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1. Introduction

Volatility is the key in portfolio

ABSTRACT

In 2003, the Chicago Board Options Exchange (CBOE) made two key
enhancements to the volatility index (VIX) methodology based on S&P
options. The new VIX methodology seems to be based on a complicated
formula to calculate expected volatility. In this paper, with the use of
Thailand’s SET50 Index Options data, we modify the apparently
complicated VIX formula to a simple relationship, which has a higher
negative correlation between the VIX for Thailand (TVIX) and SETS50
Index Options. We show that TVIX provides more accurate forecasts of
option prices than the simple expected volatility (SEV) index, but the
SEV index outperforms TVIX in forecasting expected volatility.
Therefore, the SEV index would seem to be a superior tool as a hedging
diversification tool because of the high negative correlation with the
volatility index.

In 1993, the Chicago Board Options
Exchange (CBOE) introduced the

and risk management especially in
modern financial theory. It becomes
the important tool for fund managers
or investors to make decision in
investment. Fund managers and
investors tend to move the funds from
the market that has high volatility to
the market that has low volatility, for
example, they can move funds from
one stock market to other stock
markets if the volatility in that stock

market is increased.
* Corresponding author.

E-mail addresses: chatayan.w@gmail.com

(C.Wiphatthanananthakul).

CBOE Volatility Index, VIX, which
quickly became the benchmark for
stock market volatility. As volatility
often signifies financial turmoil, the
index is often referred to as the
“investor fear gauge”. The index is
based on real-time option prices, and
reflects investors’ consensus view of
future expected stock market volatility.

In September 2008, options trading
become an even more important profit
tool than a risk diversification tool
from investors. The U.S. SEC, UK.
FSA., and Australia stepped into stop
short-selling for financial companies in



order to stabilize those companies.
Recently options have become a
significant diversification tool for
investors to hedge their portfolios in
both expected uptrend and (especially)
downturn markets.

The trading volume in SPX options
set a new record as 2,182,562 contracts
were traded on 6 October 2008, with
an average volume of 670,629
contracts per day. On 18 September,
the total options volume exceeded 30
million contracts for the first time in
history, from the previous day’s record
of 26 million contracts. Moreover, in
the hamburger crisis, the Thailand
SET50 options volume increased by
33.5% and 33% in September and
October, respectively, as compared
with August 2008.

One of the keys to options trading
is leveraging, whereby leverage allows
traders to make a significant amount of
money from a relatively small change
in price. The trader enjoys the ability
of less money at a low investment for
bigger bets to hedge a portfolio. In
addition, the options trader can
minimize exposure to risk from stock
investment as a hedge of an under-
priced asset relative to its fair value.

In 29 October 2007, the Stock
Exchange of Thailand (SET), with the
sub-company Thailand Futures
Exchange (TFEX), launched the
European-style options written on
TFEX with ticker S50myycall/put
strike price. For example,
S50H09C600 denotes SET50 contract
month of March in the year 2009 call
option at the strike of 600. The
contract multipliers of the options
contracts are 200 Baht per index point.

In a competitive market, Singapore
and Thailand are planning to integrate
the Asian stock market to be more
competitive to the world. TFEX should
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introduce innovative new products to
attract foreign investors to invest and
hedge their portfolios in Thailand.

The primary purpose of this paper
is to simplify  the apparently
complicated expected volatility
formula into a simpler relationship,
with the use of SET50 index data
becoming a simple expected volatility
(SEV) index, and to adapt the new
VIX calculation from CBOE to derive
an implied volatility index (TVIX) for
Thailand SET50 index options. Then
we substitute the expected volatilities
into the Black-Scholes model to
predict call and put option prices.

The remainder of the paper is as
follows. The wvolatility index is
discussed in Section 2, a brief
overview of the volatility index (VIX)
from CBOE is given in Section 3, the
new VIX formula is presented in
Section 4, followed by a simple
expected volatility index (SEV) in
Section 5, the SETS50 index options
data for empirical analysis are
discussed in Section 6, the Black-
Scholes model for substituting the
expected volatility to predict call and
put option prices is discussed in
Section 7, estimation is given in
Section 8, and some concluding
remarks are presented in Section 9.

2. Volatility Index

The idea of estimating implied
volatility from options is relatively
simple. There is no straightforward
method to extract the information.
With the large number of option
pricing models, many researchers have
applied various methods of estimating
implied volatilities from option pricing
models, especially the Black-Scholes
model (see Black and Scholes (1973)).
The model was originally developed to



estimate implied volatility at each
exercise price, as in Melino and
Turnbull (1990), Nandi (1996), and
Bakshi, Cao and Chen (1997).

Option prices calculate implied
volatility that represents a market-
based estimate of future price
volatility, so that implied volatility is
regarded as a fear gauge (Whaley
(2000)). Implied volatilities are
reported by investors, financial news
services and other finance
professionals. The information content
and forecast quality of implied
volatility 1s an important topic in
financial markets research.

Latane and Rendleman (1976),
Chiras and Manaster (1978), Beckers
(1981) and Jorion (1995) provided
early assessments of the forecast
quality of implied volatility. They
concluded that implied volatilities
outperform historical standard
deviations, although perhaps biased, as
a good predictor of future volatility.
Christensen and Prabhala (1998) found
that implied volatility forecasts are
biased, but dominate historical
volatility in terms of ex ante
forecasting power. Fleming (1998)
used a similar volatility measure to
show that implied  volatilities
outperform historical information.

Fleming et al. (1995) showed that
implied volatilities from S&P100
index options yield efficient forecasts
of one-month ahead S&P100 index
return volatility, and can also eliminate
mis-specification problems. Blair et al.
(2001) concluded that the VIX index
provides the most accurate forecasts
for low- or high-frequency
observations, and are also unbiased.

Dennis et al. (2006) found that
daily innovations in VIX contain very
reliable incremental information about
the future volatility of the S&P100
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index. Other studies that attempt to
forecast implied volatility or use the
information contained in implied
volatility to trade in option markets
include Harvey and Whaley (1992),
Noh et al. (1994), and Poon and Pope
(2000).

3. VIX from CBOE

VIX measures market expectation
of near term volatility conveyed by
stock index option prices. The original
VIX was constructed using the implied
volatilities of eight different S&P100
(OEX) option series so that, at any
given time, it represented the implied
volatility of an hypothetical at-the-
money OEX option with exactly 30
days to expiration from an option-
pricing model.

In 2003, the CBOE made two key
enhancements to the VIX
methodology. The new VIX is based
on an up-to-the-minute  market
estimation of expected volatility that is
calculated by using real-time S&P500
Index (SPX) option bid/ask quotes, and
incorporates information from the
volatility “skew” by using a wider
range of strike prices rather than just
at-the-money series with the market’s
expectation of 30-day volatility, and
using nearby and second nearby
options.

Until 2006, VIX was trading on the
CBOE. The VIX options contract is the
first product on market volatility to be
listed on an SEC-regulated securities
exchange. This new product can be
traded from an options-approved
securities account. Many investors
consider the VIX Index to be the
world’s premier barometer of investor
sentiment and market volatility, and
VIX options are a very powerful risk
management tool. VIX is quoted in



percentage points, just like the
standard deviation of a rate of return.

4. New VIX Procedure

The New VIX is more robust
because it pools the information from
option prices over the whole volatility
skew, and not just from at-the-money
options. The formula used in the new
VIX calculation is given by the CBOE
as follows:

o -2y S g, )_1[1_

K’ T| K,
where
c = VIX / 100 (so that VIX
= o x 100),
T = Time to expiration (in
minutes),
F = Forward index level,

derived from index option
prices (based on at-the-money
option prices, the difference
between call and put prices is
smallest).

The formula used to calculate the
forward index level is:
F = Strike  price  (at-the-
money) + %' x (Call price — Put
price),

where

R = risk-free interest rate is
assumed to be 3.01%
(for  simplicity, the
government T-bills 3
month contract interest

rate 1S used, as the
Thailand options
contract is a 3 months
contract);
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1}2

T = {Mcurrent da + Msettlement
Yy
day T Mother days }/minutes in a year,

where

M current day = # of minutes
remaining until midnight of the current
day,

Msettlement day T # of minutes
from midnight until 9:45 am on the
TFEX settlement day,

Mother days = Total # of

minutes in the days between the
current day and the settlement day;

K; = Strike price of i out-of-
the-money option; a call if K; >
Fand a putifK; <F;

AK, = Interval between strike
prices - half the distance
between the strike on either

. K., —-K.
side of K;: AK, =—2L L

2
Ky = First strike below the
forward index level, F;
QK;) = The midpoint of the
bid-ask spread for each option
with strike K;.

(Note: A K; for the lowest strike is
simply the difference between the
lowest strike and the next higher strike.
Likewise, A K for the highest strike is
the difference between the highest
strike and the next lower strike.)

With the adaptation of the VIX
calculation to Thailand SET 50 index
options, the Thailand expected
volatility (TVIX) can be estimated.

S. A Simple Expected Volatility
Index (SEV Index)

From the apparently complicated
expected volatility formula, this paper
tries to simplify the VIX formula into
an SEV Index to obtain new results
about the information content in option
prices. The simplified formulae for the



expected volatility index

follows:

arc  as

SEV _1=1log(AK)/log(index),
SEV _2=AK /index

SEV _3=AK/index?,

where
AK = the difference between
the strike prices.

