Chapter 4

ARFIMA-FIGARCH and ARFIMA-FIAPARCH on Thailand

Volatility Index

ABSTRACT

This paper applied SET50 Index options with the Chicago Board Options
Exchange (CBOE) as a Thailand Volatility Index (TVIX). This can be considered as a
hedging diversification tool because of the high negative correlation with stock index.
In addition, we estimate ARFIMA-FIGARCH and ARFIMA-FIAPARCH which are
capable of capturing long memory and asymmetry in the conditional variance and
power transformed conditional variance of process. The empirical shows that the best

model with accuracy is ARMA-FIAPARCH.
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4.1 Introduction
Volatility Index (VIX) measures market expectation of near term volatility
conveyed by stock index option prices. The original VIX was constructed using the

implied volatilities of eight different S&P100 (OEX) option series so that, at any
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given time, it represented the implied volatility of a hypothetical at-the-money OEX
option with exactly 30 days to expiration from an option-pricing model.

In 1993, the Chicago Board Options Exchange (CBOE) introduced the CBOE
Volatility Index, VIX, which quickly became the benchmark for stock market
volatility. In 2003, the CBOE made two key enhancements to the VIX methodology.
The new VIX is based on an up-to-the-minute market estimation of expected
volatility that is calculated by using real-time S&P500 Index (SPX) option bid/ask
quotes. Until 2006, VIX was trading on the CBOE. The VIX options contract is the
first product on market volatility to be listed on an SEC-regulated securities
exchange. This new product can be traded from an options-approved securities
account. Many investors consider the VIX to be the world’s premier barometer of
investor sentiment and market volatility, and VIX options is a very powerful risk
management tool.

For the econometric model, it is assumed to be ceteris paribus with the
variance and error term as constant terms. ARCH (Autoregressive Conditional
Heteroscedastic) was developed and applied to ARMA (Autoregressive Moving
Average) model in order to correct the assumption contradiction of time series
economics data. The data has high variance with non-stationary variance and error
term (Enders, 1995). The investors simply focus on the conditional variance such as
the prediction of return and variance. ARMA shows the value of mean and variance
simultaneously (Engle, 1982). GARCH (Generalized Autoregressive Conditional
Heteroscedastic) model was developed from ARCH in order to adjust the variance to
characterize as ARMA process which is applied in time variance model in money

market (Engle, 1982 and Bollerslev, 1986).
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Baillie, Bollerslev, and Mikkelsen (1996) proposed FIGARCH (Fractional
Integrated GARCH) model which is effectively capture both volatility clustering and
long memory because GARCH model exhibit short memory and cannot analyze
hyperbolic memory in conditional volatility process and capture asymmetries in
equity market volatility. With the previous findings of Ding, Granger, and Engle
(1993) and Baillie et al. (1996) (among others) who suggest the modeling of
conditional variance of high frequency financial data by the use of an (Asymmetric)
Power GARCH (APARCH) or Fractionally Integrated GARCH (FIGARCH) models.
Tse (1998) develops the Fractionally Integrated Asymmetric Power ARCH
(FTAPARCH) model, which allows for long memory and asymmetries in volatility.

This paper is to calculate TVIX basing on SET50 index options with CBOE
VIX formula with the nearest-month contracts and compare the best performance of

ARFIMA-FIGARCH and -FIAPARCH models for forecasting TVIX.

4.2  Volatility Index

Estimating implied volatility from options is no straightforward method to
extract the information. Whaley (2000) considered implied volatility as a fear gauge
because option prices calculate implied volatility that represents a market-based
estimate of future price volatility). Implied volatilities are the information by
investors, financial news services and other finance professionals. The information
content and forecast quality of implied volatility is an important topic in financial
markets research.

Latane and Rendleman (1976), Chiras and Manaster (1978), Beckers (1981)

and Jorion (1995) provided early assessments of the forecast quality of implied
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volatility and concluded that implied volatility outperforms historical standard
deviations and is a good predictor of future volatility, although it might be biased.
Christensen and Prabhala (1998) also found that implied volatility forecasts are
biased, but dominate historical volatility in terms of ex ante forecasting power.
Fleming (1998) used a historical volatility measure to show that implied volatilities
outperform historical information.

Dennis et al. (2006) found that daily innovations in VIX contain very reliable
incremental information about the future volatility of the S&P100 index. Other
studies that attempt to forecast implied volatility or use the information contained in
implied volatility to trade in option markets include Harvey and Whaley (1992), Noh

et al. (1994), and Poon and Pope (2000).

