at 12 times. GJR(1,1) model has the lowest mean daily capital charge at 

14.443% if compared with the ARCH-type model. However, the RiskmetricsTM 

model has the lowest mean daily capital charge at 14.353% of all single index models. 

The EGARCH(1,1) model has the maximum number of violations at 23 times in 

ARCH-type model, and the highest mean of absolute deviation of the violation from 
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the VaR forecast at 2.410%. However, the RiskmetricsTM model has the maximum 

number of violations at 25 times.  

In the portfolio models, the mean daily capital charge of the CCC model has 

the lowest at 11.991%. VARMA-GARCH model has the highest mean daily capital 

charge at 12.514%. The DCC model has the highest mean of absolute deviation of the 

violations from the VaR forecast at 1.968%, and the minimum number of violations at 

18 times for all observations. The VARMA-AGARCH model has the highest mean of 

absolute deviation of the violation from the VaR forecast at 1.772%, and the 

maximum number of violations at 21 times for all observations. Table 3.15 also 

shows the model which uses VSTOXX to calculate VaR, and the mean daily capital 

charge is 13.714%.  

The comparing in correlations of Value-at-Risk forecast calculated from various 

models for the USA is shown in Table 3.16 The results show that the correlations 

between the GARCH(1,1) model and the RiskmetricsTM model are high because 

RiskmetricsTM is subset of GARCH(1,1) model. The correlations between the GJR (1,1)  

model and the EGARCH(1,1) model also are highly correlated because the 

EGARCH(1,1) model shows there is asymmetry but not leverage. Moreover, the 

VARMA-GARCH model and the VARMA-AGARCH model are high correlation 

because the VARMA-AGARCH model show there is not asymmetry for all sectors.  

The results of correlations of Value-at-Risk forecast for Europe is shown in 

Table 3.17. It shows that the correlations between the GJR (1,1)  model and the 

EGARCH(1,1) model and the correlations between the VARMA-GARCH model and 

the VARMA-AGARCH model are highly correlated as same as the results of the 

USA. Moreover, the correlations between the CCC model and the DCC model in 
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Europe are also high. Therefore, the DCC model is better than the CCC model in term 

of the statistic, but the CCC model are better than the DCC model in term of practice.     

 

3.7 Conclusion 

Volatility forecasting is an important task in financial markets. In 1993, the 

Chicago Board Options Exchange (CBOE) introduced the CBOE volatility index, 

VIX, and it quickly became the benchmark for stock market volatility. In Europe 

there is also a volatility index, which is calculated by the same method of CBOE. The 

volatility index in Europe is the VSTOXX volatility index, which was introduced on 

20 April 2005. However, the volatility index uses the model-free implied volatility, 

which is not based on a specific volatility model. 

This paper would like to construct an index of volatility by using conditional 

volatility models by: (1) fitting a univariate volatility model to the portfolio returns 

(hereafter called the single index model (see McAleer and de Veiga (2008a,2008b)); 

or (2) using a multivariate volatility model to forecast the conditional variance of each 

asset in the portfolio, as well as the conditional correlations between all asset pairs, in 

order to calculate the forecasted portfolio variance (hereafter called the portfolio 

model) for the USA and Europe. Then the index of volatility is compared with the 

volatility index and RiskmetricsTM by using the predictive power of Value-at-Risk. 

The univariate volatility models used in this paper are ARCH(1), GARCH(1,1), 

GJR(1,1), and EGARCH(1,1) which means the equations have constant term and 

autoregressive term (AR(1)). For the multivariate volatility model, we used CCC, DCC, 

VARMA-GARCH, VARMA-AGARCH models, which means the equations have 

constant term and autoregressive term (AR(1)), the same as the univariate volatility model.  
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If we consider the mean daily capital charge, the results show that the 

RiskmetricsTM model dominates the other models in the single index model for the 

USA and Europe. However, if we compare between ARCH-type, the EGARCH(1,1) 

model dominates the other models for the USA. However, the GJR(1,1) model 

dominates the other models in Europe. In portfolio model, the DCC model dominates 

the other models for the USA. Immediate CCC model dominates the other models for 

Europe. If we compare the mean daily capital charge of the index of volatility, which 

uses the single index model and volatility index (i.e. VIX and VSTOXX), the results 

show that the VIX and VSTOXX are dominate for the single index model. However, 

if we compare the index of volatility, which uses the portfolio models with volatility 

index (VIX or VSTOXX), the results show that the portfolio models dominate the 

volatility index because the portfolio models have a lower mean daily capital charge 

compared to the volatility index. The higher daily capital charge has an effect on the 

profitability of the financial institution. 