From Figure 1 in the Appendix, we
present graphs of the index, where the
data start from 27 January 2008
through to 31 October 2008. Figure 2
illustrates each volatility index time
series calculated from the above TVIX
and SEV formulae. The summary
statistics of the series are given in
Table 1, as follows:

e The mean of the SEV 1 index is
higher than those of SEV 3 and
SEV 2, respectively, but lower
than TVIX.

e From Figure 3 in the Appendix, all
the indexes are positively skewed.
The null hypothesis for the
skewness coefficient that conforms
to a normal distribution is zero, and
this is rejected at the 5%
significance level, with skewness
coefficient greater than zero.

e All the indexes display kurtosis, or
fat tails.

[Insert Table 1 around here]
[Insert Figure 2 around here]

6. Data
As TFEX index options are
European-style, the basic Black-

Scholes option pricing model is used,
but it causes bias in the calculated
implied volatility.  Fleming et al.
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(1995) and Hull and White (1987)
have found that the calculation of
implied volatilities can eliminate the
mis-measurement and bias problem
from the near-the-money and close-to-
expiry options. Therefore, a total of
eight near-the-money close-to-expiry
SETS50 call and put options prices (four
call options and four put options) are
used to calculate expected volatility
accurately.

Thus, VIX calculation represents
the volatility of an hypothetical option
that is at-the-money with a constraint
22 trading days (30-day calendar
period) to expiration. However, TVIX
calculation represents the volatility that
is at-the-money with constraint 66
trading days (90-day calendar period)
to expiration. For the SEV index, the
trading days are used.

Both data series are obtained from
Bloomberg (account at the Faculty of
Economics, Chiang Mai University
and  Research  Institute, Stock
Exchange of Thailand). We obtain
high-frequency intraday data, which
are data at one-minute intervals
between 09.45-12.30 and 14.30-16.55;
for a total of 5 hours and 10 minutes
each day. The sample period is
from 27 January 2008 until 31 October
2008. The contract months are March,
June, September, and December 2008.
For contract month December 2008,
the data are downloaded until 31
October 2008.

In order to estimate TVIX and SEV
index and predict for call and put
option price, we use the SAS 9.1
software package for the estimation
and forecasting of time series data, as
it offers a number of features that are
not available in traditional econometric
software.

As the SAS 9.1 software is used,
the trading days for each month are



counted through the actual trading days
at the SET for SEV index since there is
trading.

7. The Black-Scholes Model

The original Black and Scholes
(1973) option-pricing model was
developed to value options primarily
on equities. The modified Black-
Scholes European model that is used at
the Thailand Futures Exchange
(TFEX) has a number of restrictive
assumptions, as follows:

1. The options pay no dividends
during the option’s life (q = 0);

2. European exercise terms dictate
that the option can only be
exercised on the expiration
date;

3. Returns on the underlying asset
are lognormally distributed;

4. No commissions are charged.

From the model given below,
SET50 index call and put option prices
are used to calculate implied volatility.

The TFEX Black-Scholes options
pricing model is as follows:

Call option pricing formula:

—qt —rt
C=Se V5 a1y - xe P95 N(d2)

A call option affords the buyer the
right to purchase an underlying asset
for a fixed price in the future.

Put options pricing formula:
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A put option affords the buyer the right
to sell the underlying asset for a fixed
price in the future:

L A AR
V| Vs

d2=dl-V- |

where
S = price  of underlying
asset,
X = strike price at maturity
date,

r = risk-free rate (apply
zero-coupon bond at 3 month maturity
to calculate options with 3 months
maturity),

q = dividend
underlying asset (q = 0),
t = time to maturity (days),
N = the cumulative normal
distribution function,

\Y = standard deviation of
the rate of return during the life of the
option (the expected volatility or
TVIX).

yield  of

With the Black-Scholes option
pricing model, the expected volatilities
are substituted to predict call and put
option prices at each strike price and
expiration.

8. Estimation

In order to assess the performance
of the TVIX and SEV index, the model
fit can be evaluated by measuring the
descriptive statistics for the volatility
index, as follows:

P = xe 7565 (1= N(d2) - se VA5 (1- N(d1))
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Measures of Statistic Fit

Equations

Mean Square Error

SSE

= —_—— _ n A2
MSE === SSE=3"" (y,~ )",

where ) is the series mean.

Root Mean Square Error

Mean Absolute Percent Error

RMSE = { MSE

100 < 4
MAPE ===y, = 5,)/.|
t=1

n

1~
MAE =;Z|.Vt _yt|
=1

AdjR® =1-[(n-1)/(n-Kk)](1-R?):

R*=1-SSE/SST; SST=Y " (v,~7,)’

Mean Absolute Error
Adjusted R?
where
n
p =
intercept
i =
AIC
SBIC

= the number of observations

the number of parameters including the
1 if there is an intercept, 0 otherwise
n In(MSE) +2 k

n In(MSE) + k In(n)

where £ is the number of estimated parameters

The mean square error (MSE) uses
the one-step-ahead forecasts. Root
mean square error (RMSE) is useful
for determining how accurately the
model might predict future
observations. Adjusted R-squared (Adj
R?) is used as a standard model
selection  criterion. The  Akaike
information criterion (AIC) (Akaike
(1973)) and Schwarz Bayesian
Information criterion (SBIC) (Schwarz
(1978)) are useful to determine which
of several competing nested or non-
nested models may fit the data the best.
The model with the lowest values of
AIC and SBIC is selected as fitting the
sample data better.

[Insert Table 2 around here]

The value of adjusted R-squared
closest to 1.00 indicates a good fit. The
adjusted R-squared for SEV 1 is the
highest, so SEV 1 is taken to be the
best fitting model.

From Table 2, the AIC values of
SEV 2, SEV 1 and TVIX exceed that
of SEV_3, with 155,668; 183,217; and
433,372; respectively, so that the best
fitting model is SEV 3, with the
SEV 2 and SEV_ 1 models also
providing better fits than the TVIX
model.

Therefore, from the perspective of
adjusted R-squared, AIC and SBIC, the



SEV model provides a better fit to the
data than does the TVIX model.

[Insert Table 3 around here]

From Table 3, we compare each
model across each quarter of the year
as the quarterly contract month. In
March and June 2008, the adjusted R-
squared values of TVIX model are the
closest to 1.00, but in September and
December, the adjusted R-squared
value of SEV 1 model is closest to
1.00.

Once again, the AIC and SBIC
values of the SEV models are smaller
than that of the TVIX model, so that
the SEV models provide a better fit to
the data.

The overall conclusion to be drawn
is that, in terms of goodness of fit
measures, our SEV index outperforms
the formula used to calculate TVIX.
For example, the RMSE of TVIX is
larger than that of the SEV index.

[Insert Table 4 around here]
[Refer to Figure 4 around here]

From Table 4 and Figure 4 in the
Appendix, we compare actual prices
with the predicted prices from each
model. In this case, selection of the
best fitting model is not so clear, so we
calculate the error between the actual
and predicted prices.

[Insert Table 5 around here]
[Refer to Figure 5 around here]

Table 5 reports, and Figure 5 in the
Appendix illustrates, the statistics
relating to the errors. It can be seen
that the mean of the error of the
SEV_1 index is the lowest, and SEV_2
and SEV 3 have a lower range of
errors compared with SEV 1 and
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TVIX. The errors of SEV 2 and
SEV_3 are greater than the errors from
SEV 1 and TVIX.

[Insert Table 6 around here]

From Table 6, the percentage error
of TVIX is the least, followed by
SEV 1, SEV .2 and SEV 3.
Additionally, there is a high negative
correlation between the SEV 1 index
and the index over the year.

[Insert Table 7 around here]
[Insert Table 8 around here]

9. Conclusion

In this paper, we proposed a new
and simplified volatility index, VIX,
for expected volatility and pricing
options from the seemingly
complicated expected volatility
formula established by the Chicago
Board Options Exchange (CBOE). An
extensive empirical analysis based on
SET50 index options showed that the
volatility index for Thailand, TVIX,
provided more accurate predictions of
option prices than the SEV index as the
percent error is less. However, our
simple expected volatility (SEV) index
model  outperformed TVIX in
calculating and predicting expected
volatility.

Our empirical results suggested
that VIX is more accurate in
formulating predictions. However, we
also showed that the SEV index is
more reliable than TVIX from the
viewpoint of higher adjusted R-
squared values, AIC and SBIC.
Therefore, the SEV index would seem
to be a superior tool as a hedging
diversification tool, especially the
SEV 1 index, because of the high



negative correlation with the volatility
index.
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Index time series

Figure 1
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Table 1: Descriptive Statistics of Volatility Indexes

Variable SEV 1 | SEV.2 | SEV 3 TVIX
Mean 0.37 0.02 | 0.000048 38.98
Std Dev 0.01 0.01 | 0.000028 25.76
Kurtosis 1.18 1.43 1.81 242
Skewness 0.46 1.19 2.57 5.24
Minimum 0.36 0.02 | 0.000024 16.60
Maximum 0.41 0.04 | 0.000147 | 156.75
Table 2: Goodness of Fit of Volatility Indexes
Measures of Goodness of Fit SEV 1 SEV 2 SEV 3 TVIX
Mean Square Error MSE 2.30E-08 | 3.84E-09 | 1.33E-07 0.38068
Root Mean Square Error RMSE 0.0001516 | 0.0000620 | 0.0003648 | 0.6169900
Mean Absolute Percent Error MAPE 0.01503 0.09208 0.18429 0.50004
Mean Absolute Error MAE 0.0000566 | 0.0000207 | 0.0001003 | 0.1754700
Adjusted R-Square R* (Close to 1.000) 0.99989 0.99987 0.99982 0.99943
AIC -262,874 | -290,423 | -446,091 -12,718
SBIC -262,851 | -290,400 | -446,068 -12,704