4.3 CBOE VIX Formula
The New VIX is more robust because it pools the information from option
prices over the whole volatility skew, and not just from at-the-money options. The

formula used in the new VIX calculation is given by the CBOE as follows:

2,
2 AK . 1| F
2 RT
o-=—) —e¢ K)——|—-1|, 4.1
TZ,: K’ oK) T{Ko } “.1)
where
c = VIX /100 (so that VIX = o x 100),

T = Time to expiration (in minutes),
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F = Forward index level, derived from index option prices (based

on at-the-money option prices, the difference between call and put prices is smallest).

The formula used to calculate the forward index level is:

F = Strike price (at-the-money) + e®' x (Call price — Put price),
where
R = risk-free interest rate is assumed to be 3.01% (for
simplicity, the government T-bills 3 month contract interest
rate is used, as the Thailand options contract is a 3 months
contract);
T = {Maurrent day + Misettiement day + Mother days }/minutes in a
year,
where
M current day = # of minutes remaining until midnight of the
current day,
M gettlement day = # of minutes from midnight until 9:45 am on the
TFEX settlement day,
Mother days = Total # of minutes in the days between the
current day and the settlement day;
K; = Strike price of i™ out-of-the-money option; a call if K; > F and
aputif K; <F;
AK; = Interval between strike prices - half the distance between the

. . . K. K.
strike on either side of K;: AK, =—2L—CL1
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Koy = First strike below the forward index level, F;

QK = The midpoint of the bid-ask spread for each option with strike

(Note: AK, for the lowest strike is simply the difference between the lowest

strike and the next higher strike. Likewise, AK, for the highest strike is the difference

between the highest strike and the next lower strike.)
With the adaptation of the VIX calculation to Thailand SET50 index options,

the Thailand expected volatility (TVIX) can be estimated.

4.4 Theory
4.4.1 ARFIMA Model
ARIMA models are frequently used for seasonal time series (Box and
Jenkins, 1976). A general multiplicative seasonal ARIMA model for time series Z; is

as follows:

HLYDLY1~L)' (1-L")"Z, =0(L)p(L')a, (4.2)
where:

L = a backshift or lag operator (B, —Z, )

S = seasonal period

o(L) = (1-¢L—...—¢,L") is the non-seasonal AR operator
OL)= (1-®,L'—...—D L") is the seasonal AR operator

(L) = (1-6,L—...—6,L") is the non-seasonal MA operator
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p(L) = (1—p,L’ —...— 0,L%) is the seasonal MA operator

(1-L)(1—-L) = non-seasonal differencing of order d and

seasonal differencing of order D
Granger and Joyeux (1980) and Hosking (1981) proposed an
autoregressive fractionally integrated moving-average (ARFIMA) model and

proposed the method to fit long-memory data. ARFIMA(p,d,q) is written as follow:

H(L)A'y, =5 +0(L)u, (4.3)

with ¢(L) =1-$L—...—¢,I” and O(L) =1-6,L—...— 6, L

where:

o = a constant term

O(L) = the MA operator at order ¢

u, = an error term

o(L) = the AR operator at order p

A? y, = the differencing operator at order d of time

series data y,

For d = (-0.5, 0), the process exhibits intermediate memory or long
range negative dependence, while d = (0, 0.5), the process exhibits long memory or
long range positive dependence. For d = /0.5, 1), the process is mean reverting with
no long run impact to future values of the process and the process becomes a short

memory when d = 0 corresponding to a standard ARMA process.
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4.4.2 FIGARCH Model
The GARCH model by Bollerslev (1986) imposed important
limitations, not to capture a positive or negative sign of u, which both positive and

negative shocks has the same impact on the conditional variance, h;, as follows,

u, =1,40,, (4.4)

p q
o =0t S po 4 S, “3)

where ® > 0, o, >0 fori1=1,...,p and Bj >0 for j = 1,...,q are
sufficient to ensure that the conditional variance, h;, is non-negative. For the GARCH
process to be defined, it is required that ® > 0. Therefore, a univariate GARCH(1,1)
model is known as ARCH(e0) model (Engle, 1982) as an infinite expansion in u .

Baillie et al. (1996) proposed fractionally integrated GARCH

(FIGARCH) model to determine long memory in return volatility. The FIGARCH

(p,d,q) process is as follow:

H(LY1- L) u} = w+[1-B(L)v,, (4.6)

m—1
where v, =u’ —c’, 0<d <1, ¢(L) = z¢iLi is of order m-1, and all

i=l1
the roots of @(L) and [1 — ﬂ(L)] lie outside the unit circle. The FIGARCH model is

derived from standard GARCH model with fractional difference operator, (I- L)°.
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The FIGARCH(p,d,q) model is reduced to the standard GARCH when d = 0 and
becomes IGARCH model when d = 1.

Baillie et al. (1996) claimed with the arguments of Nelson (1990) that
the FIGARCH(p,d,m) is ergodic and strictly stationary which is difficult to verify.
The degree of persistence of the FIGARCH model operates reversely direction of the
ARFIMA process.