Moreover, the correlations of Value-at-Risk forecast calculated from the GJR 

(1,1)  model and the EGARCH(1,1) model are highly correlated for both the USA and 

Europe because they have asymmetric but not leverage. Moreover, the correlations of 

VaR forecast between the VARMA-GARCH model and the VARMA-AGARCH 

model are also high for both the USA and Europe because asymmetric effect in the 

VARMA-AGARCH model are significant only one sector in both the USA and 

Europe. Finally, the statistic of the DCC model for Europe is significant so that the 

DCC model is better than the CCC model. However, in practice the CCC model is 

better than the DCC model because it has lowest mean daily capital charge.  
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Table 3.1  Summary of Variable Names 

 

The USA Price Sector Index Names Variable Names 

 S&P500 CONSUMER DISCRETIONARY   

 S&P500 CONSUMER STAPLES  RSP53CCE 

 S&P500 ENERGY   

 S&P500 FINANCIALS   

 S&P500 HEALTH CARE  SP53FHI 

 S&P500 INDUSTRIALS   

 S&P500 INFORMATION TECHNOLOGY   

 S&P500 MATERIALS  SP53IMTU 

 S&P500 TELECOMMUNICATION SERVICES   

 S&P500 UTILITIES   

Europe DJ EURO STOXX AUTOMOBILES & PARTS   

 DJ EURO STOXX BANKS  STABB 

 DJ EURO STOXX BASIC RESOURCES   

 DJ EURO STOXX CHEMICALS   

 DJ EURO STOXX CONSTRUCTION & MATERIALS  STCCF 

 DJ EURO STOXX FINANCIAL SERVICES  

 DJ EURO STOXX FOOD & BEVERAGE   

 DJ EURO STOXX INDUSTRIAL GOODS & SERVICES  STFIIM 

 DJ EURO STOXX INSURANCE   

 DJ EURO STOXX MEDIA   

Source: DataStream. 
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Table 3.2  Jarque-Bera Test of Normality and Probability for Returns 

 

Country Returns  Jarque-Bera  Probability 

The USA RPORTSP53  8789.624  0.000 

 RSP53CCE  39039.39  0.000 

 RSP53FHI  6186.943  0.000 

 RSP53IMTU  3676.259  0.000 

Europe RPORTST3  12404.28  0.000 

 RSTABB  227469.0  0.000 

 RSTCCF  12175.59  0.000 

 RSTFIIM  8260.200  0.000 

Note: RPORTSP53 represent portfolio return for the USA 

          RPORTST3 represent portfolio return for the Europe 
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Table 3.3  Unit Root Test of Returns for the USA and Europe 

 

Countries Variables Trend and intercept Intercept None 

Augmented Dickey-Fuller test 

USA RPORTSP53 -45.410 -45.291 -45.267 

RSP53CCE -21.347 -21.272 -21.200 

RSP53FHI -44.292 -44.128 -44.110 

RSP53IMTU -44.339 -44.279 -44.278 

Europe RPORTST3 -64.245 -64.212 -64.207 

RSTABB -49.016 -48.981 -48.977 

RSTCCF -63.379 -63.368 -63.348 

RSTFIIM -62.602 -62.562 -62.561 

Phillips-Perron Test 

USA RPORTSP53 -62.651 -62.352 -62.286 

RSP53CCE -63.513 -63.431 -63.242 

RSP53FHI -60.364 -59.767 -59.705 

RSP53IMTU -60.309 -60.208 -60.206 

Europe RPORTST3 -64.224 -64.193 -64.187 

RSTABB -67.088 -67.066 -67.056 

RSTCCF -63.380 -63.357 -63.316 

RSTFIIM -62.524 -62.477 -62.477 

Note: Entries in bold are significant at the 99% level. 
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Table 3.4  Single Index Model for the USA and Europe 

 