Table 3: Summary Statistics Over the Year
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March SEV 1 SEV 2 SEV 3 TVIX
2008 Call Put Call Put Call Put Call Put
MSE 2.31E-08 | 2.25E-08 | 2.09E-09 | 2.04E-09 | 2.45E-14| 2.39E-14| 0.61369 | 0.66007
RMSE 0.0001519 | 0.00015 | 0.0000457 | 0.0000452 | 1.56E-07 | 1.55E-07 | 0.78338 | 0.81245
MAE 0.0000786 | 0.0000771 | 0.0000236 | 0.0000231 | 8.05E-08 | 7.87E-08 | 0.26397 | 0.27636
MAPE 0.02176 | 0.02136 | 0.13874 | 0.13632 0.27782 0.27277 | 7.54E-01 | 0.77285
ADJ R? 0.98919 | 0.98712 | 0.98933 | 0.98722 0.98952 0.98734 | 0.99886 | 0.99914
AIC -26762.31 | -25954.18 | -30416.3 | -29491.16 | -47700.98 | -46228.35 | -2823.69 | -2837.35
SBIC -26756.98 | -25948.88 | -30410.97 | -29485.86 | -47695.65 | -46223.05 | -3074.72 | -2823.69

June SEV 1 SEV 2 SEV 3 TVIX

2008 Call Put Call Put Call Put Call Put
MSE 2.26E-08 | 2.13E-08 | 2.10E-09 | 1.98E-09 | 2.55B-14| 241E-14| 0.61369 | 0.66007
RMSE 0.0001504 | 0.0001459 | 0.0000458 | 0.0000445 | 1.60E-07 | 1.55E-07 | 0.78338 | 0.81245
MAE 0.0000748 | 0.0000718 | 0.0000226 | 0.0000217 | 7.74E-08 | 7.53E-08 | 0.26397 | 0.27636
MAPE 0.02069 | 0.01987 | 0.13185 | 0.12659 0.26376 0.2557 0.7537 | 0.77285
ADJ R? 0.99554 |  0.99615 | 0.99546 | 0.99611 0.99531 0.99602 | 0.99886 | 0.99914
AIC -59374.92 | -61949.31 | -67393.37 | -70282.14 -105568 -109968 | -3088.22 | -2837.35
SBIC -59362.67 | -61936.99 | -67381.13 | -70269.82 -105556 -109955 | -3074.72 | -2823.69
September SEV 1 SEV 2 SEV 3 TVIX

2008 Call Put Call Put Call Put Call Put
MSE 3.62E-08 | 2.95E-08 | 4.35E-09 | 3.44E-09 | 8.20E-14| 6.17E-14 | 0.61369 | 0.66007
RMSE 0.0001901 | 0.0001719 | 0.0000659 | 0.0000586 | 2.86E-07 | 2.48E-07 | 0.78338 | 0.81245
MAE 0.0000811 | 0.0000781 | 0.0000265 | 0.0000256 | 1.04E-07 | 9.98E-08 | 0.26397 | 0.27636
MAPE 0.02206 | 0.02124 | 0.13808 |  0.13343 0.2762 0.26596 | 0.61369 | 0.77285
ADJ R? 0.99923 |  0.99945 | 0.99914 |  0.99942 0.99892 0.99932 |  0.99886 | 0.99914
AIC -104093 | -107888 | -116962 | -121276 -183050 -189272 | -3088.22 | -2837.35
SBIC -104080 | -107874 | -116949 | -121262 -183030 -189252 | -3074.72 | -2823.69
December SEV 1 SEV 2 SEV 3 TVIX

2008 Call Put Call Put Call Put Call Put
MSE 6.02E-08 | 4.89E-08 | 9.85E-09 | 8.07E-09 | 3.30B-13 | 2.76E-13 | 0.61369 | 0.66007
RMSE 0.0002453 | 0.0002212 | 0.0000992 | 0.0000898 | 5.74E-07 | 5.25E-07 | 0.78338 | 0.81245
MAE 0.0000978 | 0.0000925 | 0.0000355 | 0.0000342 | 1.71E-07 | 1.68E-07 | 0.26397 | 0.27636
MAPE 0.02597 | 0.02448 |  0.15884 0.1499 0.31797 0.29911 0.7537 | 0.77285
ADJ R? 0.99968 | 0.99978 | 0.99963 | 0.99975 0.99951 0.99967 | 0.99886 | 0.99914
AIC -119189 | -119175 | -132163 | -132149 -206023 -206002 | -3088.22 | -2837.35
SBIC -133260 | -133246 | -147531| -147517 -228953 -228932 | -3074.72 | -2823.69
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Table 4: Summary of Actual and Predicted Prices

Actual Price Predicted Prices

Variable |C_PricelP_Price/ C_SEV_1|P_SEV_1|C_SEV 2|P_SEV 2|C_SEV _3|P_SEV _3|C_TVIX|/P_TVIX
Mean 15.09 | 2439 | 21.79 28.52 10.04 16.77 10.18 1691 | 17.94 | 17.60
Std Dev 10.75 | 21.15 17.33 23.24 16.51 25.35 16.45 25.27 16.73 17.06
Minimum| 4 0 |2.87E-100|-1.89E-14 -8.3E-14 0 7.9E-14 [5.02E-26| 2.02E-07
Maximum| g 0 |210.00| 130.15 | 208.69 | 130.05 | 208.69 | 130.05 | 208.69 | 130.23 | 208.76

Note: C and P denote call and put, respectively.

Table 5: Summary Statistics of Forecast Errors
Error = actual price — predicted price
Variable | error_SEV_1 | error SEV_2 | error_SEV_3 | error_TVIX

Mean 0.45 12.20 12.26 1.40

Std Dev 9.46 7.85 7.90 11.84

Minimum -33.45 -13.97 -13.97 -96.23

Maximum 58.31 58.31 58.31 71.63

Sum 6800.74 184041.61 184891.54 18475.16

Table 6: Summary Statistics of Percentage Errors

Variable % _error_SEV_1 | % _error_SEV_2 | %_error_SEV_3 | %_error_TVIX

Mean -18.35 80.40 80.71 3.47

Std Dev 101.50 32.34 32.47 91.76

Minimum -2367.00 -131.22 -131.22 -1762.51

Maximum 100 100 100 100
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Table 7: Correlations between the Volatility Indexes and Index

Correlations SEV 1 SEV 2 SEV 3 TVIX
Index -0.96462 | -0.95044 | -0.92128 | -0.66855

Correlations SEV 1 ‘ SEV 2 ‘ SEV 3 ‘ TVIX ‘
Index

March 2008 -0.99958 | -0.99909 | -0.99798 | 0.31342 |
| June 2008 | -0.99936 | -0.99855 | -0.99681 | -0.48684 |
| September 2008 | -0.99765 | -0.99450 | -0.98722 | -0.68363 |
| December 2008 | -0.96462 | -0.95044 | -0.92128 | -0.66855 |

Table 8: Summary of Criteria for Best Fitting Models

Criteria

MSE

RMSE

MAE

MAPE

Adjusted R?

AIC

SEV 3

TVIX

SBIC

Error

Percent error

APM

Correlations
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This paper applied SET50 Index options with the Chicago Board Options
Exchange (CBOE) as a Thailand Volatility Index (TVIX). This can be
considered as a hedging diversification tool because of the high negative
correlation with stock index. In addition, we estimate ARFIMA-
FIGARCH and ARFIMA-FIAPARCH which are capable of capturing

long memory and asymmetry in the conditional variance and power

JEL classification
codes:
C22; C53; G17

transformed conditional variance of process. The empirical shows that
the best model with accuracy is ARMA-FIAPARCH.

1. Introduction

Volatility Index (VIX) measures
market expectation of near term
volatility conveyed by stock index
option prices. The original VIX was
constructed  using the  implied
volatilities of eight different S&P100
(OEX) option series so that, at any
given time, it represented the implied
volatility of a hypothetical at-the-
money OEX option with exactly 30
days to expiration from an option-
pricing model.

* Corresponding author.
E-mail addresses: chatayan.w@gmail.com
(C.Wiphatthanananthakul).

In 1993, the Chicago Board
Options Exchange (CBOE) introduced
the CBOE Volatility Index, VIX,
which quickly became the benchmark
for stock market volatility.

In 2003, the CBOE made two key
enhancements to the VIX
methodology. The new VIX is based
on an up-to-the-minute  market
estimation of expected volatility that is
calculated by using real-time S&P500
Index (SPX) option bid/ask quotes.
Until 2006, VIX was trading on the
CBOE. The VIX options contract is the
first product on market volatility to be
listed on an SEC-regulated securities
exchange. This new product can be
traded from an options-approved
securities account. Many investors



consider the VIX to be the world’s
premier  barometer of  investor
sentiment and market volatility, and
VIX option is a very powerful risk
management tool.

For the econometric model, it is
assumed to be ceteris paribus with the
variance and error term as constant
terms. ARCH (Autoregressive
Conditional =~ Heteroscedastic)  was
developed and applied to ARMA
(Autoregressive  Moving  Average)
model in order to correct the
assumption contradiction of time series
economics data. The data has high
variance with non-stationary variance
and error term (Enders, 1995). The
investors simply focus on the
conditional variance such as the
prediction of return and variance.
ARMA shows the value of mean and
variance simultaneously (Engle, 1982).
GARCH (Generalized Autoregressive
Conditional Heteroscedastic) model
was developed from ARCH in order to
adjust the variance to characterize as
ARMA process which is applied in
time variance model in money market
(Engle, 1982 and Bollerslev, 1986).

Baillie, Bollerslev, and Mikkelsen
(1996) proposed FIGARCH
(Fractional Integrated GARCH) model
which 1is effectively capture both
volatility clustering and long memory
because GARCH model exhibit short
memory and cannot analyze hyperbolic
memory in conditional volatility
process and capture asymmetries in
equity market volatility. With the
previous findings of Ding, Granger,
and Engle (1993) and Baillie er al.
(1996) (among others) who suggest the
modeling of conditional variance of
high frequency financial data by the

use of an (Asymmetric) Power
GARCH (APARCH) or Fractionally
Integrated GARCH  (FIGARCH)
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models. Tse (1998) develops the
Fractionally Integrated Asymmetric
Power ARCH (FIAPARCH) model,
which allows for long memory and
asymmetries in volatility.

This paper is to calculate TVIX
basing on SET50 index options with
CBOE VIX formula with the nearest-
month contracts and compare the best
performance of ARFIMA-FIGARCH
and -FIAPARCH  models for
forecasting TVIX.

2. Volatility Index

Estimating implied volatility from
options is no straightforward method to
extract the information. Whaley (2000)
considered implied volatility as a fear
gauge because option prices calculate
implied volatility that represents a
market-based estimate of future price
volatility). Implied volatilities are the
information by investors, financial
news services and other finance
professionals. The information content
and forecast quality of implied
volatility is an important topic in
financial markets research.

Latane and Rendleman (1976),
Chiras and Manaster (1978), Beckers
(1981) and Jorion (1995) provided
early assessments of the forecast

quality of implied volatility and
concluded that implied volatility
outperforms historical standard

deviations and is a good predictor of
future volatility, although it might be
biased. Christensen and Prabhala
(1998) also found that implied
volatility forecasts are biased, but
dominate historical volatility in terms
of ex ante forecasting power. Fleming
(1998) used a historical volatility

measure to show that implied
volatilities ~ outperform  historical
information.



Dennis et al. (2006) found that
daily innovations in VIX contain very
reliable incremental information about
the future volatility of the S&P100
index. Other studies that attempt to
forecast implied volatility or use the
information contained in implied
volatility to trade in option markets
include Harvey and Whaley (1992),
Noh et al. (1994), and Poon and Pope
(2000).

3. New VIX Procedure

The New VIX is more robust
because it pools the information from
option prices over the whole volatility
skew, and not just from at-the-money
options. The formula used in the new
VIX calculation is given by the CBOE
as follows:

, 2« AK 1| F
ol == L (K, ) ——| ——1
T2 e 0K

where

c = VIX / 100 (so that VIX
= o x 100),

T = Time to expiration (in
minutes),

F = Forward index level,

derived from index option prices
(based on at-the-money option prices,
the difference between call and put
prices is smallest).

The formula used to calculate the
forward index level is:

F = Strike  price  (at-the-
money) + e x (Call price — Put
price),

where

R = risk-free interest rate is
assumed to be 3.01% (for simplicity,
the government T-bills 3 month
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strike  prices -

contract interest rate is used, as the
Thailand options contract is a 3 months
contract);

T = {Mcurrent day + Mettlement
day T Mother days }/minutes in a year,

where

M current daya= # of minutes
remaining until midnight of the current
day,

Misettlement day = # of minutes
from midnight until 9:45 am on the
TFEX settlement day,

Mother days Total # of

minutes in the days between the
current day and the settlement day;

K, = Strike price of i™ out-of-
the-money option; a call if K; > F and
aputif K; <F;

AK; = Interval between
half the distance

between the strike on either side of

Ko Ak =K —Kiy
i+ i = .

2
Ky = First strike below the
forward index level, F;

Q(K)) = The midpoint of
the bid-ask spread for each option with
strike K.

(Note: A K; for the lowest strike is
simply the difference between the
lowest strike and the next higher strike.
Likewise, A K for the highest strike is
the difference between the highest
strike and the next lower strike.)

With the adaptation of the VIX
calculation to Thailand SET 50 index
options, the Thailand expected
volatility (TVIX) can be estimated.

4. Theory

4.1 ARFIMA Model



ARIMA models are frequently
used for seasonal time series (Box and
Jenkins, 1976). A general
multiplicative seasonal ARIMA model
for time series Z; is as follows:

HLYDL )1~ L) (1~ L) Z, = 0(L)p(L)a, A'y, =

where:

L = a backshift or lag
operator (B, —Z, )

S = seasonal period

pL) = (—gL-.—g,L")

1s the non-seasonal AR operator

L) =
(1-D,L —...—D_L’) is the seasonal
AR operator

O(L) = (1—191L—...—9qu)
1s the non-seasonal MA operator

p(L) \

(1-p,L’ —...—0,L%) is the seasonal
MA operator

(1-L)?(1—=L) = non-seasonal
differencing of order d and seasonal
differencing of order D

Granger and Joyeux (1980) and
Hosking  (1981)  proposed  an

autoregressive fractionally integrated
moving-average (ARFIMA) model and
proposed the method to fit long-
memory data. ARFIMA(p,d,q) 1is
written as follow:

LAy, =5 +60(L)u,
with:
p(Ly=1-¢L—...— ¢pL” and
OL)=1-6,L—...— Qqu

where:

o) =

a constant term
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O(L) = the MA operator at
order g

u, = an error term

@(L) = the AR operator at order

p
the

operator at order d of time series data
Vi

differencing

For d = (-0.5, 0), the process
exhibits intermediate memory or long
range negative dependence, while d =
(0, 0.5), the process exhibits long
memory or long range positive
dependence. For d = [0.5, 1), the
process is mean reverting with no long
run impact to future values of the
process and the process becomes a
short memory when d = 0
corresponding to a standard ARMA
process.

4.2 FIGARCH Model

The GARCH model by Bollerslev
(1986) imposed important limitations,
not to capture a positive or negative
sign of u;, which both positive and
negative shocks has the same impact
on the conditional variance, h; as
follows,

where o > 0, o = 0fori=1,....p
and Bj > 0 for j = 1,...,q are sufficient

to ensure that the conditional variance,
h is non-negative. For the GARCH
process to be defined, it is required that
® > 0. Therefore, a univariate
GARCH(1,1) model is known as
ARCH(e) model (Engle, 1982) as an

infinite expansion in u .



Baillie et al. (1996) proposed
fractionally integrated GARCH
(FIGARCH) model to determine long
memory in return volatility. The
FIGARCH (p,d,q) process is as follow:

HL)1-L)'u; =0 +[1=BL)D,

5

2
=u

where v ;

-0, 0<d<l,

t t

m=1
¢(L) = Z¢iLi is of order m-1, and all
i=1
the roots of ¢(L) and [1—B(L)] lie
outside the unit circle. The FIGARCH
model is derived from standard
GARCH model with fractional
difference operator, (I- L)°. The
FIGARCH(p,d,q) model is reduced to
the standard GARCH when d = 0 and
becomes IGARCH model when d = 1.
Baillie et al. (1996) claimed with
the arguments of Nelson (1990) that
the FIGARCH(p,d,m) is ergodic and
strictly stationary which is difficult to
verify. The degree of persistence of the
FIGARCH model operates reversely
direction of the ARFIMA process.
Chung (2001) suggested the
analysis of the FIGARCH specification
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o> = {i—[1- BT - L) (L) fe?

4.3 FIAPARCH Model

Tse (1998) extended  the
asymmetric power ARCH (APARCH)
model of Ding et al.  (1993) to
fractionally integrated of Baillie et al.
(1996) which is extended to
FIAPARCH model as follows:

opd :a)+{1

where 0<d <1, w,0 >0,¢,0 <1,
—1<y<1 and L is the lag operator.
When y >0, negative shocks have a

higher volatility than positive shocks.
The particular value of power term
may lead to suboptimal modeling and
forecasting performance. Ding et al.
(1993) found that the closer of d value
converge to 1, the larger the memory
of the process becomes. The process of
FIAPARCH allows for asymmetry.
When y =0 and 6 =2, the process of

FIAPARCH is reduced to FIGARCH
process.

ARFIMA-FIAPARCH  generates
the long memory property in both the
first and (power transformed) second
conditional moments and is
sufficiently flexible to handle the dual
long memory behavior. It can
recognize the long memory aspect and
provides an empirical measure of real
uncertainty that accounts for long
memory in the power transformed
conditional variance of the process.

=g -L1)° P
5D )}ﬂutl ]

5. Data Descriptive

One-minute intervals of SET50
Index options are obtained from
Bloomberg accounted by the Faculty
of Economics, Chiang Mai University
and  Research  Institute, Stock
Exchange of Thailand. The sample
period is from 27 January 2008 until
30 September 2009. The contract
months are March, June, September
2008 and 2009 and December 2008.

In order to calculate TVIX, we use
the SAS 9.1 software package for the
calculation as it offers a number of
features that are not available in



traditional econometric software. Also,
OxMetrics5 software is used to
estimate ARFIMA-FIGARCH and -
FIAPARCH on daily returns.

The returns of TVIX at time t are
calculated as follows:

Ri,t = log(Pi’t /Pi,t—l)

where P;, and P;,,; are the

closing prices of TVIX at time t and t-
1, respectively.

[Insert Table 1 around here]

Table 1 presents the descriptive
statistics for the returns of TVIX. The
average return of TVIX is negative.
The normal distribution has a skewness
statistic equal to zero and a kurtosis
statistic of 3, but return of TVIX has
negative skewness statistics and high
kurtosis, suggesting the presence of fat
tails. This means that the data has a
longer left tail (extreme losses) than
right tail (extreme gain). Figure 1
presents the plot of TVIX and TVIX
returns. This indicates some
circumstances where TVIX returns
fluctuate.