Variable Model 
Mean equation  Variance equation 

C AR(1)  ϖ  α  γ  β  

RPORTSP53 ARCH(1) 0.0414 -0.137  1.174 0.301   

  2.263 -1.9156  16.357 5.487   

 GARCH(1,1) 0.066 -0.026  0.008 0.070  0.928 

  4.572 -1.52  2.433 6.121  89.919 

 GJR(1,1) 0.035 -0.012  0.011 -0.009 0.125 0.938 

  2.400 -0.735  4.452 -0.875 6.618 106.635 

 EGARCH(1,1) 0.030 -0.014  -0.088 0.117 -0.103 0.982 

  2.021 0.017  -6.257 6.505 -6.659 297.543 

RPORTST3 ARCH(1) 0.049 0.082  1.017 0.419   

  2.404 1.075  15.582 7.826   

 GARCH(1,1) 0.053 0.045  0.015 0.098  0.894 

  4.113 2.750  3.871 7.467  73.446 

 GJR(1,1) 0.031 0.047  0.017 0.035 0.098 0.902 

  2.332 2.960  4.730 2.507 5.026 84.428 

 EGARCH(1,1) 0.0298 0.040  -0.130 0.170 -0.071 0.983 

  2.204 2.450  -7.859 7.825 -5.023 282.238 

Notes: (1) The 2 entries for each parameter are the parameter estimate and Bollerslev-

Wooldridge(1992) robust t-ratios.  

(2) Entries in bold are significant at the 95% level 
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Table 3.5  Portfolio Models for the USA: VARMA-GARCH 

 

Sectors ϖ  α CCE β CCE α FHI β FHI α IMTU β IMTU 

RSP53CCE 0.005  0.124 0.836  -0.062 0.144  -0.014 -0.024 

 1.753   6.604 13.157   -2.185  1.718   -0.816 -0.554   

RSP53FHI 0.004 -0.071   0.141 0.126   0.797  -0.033  0.092  

 1.062  -4.437   1.622   4.662   9.540  -1.938   1.694  

RSP53IMTU 0.003 -0.006  -0.013 -0.032   0.046   0.076  0.915  

 0.696  -1.006  -0.670   -3.686  2.034   7.265  70.325   

Notes: (1) The 2 entries for each parameter are the parameter estimate and Bollerslev-

Wooldridge(1992) robust t-ratios.  

(2) Entries in bold are significant at the 95% level 

 

 

Table 3.6  Portfolio Models for Europe: VARMA-GARCH 

 

Sectors ϖ  α ABB β ABB α CCF β CCF α FIIM β FIIM 

RSTABB -0.005  0.218  0.332   -0.051  0.129  -0.113  0.425   

 -0.437  5.297   1.955   -1.119   0.852   -5.500   5.975  

RSTCCF 0.028 -0.047  0.162  0.128  0.597  -0.057 0.051  

 3.589   -1.369   0.836  3.161  5.860  -2.235   0.421   

RSTFIIM 0.006  -0.134  0.559 -0.020  0.215  0.212  0.519 

 0.704   -4.140  3.986   -0.652   2.047  8.871   3.478   

Notes: (1) The 2 entries for each parameter are the parameter estimate and Bollerslev-

Wooldridge(1992) robust t-ratios.  

(2) Entries in bold are significant at the 95% level 
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Table 3.7  Portfolio Models for the USA: VARMA-AGARCH 

 

Sectors ϖ  α CCE β CCE α FHI β FHI α IMTU β IMTU γ  

RSP53CCE 0.006   0.076  0.847   -0.068 0.106  -0.006   -0.054   0.061  

 1.907   4.494   16.810  -3.245  1.824   -0.367  -1.133   5.030   

RSP53FHI 0.007  -0.067  0.144   0.089   0.840   -0.048  0.132   -4.811  

 2.238   -5.087  2.092   4.563   13.920  -2.802   2.291   0.000   

RSP53IMTU 0.007   -0.006  -0.0156 -0.030  0.036  0.049  0.910   0.027   

 1.726   -1.109  -1.010  -5.273  2.073   4.894  67.129   0.000   

Notes: (1) The 2 entries for each parameter are the parameter estimate and Bollerslev-

Wooldridge(1992) robust t-ratios.  