Table 2 summarized the unit root
tests for TVIX returns. The
Augmented Dickey-Fuller (ADF) and
Phillips-Perron (PP) tests were used to
test the null hypothesis of a unit root
against the alternative hypothesis of
stationarity. The tests yield large
negative values in all cases for levels
such that the individual returns series
reject the null hypothesis at the 1%
significance level, hence, the returns
are stationary.

[Insert Figure 1 around here]
[Insert Table 2 around here]
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6. Estimation

The Akaike Information Criterion
(AIC) (Akaike, 1973) and Schwarz
Bayesian Information Criterion (SBIC)
(Schwarz, 1978) are useful to
determine the best fit among several
competing nested or non-nested
models The model with the lowest
values of AIC and SBIC is selected as
fitting the sample data better.

[Insert Table 3 around here]

Table 3 shows forecasting method
based on ARFIMA-FIGARCH and
ARFIMA-FIAPARCH models for
forecasting TVIX. The values of both
AIC and SBIC in each of ARFIMA-
FIGARCH and ARFIMA-FIAPARCH
model are used for selection the best
ARFIMA-FIGARCH and ARFIMA-
FIAPARCH models for forecasting
TVIX for this period.

The lowest values of AIC and
SBIC are 3.882 and 35.466,
respectively for ARFIMA(1,d,_,1)-
FIGARCH(1,d,,1) and 5.848 and
41.381, respectively
ARFIMA(1,d,1)-
FIAPARCH(1,d,1).

for

For ARFIMA(1,d_,1)-
FIGARCH(1,d,,1) and
ARFIMA(1,d_,1)-
FIAPARCH(1,d,,1), d, for

ARFIMA(1,d,,1) is -0.0857 and -

0.0901, respectively. For

ARFIMA(3,d, ,3)-FIGARCH(1,d. ,1)
and ARFIMA(3,d,,3)-
FIAPARCH(1,d, ,1), d_ of ARFIMA

is -0.0491 and -0.0475, respectively.
All d of ARFIMA processes are not

statistically significant. This can be
concluded that the process is ARMA-

m?



FIGARCH and ARMA-FIAPARCH.
Both processes are intermediate
memory or long range negative

dependence for TVIX.

The estimations of both d, 6 for
ARFIMA(1,d,,1)-FIGARCH(1,d ,1)
and ARFIMAQ3,d,_,3)-
FIGARCH(1,d, ,1) are 0.5397 and
0.5568 which are more than 0.5 at 1%
level of significance. This means that
both  processes are statistically

significant long memory and can be
estimated in long run. However, the

estimations of both d,  for
ARFIMA(1,d,1)-
FIAPARCH(1,d,,1) and

ARFIMA(3,d ,3)-

FIAPARCH(1,d, ,1) are 0.3786 and
0.3950 which are less than 0.5 at 1%
level of significance. This means that
both  processes are statistically
significant short memory and cannot
be estimated in long run. FIAPARCH
is not long memory because d, is less

than 0.5.
Hence, ARFIMA(3,d, ,3)-
FIGARCH(1,d, ,1) has the

memory than others which can be
estimated in long run.

From table 4, mean absolute error
(MAE) and mean absolute percent
error (MAPE) of all models show that
ARFIMA(3,d ,,3)-FIGARCH(1,d,1)

is fitted in forecasting returns of TVIX
as the lowest of both values.

Consequently, with the lowest AIC
and SBIC, ARFIMA(1,-0.0857,1)-

largest

FIGARCH(1,0.5397,1) and
ARFIMA(1,-0.0910,1)-
FIAPARCH(1,0.3786,1) models are

fitted to the data. However, comparing
both processes, ARFIMA(1,-
0.0857,1)-FIGARCH(1,0.5397,1)  is
better than ARFIMA(1,-0.0910,1)-
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FIAPARCH(1,0.3786,1). ARFIMA(3,-
0.0491,3)-FIGARCH(1,0.5568,1)

model provides the best fit to the data
with the lowest of MAE and MAPE in
forecasting and has the largest memory
than others which can be estimated in

long run.

However, the process of ARFIMA
is not  statistically  significant.
Therefore, the null hypothesis of

ARFIMA 1is accepted. The process
becomes a short memory
corresponding to a standard ARMA
process. ARMA-FIGARCH and
ARMA-FIAPARCH are estimated as
follows:

[Insert Table 4 around here]
[Insert Figure 2 around here]
[Insert Table 4 around here]
[Insert Table Saround here]

From table 5, the AIC and SBIC
criteria values strongly favor the
ARMA-FIGARCH formulation over
the ARMA-FIAPARCH. However, the
value of d, for ARMA-FIAPARCH is

greater than  FIGARCH  with
statistically significant at the 1% level.
This means that the ARMA-
FIAPARCH process is statistically
significant longer memory and can be
estimated in long run than ARMA-
FIGARCH, also with the larger
statistically significant value of power
term. Moreover, positive shocks have a
higher volatility than negative shocks
as y<0. This implies that positive
shocks on TVIX are negative shocks in
index options because TVIX and
SET50 Index options are oppositely
correlated.

7. Conclusion

This paper applies SET50 Index
options with the CBOE volatility



index, VIX, formulae as a TVIX which
is the benchmark for stock market
volatility and leveraging, whereby
leverage allows traders to make a
significant amount of money from a
relatively small change in price.

We also analyze ARFIMA-
FIGARCH - FIAPARCH models for
the best prediction for returns of TVIX.
From the viewpoint of AIC and SBIC,
ARFIMA(1,d  ,1)-FIGARCH(1,d ,1)

is the best fit for modeling. However,
from the viewpoint of MAE, MAPE
and d,, our empirical results show that

ARFIMA(3,d  ,3)-
FIAPARCH(1,d,,1) is the best

accuracy in forecasting returns of

TVIX with the largest memory.
Moreover, with the statistically

significant of d,, and d_, the process

becomes  ARMA-FIGARCH  and
ARMA-FIAPARCH for the data.
Therefore, both processes are also
estimated. The results show that
ARMA-FIGARCH is better fit to the
data by using AIC and SBIC criteria
values, however, ARMA-FIAPARCH
is longer memory than ARMA-
FIGARCH and capture asymmetric
effect.

However, both the Stock Exchange
of Thailand and Security Exchange
Commission should firstly develop and
launch TVIX as a  hedging
diversification tool in the market in
order, for the investors, to learn and be
acquainted with TVIX for a few years
primarily, and apply the forecasted
model to forecast TVIX.
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Table 1: Descriptive Statistics of TVIX Returns

Mean Std Dev  Skewness Kurtosis Max Min
TVIX -0.00022 0.093806 -1.08530 11.41235 0.44728 -0.52266

Figure 1: Daily TVIX and Returns
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Table 2: Unit Root Test for Returns of TVIX
ADF Test Phillips-Perron Test
Constant Constant
Returns None Constant and Trend None Constant and Trend
TVIX -24.022*  -23.991* -23.977* -24.560*  -24.526*  -24.522%

Note: * significant at the 1% level.
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Table 3: Accuracy comparison in sample for different forecasting models of ARFIMA-
FIGARCH and ARFIMA-FIAPARCH based on concept of both AIC and SBIC
criterion

ARFIMA-FIGARCH AIC SBIC
ARFIMA(1,d,1)-FIGARCH(1,d,1)
d of ARFIMA = -0.0857, d of FIGARCH = 0.5397* 3.882 35.466
(0.2509) (0.0000)
ARFIMA(1,d,2)-FIGARCH(1,d,1)
d of ARFIMA = -0.1367, d of FIGARCH = 0.5435* 5.883 41.416
(0.4902) (0.0000)
ARFIMA(1,d,3)-FIGARCH(1,d,1)
d of ARFIMA = -0.0331, d of FIGARCH = 0.5336* 7.880 47.360
(0.7817) (0.0000)
ARFIMA(2,d,3)-FIGARCH(1,d,1)
d of ARFIMA = -0.0998, d of FIGARCH = 0.5277* 9.877 53.306
(0.6300) (0.0000)
ARFIMA(3,d,3)-FIGARCH(1,d,1)
d of ARFIMA =-0.0491, d of FIGARCH = 0.5568* 11.836 59.226
(0.5356) (0.0000)
ARFIMA-FIAPARCH AIC SBIC
ARFIMA(1,d,1)-FIAPARCH(1,d,1)
d of ARFIMA = -0.0901, d of FIAPARCH = 0.3786* 5.848 41381
(0.3152) (0.0001)
ARFIMA(1,d,2)-FIAPARCH(1,d,1)
d of ARFIMA = -0.0858, d of FIAPARCH = 0.3797* 7.848 47.329
(0.5508) (0.0002)

ARFIMA(2,d,3)-FIAPARCH(1,d,1)
d of ARFIMA = -0.1388, d of FIAPARCH = 0.3694**  11.843 59.219

(0.7469) (0.0203)
ARFIMA(3,d,3)-FIAPARCH(1,d,1)
d of ARFIMA = -0.0475, d of FIAPARCH = 0.3940* 13.823 65.147
(0.6683) (0.0005)

Note: * and ** significant at the 1% and 5% level, respectively.
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Table 4: MAE and MAPE of rTVIX by ARFIMA-FIGARCH and ARFIMA-

FIAPARCH

ARFIMA-FIGARCH

Model Day 1 2 3 4 5 Average
ARFIMA(1,d,1)- MAE 0.02 0.23 0.23 0.08 0.19 0.15
FIGARCH(1,d,1) MAPE (%) 1.67 095 099 0.94 1.00 1.11
ARFIMA(1,d,2)- MAE 0.01 0.24 0.23 0.08 0.19 0.15
FIGARCH(1,d,1) MAPE (%) 0.69 1.00 1.00 0.98 0.99 0.93
ARFIMA(1,d,3)- MAE 0.02 0.23 0.23 0.08 0.20 0.15
FIGARCH(1,d,1) MAPE (%) 1.58 095 098 095 1.01 1.09
ARFIMA(2,d,3)- MAE 0.02 0.24 0.23 0.08 0.20 0.15
FIGARCH(1,d,1) MAPE (%) 1.63 096 098 093 1.01 1.10
ARFIMA(3,d,3)- MAE 0.00 0.25 0.21 0.08 0.18 0.14
FIGARCH(1,d,1) MAPE (%) 022 1.01 090 098 091 0.80

ARFIMA-APARCH

Model Day 1 2 3 4 5 Average
ARFIMA(1,d,1)- MAE 0.02 0.23 0.23 0.08 0.19 0.15
FIAPARCH(1,d,1) MAPE (%) 1.56 096 0.99 0.94 1.00 1.09
ARFIMA(1,d,2)- MAE 0.02 023 0.23 0.08 0.19 0.15
FIAPARCH(1,d,1) MAPE (%) 1.56 096 0.99 0.93 1.00 1.09
ARFIMA(2,d,3)- MAE 0.02 0.23 023 0.08 0.19 0.15
FIAPARCH(1,d,1) MAPE (%) 140 096 0.99 0.93 1.00 1.06
ARFIMA(3,d,3)- MAE 0.00 0.24 0.21 0.08 0.18 0.15
FIAPARCH(1,d,1) MAPE (%) 034 1.00 092 1.01 0.93 0.84
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Figure 2.1: Actual and Forecasting rTVIX by ARFIMA(1,d,1)-FIGARCH(1,d,1)
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Figure 2.2: Actual and Forecasting rTVIX by ARFIMA(1,d,2)-FIGARCH(1,d,1)
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Figure 2.3: Actual and Forecasting rTVIX by ARFIMA(1,d,3)-FIGARCH(1,d,1)

Actual rTVIX

ARFIMA(1,d,3)-FIGARCH(1,d,1)

0.3 0.015
| 8:3188%4477
0.2 +
0.194189293 1001
0.1 +
0.081110722
-+ 0.005
0.004012
0L 0011694769
8901000009886
-0.1 + -0.001707
-0.005208 + -0.005
-02 +
“0-006783 ¥ g 233151045
-0.3 -0.01

Figure 2.4: Actual and Forecasting rTVIX by ARFIMA(2,d,3)-FIGARCH(1,d,1)
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Figure 2.5: Actual and Forecasting rTVIX by ARFIMA(3,d,3)-FIGARCH(1,d,1)
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Figure 3.2: Actual and Forecasting rTVIX by ARFIMA(1,d,2)-FIAPARCH(1,d,1)
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Figure 3.3: Actual and Forecasting rTVIX by ARFIMA(2,d,3)-FIAPARCH(1,d,1)
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Figure 3.4: Actual and Forecasting rTVIX by ARFIMA(3,d,3)-FIAPARCH(1,d,1)
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Table 5: ARMA-FIGARCH and -FIAPARCH on Returns of TVIX

ARMA-FIGARCH

ARMA-FIAPARCH

Coefficient t-value Coefficient t-value
AR(1) 0.7806* 6.0140 -0.5026 -0.9686
(0.000) (0.3334)
MA(1) -1.0190* -6.2510 0.2924 0.4962
(0.000) (0.6200)
MA(2) 0.1750%* 2.7090 - -
(0.0071) -
® 0.0241 0.9844 0.0907 0.9409
(0.3256) (0.3473)
o -0.5326* -2.8270 -0.4586 -0.9125
(0.005) (0.3621)
§ -0.3833 -1.6130 -0.3869 -0.6275
(0.1076) (0.5307)
Y - - -0.3267 -1.1520
- (0.2500)
) - - 1.3510%* 3.498
- (0.0005)
D 0.4026* 5.3820 0.5457* 3.7250
(0.000) (0.0002)
AIC 1.886 3.856
SBIC 29.522 35.440

Note: * Significant at the 1% level
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With the formulae of Volatility Index (VIX) which was launched by the
Chicago Board Options Exchange (CBOE) in 2003, SET50 Index
options is applied as a Thailand Volatility Index (TVIX). We estimate
ARMA-GARCH, -EGARCH, -GJR and -PGARCH models for Thailand
Volatility Index (TVIX). These models are the extension of ARCH
process with various features to explain the obvious characteristics of

financial time series such as asymmetric and leverage effect. As we
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apply TVIX with these models, the comparison and forecast are

4. Introduction

In recent years, financial crises
impact global economy. The crises
dramatically cause recession in
commodities and money markets
because of the liquidity shrinking.
While the decrease in most assets
occurs, an important figure in financial
market, called volatility index,
inversely turn. The price with high
volatility reflects higher risk in holding
such asset. The volatility can be
calculated in a numerical value as an
index known as Volatility Index.

In 1993, the Chicago Board
Options Exchange (CBOE) introduced
the CBOE Volatility Index, VIX,

* Corresponding author.

E-mail addresses: chatayan.w@gmail.com

(C.Wiphatthanananthakul).

which  quickly  became  the
benchmark for stock market volatility.
In 2003, the CBOE made two key
enhancements to the VIX
methodology.

The new VIX is based on an up-to-
the-minute market estimation of
expected volatility that is calculated by
using real-time S&P500 Index (SPX)
option bid/ask quotes. Until 2006, VIX
was trading on the CBOE. The VIX
options contract is the first product on
market volatility to be listed on an
SEC-regulated securities exchange.
This new product can be traded from
an options-approved securities
account. Many investors consider the
VIX to be the world’s premier
barometer of investor sentiment and
market volatility, and VIX options are
a very powerful risk management tool.

The early generation of GARCH
models, such as the ARCH and



GARCH models have the ability of
reproducing another very important
stylized fact, which 1is volatility
clustering; that is, big shocks are
followed by big shocks. However, only
the magnitude of the shock, but not the
sign, affects conditional volatility.
Therefore, the first generation of
GARCH models cannot capture the
stylized fact that bad (good) news
increase (decrease) volatility. This
limitation has been overcome by the
introduction of more flexible volatility
specifications which allow positive and
negative shocks to have a different
impact on volatility. This more recent
class of GARCH models includes the
Exponential GARCH (EGARCH), the
Glosten, Jagannathan, and Runkle-
GARCH (GJR-GARCH) and the
Power GARCH (PGARCH) model.
Finally, a new class of GARCH
models which jointly capture leverage
effects and contemporaneous
asymmetry, as well as time varying
skewness and kurtosis, has been
recently introduced by El Babsiri and
Zakoian (2001). In a recent paper,
Patton (2004) also analyzes the use of
asymmetric dependence among stocks;
that is, the fact that stocks are more
highly correlated during market
downturns.

In this paper, we applied VIX and
compare the conditional variance
among various GARCH models which
are GARCH, EGARCH, GJR-GARCH
and PGARCH models. Nevertheless, it
should be pointed out that several
empirical ~ studies have already
examined the impact of asymmetries
on the forecast performance of
GARCH models. The recent survey by
Poon and Granger (2003) provides,
among other things, an interesting and
extensive synopsis of them. Indeed,
different conclusions have been drawn
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from these studies. In fact, some
studies find evidence in favor of
asymmetric models, such as

EGARCH, for the case of exchange
rates and stock returns predictions.
Examples include Cao and Tsay
(1992), Heynen and Kat (1994), Lee
(1991), and Pagan and Schwert (1990).
Other studies find evidence in favor of
the GJR-GARCH model. The studies
of Taylor (2001) also examine the case
of stock returns volatility, and Bali
(2000) for interest rate volatility. For
PGARCH, interesting evident can be
found from the study of Sebastien
Laurent which derives analytical
expressions for the score of the
PGARCH model of Ding, Granger,
and Engle (1993).

The rest of the paper is organized as
follows: Section 2 presents the CBOE
VIX formula which the adaptation of
the VIX to Thailand SET50 Index
options, the Thailand Volatility Index
(TVIX), can be estimated. Section 3
formally defines theory and process of
GARCH, EGARCH, GJR-GARCH,
and PGARCH models. The data is
shown in section 4 which daily returns
of TVIX are described. The estimation
of ARMA-GARCH, -EGARCH, -GJR,
and -PGARCH models are shown in
the final section. This section provides
tables and figures of family of
GARCH on Returns of TVIX and the
comparison of test statistics, together
with a brief conclusion.

2. Volatility Index

Estimating implied volatility from
options is no straightforward method to
extract the information. Whaley (2000)
considered implied volatility as a fear
gauge because option prices calculate
implied volatility that represents a
market-based estimate of future price



volatility). Implied volatilities are the
information by investors, financial
news services and other finance
professionals. The information content
and forecast quality of implied
volatility is an important topic in
financial markets research.

Latane and Rendleman (1976),
Chiras and Manaster (1978), Beckers
(1981) and Jorion (1995) provided
early assessments of the forecast

quality of implied volatility and
concluded that implied volatility
outperforms historical standard

deviations and is a good predictor of
future volatility, although it might be
biased. Christensen and Prabhala
(1998) also found that implied
volatility forecasts are biased, but
dominate historical volatility in terms
of ex ante forecasting power. Fleming

(1998) used a historical volatility
measure to show that implied
volatilities ~ outperform  historical
information.

Dennis et al. (2006) found that daily
innovations in VIX contain very
reliable incremental information about
the future volatility of the S&P100
index. Other studies that attempt to
forecast implied volatility or use the
information contained in implied
volatility to trade in option markets
include Harvey and Whaley (1992),
Noh et al. (1994), and Poon and Pope
(2000).