(2) Entries in bold are significant at the 95% level 
 

 

Table 3.8  Portfolio Models for Europe: VARMA-AGARCH 

 

Sectors ϖ  α ABB β ABB α CCF β CCF α FIIM β FIIM 
γ  

RSTABB -0.006   0.192   0.310   -0.058  0.156  -0.115  0.462  0.051  

 -0.255   3.77  0.762   -1.067  0.541   -2.493   1.295   3.191   

RSTCCF 0.029  -0.042  0.191  0.118   0.578   -0.072   0.119  -0.006  

 2.014   -1.404  0.701   3.905   4.801  -1.330   0.330   0.000   

RSTFIIM 0.004  -0.149  0.568  -0.038 0.221 0.209   0.436   -6.912  

 0.160  -3.264  1.928   -0.576  0.984   6.621   5.208   0.000   

Notes: (1) The 2 entries for each parameter are the parameter estimate and Bollerslev-

Wooldridge(1992) robust t-ratios.  

(2) Entries in bold are significant at the 95% level 
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Table 3.9  Constant Conditional Correlations between Sectors Returns for the USA 

 

Model ρ CCE, FHI ρ CCE, IMTU ρ FHI, IMTU 

CCC 0.764 0.623 0.678 

 118.173 66.102  76.010  

VARMA-GARCH(1,1) 0.789  0.639   0.689  

 95.676  54.975  69.040   

VARMA-GARCH(1,1) 0.789  0.639   0.689  

 95.677  54.975  69.040   

Notes: (1) The 2 entries for each parameter are the parameter estimate and Bollerslev-

Wooldridge(1992) robust t-ratios.  

 (2) Entries in bold are significant at the 95% level 
 

 

Table 3.10  Constant Conditional Correlations between Sectors Returns for Europe 

 

Model ρ ABB, CCF ρ ABB,  CCF ρ CCF, FIIM 

CCC 0.848 0.865 0.831 

 146.682  111.551   114.528   

VARMA-GARCH(1,1) 0.862   0.880   0.848   

 142.523  179.222   155.775   

VARMA-GARCH(1,1) 0.860  0.879  0.846   

 122.988  127.783  117.031   

Notes: (1) The 2 entries for each parameter are the parameter estimate and Bollerslev-

Wooldridge(1992) robust t-ratios.  

 (2) Entries in bold are significant at the 95% level 
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Table 3.11  DCC-GARCH(1,1) Estimates for the USA 

 

Model 
1φ  2φ  

1 2 1 1 1 2 1(1 ) − − −′= − − + +t t t tQ S Qφ φ φη η φ  0.034 0.963 

10.070   245.762  

Notes: (1) The 2 entries for each parameter are the parameter estimate and Bollerslev-

Wooldridge(1992) robust t-ratios.  

 (2) Entries in bold are significant at the 95% level 

 

 

Table 3.12  DCC-GARCH(1,1) Estimates for Europe 

 

Model 
1φ  2φ  

1 2 1 1 1 2 1(1 ) − − −′= − − + +t t t tQ S Qφ φ φη η φ  0.030 0.970 

5.758  182.163   

Notes: (1) The 2 entries for each parameter are the parameter estimate and Bollerslev-

Wooldridge(1992) robust t-ratios.  

 (2) Entries in bold are significant at the 95% level 
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Table 3.13  Basel Accord Penalty Zones 

 

Zone Number of Violations Increase in k 

Green 0 to 4 0.00 

Yellow 5 0.40 

 6 0.50 

 7 0.65 

 8 0.75 

 9 0.85 

Red 10+ 1.00 

Note: The number of violations is given for 250 business days. 
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Table 3.14  Mean Daily Capital Charge and AD of Violations  for the USA 

 

Model 

Number of Violations Mean Daily 

Capital 

Charge 

AD of Violations 

All 

observation 

250  

trading day 
Maximum Mean 

ARCH 21 2 12.353 3.706 1.736 

GARCH 24 2 11.234 4.448 1.938 

GJR 25 2 11.084 4.590 2.245 

EGARCH 24 2 11.053 4.886 2.257 

RiskmetricsTM 33 2 10.855 1.827 1.827 

CCC 20 1 9.471 4.972 1.749 

DCC 16 1 9.383 5.199 1.563 

VARMA-GARCH 17 1 9.599 5.085 1.867 

VARMA-AGARCH 17 1 9.515 5.326 1.646 

VIX 23 2 10.091 3.319 3.319 

Note: (1) Number of Violations are a greater number of violations than would reasonably be expected 

given the specified confidence level of 1%.  