The New VIX is more robust
because it pools the information from
option prices over the whole volatility
skew, and not just from at-the-money
options. The formula used in the new
VIX calculation is given by the CBOE
as follows:
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., 2« AK 1| F
o'=—) —e K )——|—-
T% e O(K;)

T K,
where
c = VIX / 100 (so that VIX
= o0x 100),
T = Time to expiration (in
minutes),
F = Forward index level,

derived from index option
prices (based on at-the-money
option prices, the difference
between call and put prices is
smallest).

The formula used to calculate the
forward index level is:
F = Strike  price  (at-the-
money) + %' x (Call price — Put
price),

where

R = risk-free interest rate is
assumed to be 3.01%
(for  simplicity, the
government T-bills 3
month contract interest
rate is used, as the
Thailand options
contract is a 3 months

contract);

T - <{1\/Icurrent day T M ettlement
day T Mother days | /minutes in a year,
where

M current day = # of minutes
remaining until midnight of the current
day,

Misettlement day T # of minutes
from midnight until 9:45 am on the
TFEX settlement day,

Mother days = Total # of

minutes in the days between the
current day and the settlement day;

1}2



K; = Strike price of i out-of-
the-money option; a call if K; >
F and a put if K; <F;

AK;, = Interval between strike
prices - half the distance
between the strike on either

. K. ,.—-K.
side of K;: AK, =—2L L

2
Koy = First strike below the
forward index level, F;
QK = The midpoint of the
bid-ask spread for each option
with strike K.

(Note: A K; for the lowest strike is
simply the difference between the
lowest strike and the next higher strike.
Likewise, A K for the highest strike is
the difference between the highest
strike and the next lower strike.)

With the adaptation of the VIX
calculation to Thailand SET 50 index
options, the Thailand expected
volatility (TVIX) can be estimated.

3. Theory
3.1 GARCH Model

GARCH model by Bollerslev
(1986) imposes important limitations,
not to capture a positive or negative
sign of u;, which both positive and
negative shocks has the same impact
on the conditional variance, h; as
follows,

2
t

~

o, =0+

™

2 2
a;u,; + Z ﬂ_/ O,

q
J=

1

where ® > 0, o > 0 fori=1,....p
and Bj > 0 for j = 1,...,q are sufficient
to ensure that the conditional variance,
o,, 1s non-negative. For the GARCH

IE)
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process to be defined, it is required that
® > 0. Also, a univariate GARCH(1,1)
model is known as ARCH¢) model

(Engle, 1982) as an infinite expansion
in u’,. The a represents the ARCH

effect and B represents the GARCH
effect.

3.2 Exponential GARCH
(EGARCH) Model

Exponential GARCH (EGARCH)
by Nelson (1991) is the logarithm of
conditional volatility in order to
capture asymmetries between positive
and negative shocks that the leverage
effect is exponential, as follows,

P q r
log(a?) =+ Y, ||+ B, loglo? )+ X vl
i=1 j=1 k=1

utfi

where 7, ; = which 7, ; and
t—i
|77H.| capture the sign and size effects

of the standardized shocks. There are
no restrictions on the parameters in the
model. The moment conditions of the
model are also straightforward because
the standardized shocks have finite
moments. There is an leverage effect
when y <a <-—y. This implies that
the negative shocks increase volatility
and vice versa.

3.3 Glosten, Jagannathan and
Runkle (GJR-GARCH) Model

Glosten, Jagannathan and Runkle
(GJR-GARCH) model by Glosten et
al. (1993) is to capture possible
asymmetric impacts of positive and
negative shocks on the conditional
variance for o, as follows,
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p q
2
o, =0+ 2(0‘[ +yd(u_ u,; + Z:Bj Oy >
i1 =

where I(u, ;) is an indicator

function that equals to 1 if u, ;<0 and

0 otherwise. If p = q = 1,
0>0,0,20,a, +7,20 and S, 20
are sufficient conditions to ensure that
the conditional variance h; is non-
negative. «,(a, +y,) gives the short-
run persistence of positive (negative)
shocks. If y, #0, the news impact is
asymmetry. If y>0,
leverage effect that bad news increases
volatility.

Lee and Hansen (1994) derived the
log-moment condition for
GARCH(1,1) of conditional volatility
which is sufficient for the statistical
properties of the QMLE to be
consistent, as follows,

there is a

E(log(a, n/ + ,)) <0.

It is essential to note that the log-
moment condition is a weaker
regularity condition than the second
moment condition. Therefore, the
second moment is sufficient condition
for consistency and asymptotic
normality of the QMLE, as follows,

a, +p, <l1.

Moreover, McAleer et al. (2007)
established the log-moment and second
moment condition for GJR(1,1) as
follows,

E(log((e, + 7,11} + B,) <0
and o +(y/2)+ f <1

Both moments are the sufficient
conditions for the consistency and
asymptotic normality of the QMLE for
the GJR(1,1).

3.4 The Power GARCH (PGARCH)
Model

The Power GARCH (PGARCH)
model by Taylor (1986) and Schwert
(1989) use the conditional standard
deviation as a measure of volatility
instead of the conditional variance.
This model is generalized by Ding et
al. (1993) using the PGARCH model
as follows :

q

5 _
o’ = a)+2aiQuH

i=1

) 2 S
Vil ) + Z ﬁjo-t—j
F=]

where 6 > 0,|;/i| <lfori=12,..,ran
dy, =0fori>r,andr < p.

In the PGARCH model, if y#0,
this captures asymmetric effects. The
PGARCH model reduces to the
GARCH model when o6 =2and
y; = Ofor all i.

4. Data Description

One-minute intervals of SETS50
Index options are obtained from
Bloomberg, accounted by the Faculty
of Economics, Chiang Mai University
and Research Institute, Stock
Exchange of Thailand. The sample
period is from 27 January 2008 until
30 September 2009. The contract
months are March, June, September
2008 and 2009 and December 2008.

In order to calculate TVIX, we
utilize the SAS 9.1 software package
for the calculation as it offers a number
of features that are not available in



traditional econometric software. For
the estimation, we use daily returns of
TVIX to estimate ARMA-GARCH, -
EGARCH, -GJR-GARCH, and -
PGARCH by using E-Views 6.0
software.

The returns of TVIX at time ¢ are
calculated as follows:

R;, =log(P;, /P, )

where P;, and P;,, are the

closing prices of TVIX at time ¢ and #-
1, respectively.

[Insert Table 1 around here]

Table 1 presents the descriptive
statistics for the returns of TVIX. The
average return of TVIX is negative.
The normal distribution has a skewness
statistic equal to zero and a kurtosis
statistic of 3, but return of TVIX has
negative skewness statistics and high
kurtosis, suggesting the presence of fat
tails and a non symmetric series. This
means that the data has a longer left
tail (extreme losses) than right tail
(extreme gain). The relatively large
kurtosis indicates non-normality that
the distribution of returns is
leptokurtic. This suggests that the
market shocks of either sign for the
TVIX returns are more likely to be
observed. Jarque-Bera normality test
rejects the hypothesis of normality for
the sample.

Figure 1 presents the plot of TVIX
and TVIX returns. This indicates some
circumstances where TVIX returns
fluctuate. Table 2 summarized the unit
root tests for TVIX returns. The
Augmented Dickey-Fuller (ADF) and
Phillips-Perron (PP) tests were used to
test the null hypothesis of a unit root
against the alternative hypothesis of
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stationarity. The tests yield large
negative values in all cases for levels
such that the individual returns series
reject the null hypothesis at the 1%
significance level, hence, the returns
are stationary.

[Insert Figure 1 around here]
[Insert Table 2 around here]

5. Estimation

[Insert Table 3 around here]

Table 3 represents the ARCH and
GARCH effects from statistically
significant at 5% level of & and S. It

shows that the long-run coefficients are
all statistically significant in the
variance equation. The coefficients of
o appears to show the presence of
volatility clustering in the models.
Conditional volatility for the models
tends to rise (fall) when the absolute
value of the standardized residuals is
larger (smaller). The coefficients of £

(a determinant of the degree of
persistence) for all models are less than
1 showing persistent volatility.

However, the coefficients of y, the
asymmetry and leverage effects, are
negative and statistically significant at
the 1% level in the GJR-GARCH and
PGARCH models and positive and
statistically significant at the 1% level
in the EGARCH model. However, the
leverage effect only exists if y <0 in
the EGARCH model andy >0 in the
GJR-GARCH and PGARCH models.
This appears that there is asymmetric
in all models as y#0 but the
hypothesis of leverage effect is
rejected for all models.

[Insert Table 4 around here]



For GARCH(1,1) and GJR(1,1), the
results are shown on Table 4. The
second moment condition is only
calculated, and it can be used to verify
consistency and asymptotic normality
of QMLE in the event that the log-
moment condition cannot be computed

because (e, + 7, L(m ), + B,)) less

than zero for any t = 1, 2, ..., n
(McAleer et al. (2009)).
The second moment condition

shows the satisfaction rate, the value of
which is less than unity in all cases.
Hence, the consistency and asymptotic
normality of the QMLE are
guaranteed.

[Insert Table 5 around here]

In terms of the lowest AIC criteria,
the best model is the PGARCH model
but in terms of the lowest SBIC, the
best model is the EGARCH model.
From table 5, the ARMA-GJR has the
lowest MAPE and RMSE. In addition,
GJR-GARCH model is satisfied by the
second moment that is a sufficient
condition for the consistency and
asymptotic normality of the QMLE.
Therefore, GJR-GARCH is the best
model.

6. Conclusion

This paper calculates the Thailand
volatility index (TVIX) by applying
CBOE Volatility Index (VIX) and
SET50 Index options data, and
estimates the volatility of TVIX returns
using ARMA-GARCH, -EGARCH, -
GJR-GARCH, and -PGARCH models.
Volatility persistence and asymmetric
properties are analyzed.