          (2) AD is the absolute deviation of the violations from the VaR forecast.  
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Table 3.15  Mean Daily Capital Charge and AD of Violations for Europe 

 

Model 

Number of Violations Mean Daily 

Capital 

Charge 

AD of Violations 

All 

observation 

250  

trading day 
Maximum Mean 

ARCH 12 1 15.437 2.148 1.001 

GARCH 22 2 14.510 2.860 1.906 

GJR 22 2 14.443 2.860 1.906 

EGARCH 23 2 14.519 2.410 2.410 

RiskmetricsTM 25 2 14.353 0.000 0.000 

CCC 20 2 11.991 2.918 1.910 

DCC 18 2 12.437 3.759 1.968 

VARMA-GARCH 19 2 12.514 3.348 1.885 

VARMA-AGARCH 21 2 12.438 2.517 1.772 

VSTOXX 21 2 13.714 1.155 0.774 

Note: (1) Number of Violations are a greater number of violations than would reasonably be expected 

given the specified confidence level of 1%.  

          (2) AD is the absolute deviation of the violations from the VaR forecast.  
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Table 3.16  Correlations of Value-at-Risk forecasts for the USA 

 

 ARCH GARCH GJR EGARCH RISKMETRICSTM CCC DCC VARMA-GARCH VARMA-AGARCH VIX 

ARCH 1 0.555 0.569 0.571 0.528 0.518 0.536 0.479 0.489 0.456 

GARCH 0.555 1 0.963 0.949 0.992 0.981 0.991 0.925 0.911 0.871 

GJR 0.569 0.963 1 0.984 0.953 0.940 0.953 0.888 0.905 0.868 

EGARCH 0.571 0.949 0.984 1 0.942 0.930 0.937 0.884 0.902 0.875 

RISKMETRICSTM 0.528 0.992 0.953 0.942 1 0.978 0.985 0.926 0.912 0.885 

CCC 0.518 0.981 0.940 0.930 0.978 1 0.991 0.972 0.957 0.859 

DCC 0.536 0.991 0.953 0.937 0.985 0.991 1 0.937 0.921 0.872 

VARMA-GARCH 0.479 0.925 0.888 0.884 0.926 0.972 0.937 1 0.992 0.798 

VARMA-AGARCH 0.489 0.911 0.905 0.902 0.912 0.957 0.921 0.992 1 0.800 

VIX 0.456 0.871 0.868 0.875 0.885 0.859 0.872 0.798 0.800 1 

Note: Entries in bold are highest correlation 
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Table 3.17  Correlations of Value-at-Risk forecasts for the Europe 

 

 ARCH GARCH GJR EGARCH RISKMETRICSTM CCC DCC VARMA_GARCH VARMA_AGARCH VSTOXX 

ARCH 
1 0.613 0.617 0.615 0.550 0.565 0.557 0.473 0.471 0.485 

GARCH 
0.613 1 0.986 0.978 0.974 0.982 0.985 0.844 0.834 0.835 

GJR 
0.617 0.986 1 0.991 0.958 0.961 0.964 0.820 0.819 0.842 

EGARCH 
0.615 0.978 0.991 1 0.961 0.952 0.960 0.804 0.804 0.867 

RISKMETRICSTM 
0.550 0.974 0.958 0.961 1 0.974 0.985 0.841 0.832 0.862 

CCC 
0.565 0.982 0.961 0.952 0.974 1 0.993 0.920 0.910 0.839 

DCC 
0.557 0.985 0.964 0.960 0.985 0.993 1 0.875 0.864 0.855 

VARMA_GARCH 
0.473 0.844 0.820 0.804 0.841 0.920 0.875 1 0.998 0.746 

VARMA_AGARCH 
0.471 0.834 0.819 0.804 0.832 0.910 0.864 0.998 1 0.746 

VSTOXX 
0.485 0.835 0.842 0.867 0.862 0.839 0.855 0.746 0.746 1 

Note: Entries in bold are highest correlation 
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Figure 3.1  Single Index Models and Realized Returns VaR Forecasts for the USA 
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Figure 3.2  Portfolio Models, VIX and Realized Returns VaR Forecasts for the USA 
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Figure 3.3  Single Index Models and Realized Returns VaR Forecasts for Europe 
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Figure 3.4  Portfolio Models, VSTOXX and Realized Returns VaR Forecasts for Europe 
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