The results from all of the models
show the volatility with statistically
significant asymmetry effect with all
the models but without Ileverage
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effects. This is in contrast to the work
of Nelson (1991). The ARMA-
PGARCH is found to be the best
model with the lowest AIC criteria
values but the EGARCH model has the
lowest SBIC criteria value. Regarding
MAPE and RMSE criteria, GJR-
GARCH is the best fitting model for
TVIX.

References

Bali, T. G. (2000). Testing the
empirical performance of stochastic
volatility models of the short-term
interest rate. Journal of Financial
and Quantitative Analysis, 35(2),
191-215.

Bollerslev, T. (1986). Generalized
autoregressive  heteroskedasticity.
Journal of Econometrics, 31, 307—
327.

Beckers, S.  (1981).  Standard
deviations implied in option prices
as predictors of future stock price
variability. Journal of Banking and
Finance, 5,363-381.

Cao, C. Q., & Tsay, R. S. (1992).
Nonlinear time-series analysis of
stock volatilities. Journal of Applied
Econometrics, Suppl. 1(S), 165—
185.

Chiras, D.P. and S. Manaster (1978).
The information content of implied
volatility. Review of Financial
Studies, 6, 659-681.

Christensen, B.J. and N.R. Prabhala
(1998). The relation content of
option prices and a test of market
efficiency. Journal of Financial
Economics, 6,213-234.

Dennis, P., S. Mayhew, and C. Stiver
(2006). Stock returns, implied
volatility innovations, and the
asymmetric volatility phenomenon.
Journal  of  Financial  and
Quantitative Analysis, 41, 381-406.



Ding, Z., C.W.J. Granger, and R.F.
Engle, (1993). A long memory
property of stock market returns and
a new model. Journal of Empirical
Finance, 1, 83-106.

El Babsiri, M., & Zakoian, J. M.
(2001). Contemporaneous
asymmetries in GARCH processes.
Journal of Econometrics, 101, 257—
294.

Fleming, J. (1998). The quality of
market volatility forecasts implied
by S&P100 index option prices.
Journal of Empirical Finance, 5,
317-345.

Glosten, L., Jagannathan, R., & Runke,
D. (1993). Relationship between the
expected value and the volatility of
the nominal excess return on stocks.
Journal of Finance, 48, 1779— 1801.

Harvey, C.R. and R.E. Whaley (1992).
Market volatility prediction and the
efficiency of the S&P 100 index
option market. Journal of Financial
Economics, 31, 43-73.

Heynen, R. C., & Kat, H. M. (1994).
Volatility prediction: A comparison
of stochastic volatility,
GARCH(1,1) and EGARCH(1,1)
Models. Journal of Derivatives, 50—
65.

Jorion, P. (1995). Predicting volatility
in the foreign exchange market.
Journal of Finance, 50, 507-528.

Latane, H.A. and R.J. Rendleman
(1976). Standard deviations of stock
return  variance: towards an
understanding of stochastic implied
volatilities. Review of Financial
Studies, 6,293-326.

Lee, K. Y. (1991). Are the GARCH
models best in out of sample
performance? Economics Letters,
37(3), 9 —25.

Lee, S.W. and B.E. Hansen (1994),
Asymptotic Theory for the
GARCH(1,1) Quasi-Maximum

149

Likelihood Estimator, Econometric
Theory, 10, 29-52.

McAleer, M., F. Chan and D.
Marinova, 2007, An econometric
analysis of asymmetric volatility:
Theory and application to patents.
Journal of Econometrics, 139, 259-
284.

McAleer, M., Hoti, S. and Chan, F.
(2009). Structure and asymptotic
theory for multivariate asymmetric
conditional volatility. Econometric
Reviews, 28, 422-440.

Nelson, D. B. (1991). Conditional
heteroskedasticity in asset returns:
A new approach. Econometrica, 59,
347-370.

Noh, J.,, R.F. Engle, and A. Kane
(1994). Forecasting volatility and
option prices of the S&P 500 index.
Journal of Derivatives, 2, 17-30.

Pagan, A. R., & Schwert, G. W.
(1990). Alternative models for
conditional stock volatility. Journal
of Econometrics, 45(1-2), 267-290.

Patton, A. (2004). On the out of
sample importance of skewness and
asymmetric dependence for asset
allocation. Journal of Financial
Econometrics, 2, 130-168.

Poon, S. H., & Granger, C. W. .
(2003). Forecasting volatility in
financial markets: A  review.
Journal of Economic Literature, 41,
478-539.

Poon, S.H. and P.F. Pope (2000).
Trading volatility spreads: a test of
index option market -efficiency.
European Financial Management,
6, 235-260.

Taylor, S. J. (1986). Modelling
financial time series. New York:
Wiley.

Taylor, J. W. (2001). Volatility

Forecasting with smooth transition
exponential smoothing. Working
Paper, Oxford University.



Schwert, G.W. (1989), Why Does
Stock Market Volatility Change
Over Time?. Journal of Finanace,
44, 1115-1153.

Whaley, R.E. (2000). The investor fear
gauge. Journal of  Portfolio
Management, 26, 12-26.

Whaley, R.E. (2000). The investor fear
gauge. Journal of  Portfolio
Management, 26, 12-26.

150



151

Table 1: Descriptive Statistics of TVIX Returns

Mean Std Dev  Skewness Kurtosis Max Min
TVIX -0.00022 0.093806 -1.08530 11.41235 0.44728 -0.52266

Figure 1: Daily TVIX and Returns
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Table 2: Unit Root Test for Returns of TVIX
ADF Test Phillips-Perron Test
Constant Constant
Returns None Constant and Trend None Constant and Trend
TVIX -24.022*%  -23991* -23.977* -24.560*% -24.526*  -24.522%

Note: * significant at the 1% level.
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Table 3: Family of GARCH on Returns of TVIX

GARCH
Mean Equation Variance Equation
Coefficient z-Statistic Coefficient z-Statistic AIC SBIC
Constant -0.0000 -0.0359 ® 0.0004* 5.4432
(Mean) (-0.9714) (0.0000)
AR(1) -0.7184** -8.3029 o 0.7149* 7.7283
(0.000) (0.0000) 3.899 3.828
MA(1) 0.5647%* 4.8369 B 0.2441* 3.5503
(0.000) (0.0000)
MA(31) -0.0772%** -2.4124
(0.0158)
E-GARCH
Mean Equation Variance Equation
Coefficient z-Statistic Coefficient z-Statistic AIC SBIC
Constant 0.0016 1.1975 ® 0.3676* -5.2149
(Mean) (0.2311) (0.0000)
AR(1) -0.7025%** -6.9355 a 0.0826* 8.3123
(0.000) (0.0000) 3.921 3.839
MA(1) 0.5432** 4.1779 B 0.7896* 2.6898
(0.0000) (0.0072)
MAQ31) -0.0717** -2.2250 Y 0.0579* 15.9725
(0.0261) (0.0000)
GJR-GARCH
Mean Equation Variance Equation
Coefficient z-Statistic Coefficient z-Statistic AIC SBIC
Constant 0.0014 1.0001 ) 0.0004* 5.5956
(Mean) (0.3173) (0.0000)
AR(1) -0.7149%** -8.1660 a 1.0561* 4.9896
(0.0000) (0.0000) 3910 3828
MA(1) 0.5670** 4.7735 B 0.2525%* 3.4095
(0.0000) (0.0007)
MA(31) -0.0749** -2.4047 Y -0.6393* -2.8496
(0.0162) (0.0044)
PGARCH
Mean Equation Variance Equation
Coefficient z-Statistic Coefficient z-Statistic AIC SBIC
Constant 0.0017 1.4412 ® 0.0134 1.1377
(Mean) (0.1495) (0.2553)
AR(1) -0.7115* -8.2320 o 0.4307* 6.5486
(0.0000) (0.0000)
MA(1) 0.5603* 4.9346 B 0.4526%* 5.6521 3.925 3.833
(0.0000) (0.0000)
MA(31) -0.0804* -2.7512 Y -0.2951* -3.5959
(0.0059) (0.0003)
0 0.8738%* 3.7207

(0.0002)

Note: * Significant at the 1% level
** Significant at the 5% level
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Table 4: Second moment condition for ARMA-GARCH and ARMA-GJR

ARMA-GARCH ARMA-GJR
0.9590 0.9890

Table 5: Comparison of test statistics for family of GARCH

MAPE  RMSE

ARMA-GARCH 134.9544 0.093361
ARMA-EGARCH 133.0396 0.093453
ARMA-GJR 132.4593 0.093450

ARMA-PGARCH 1343143 0.093484




Name
Date of Birth

Educational Background

Working Experiences

Publications (if any)

154

CURRICULUM VITAE

Captain Chatayan Wiphatthanananthakul

15" March 1980

Master of Science in Management, University of
Surrey, United Kingdom (2003);

Bachelor of Science in Biological Sciences,
Mahidol  University  International  College,
Nokorn-Prathom, Thailand (2001);

Mahidol Wittayanusorn School, Nakorn-Prathom,
Thailand (1998).

Committee of Financial Market, Capital Market,
Insurance, and Financial Institutes (2010-present);
Lecturer, = Chulachomklao  Royal  Military
Academy, Nakorn-nayok (2005-present);
Part-time Lecturer, Hotel Management, Silpakorn
University International College (2008-2010);
Assistant Lecturer, Faculty of Economics, Chiang
Mai University (2007);

Part-time Lecturer, School of Management, Mae
Fah Luang University (2007).

None