Chung (2001) suggested the analysis of the FIGARCH specification as

o ={i-[1- AT - 1) §(L)fe; (4.7
4.4.3 FIAPARCH Model
Tse (1998) extended the asymmetric power ARCH (APARCH) model
of Ding et al. (1993) to fractionally integrated of Baillie et al. (1996) which is

extended to FIAPARCH model as follows:

sy D=e@ia-nt oy
at—w+P — ﬂhJ .l (4.8)

where 0<d <1, ®,6>0,9,f<1, —-1<y<l and L is the lag
operator. When y > 0, negative shocks have a higher volatility than positive shocks.

The particular value of power term may lead to suboptimal modeling and forecasting
performance. Ding et al. (1993) found that the closer of d value converge to 1, the

larger the memory of the process becomes. The process of FIAPARCH allows for
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asymmetry. When y =0 and o6 =2, the process of FIAPARCH is reduced to

FIGARCH process.

ARFIMA-FIAPARCH generates the long memory property in both the
first and (power transformed) second conditional moments and is sufficiently flexible
to handle the dual long memory behavior. It can recognize the long memory aspect
and provides an empirical measure of real uncertainty that accounts for long memory

in the power transformed conditional variance of the process.

4.5 Data Descriptive

One-minute intervals of SET50 Index options are obtained from Bloomberg
accounted by the Faculty of Economics, Chiang Mai University and Research
Institute, Stock Exchange of Thailand. The sample period is from 27 January 2008
until 30 September 2009. The contract months are March, June, September 2008 and
2009 and December 2008.

In order to calculate TVIX, we use the SAS 9.1 software package for the
calculation as it offers a number of features that are not available in traditional
econometric software. Also, OxMetrics5 software is used to estimate ARFIMA-
FIGARCH and -FIAPARCH on daily returns.

The returns of TVIX at time t are calculated as follows:

R, =log(P,, /P, ) (4.9)

where P;, and P;,; are the closing prices of TVIX at time t and t-1,

respectively.
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Table 4.1: Descriptive Statistics of TVIX Returns

Mean Std Dev  Skewness Kurtosis Max Min
TVIX -0.00022 0.093806 -1.08530 11.41235 0.44728 -0.52266

Table 4.1 presents the descriptive statistics for the returns of TVIX. The
average return of TVIX is negative. The normal distribution has a skewness statistic
equal to zero and a kurtosis statistic of 3, but the returns of TVIX has negative
skewness statistics and high kurtosis, suggesting the presence of fat tails. This means
that the data has a longer left tail (extreme losses) than right tail (extreme gain).
Figure 4.1 presents the plot of TVIX and TVIX returns. This indicates some
circumstances where TVIX returns fluctuate.

Table 4.2 summarized the unit root tests for TVIX returns. The Augmented
Dickey-Fuller (ADF) and Phillips-Perron (PP) tests were used to test the null
hypothesis of a unit root against the alternative hypothesis of stationarity. The tests
yield large negative values in all cases for levels such that the individual returns series
reject the null hypothesis at the 1% significance level, hence, the returns are

stationary.
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Figure 4.1: Daily TVIX and Returns
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Table 4.2: Unit Root Test for Returns of TVIX
ADF Test Phillips-Perron Test
Constant Constant
Ret
cturns None Constant and None Constant and
Trend Trend
TVIX -24.022%* -23.991*  -23.977* -24.560* -24.526* -24.522*

Note: * significant at the 1% level.

4.6 Estimation

The Akaike Information Criterion (AIC) (Akaike, 1973) and Schwarz

Bayesian Information Criterion (SBIC) (Schwarz, 1978) are useful to determine the

best fit among several competing nested or non-nested models The model with the

lowest values of AIC and SBIC is selected as fitting the sample data better.

Table 4.3 shows forecasting method based on ARFIMA-FIGARCH and

ARFIMA-FIAPARCH models for forecasting TVIX. The values of both AIC and
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SBIC in each of ARFIMA-FIGARCH and ARFIMA-FIAPARCH model are used for
selection the best ARFIMA-FIGARCH and ARFIMA-FIAPARCH models for
forecasting TVIX for this period.

The lowest values of AIC and SBIC are 3.882 and 35.466, respectively for

ARFIMA(1,d, ,1)-FIGARCH(1,d ,1) and 5.848 and 41.381, respectively for

ARFIMA(1,d_,1)-FIAPARCH(1,d. ,1).
For  ARFIMA(I,d,,1)-FIGARCH(1,d,,1) and  ARFIMA(l,d_,1)-

FIAPARCH(1,d,,1), d for ARFIMA(1,d,1) is -0.0857 and -0.0901, respectively.

For ARFIMAQ3,d  ,3)-FIGARCH(1,d,1) and ARFIMAQ3,d, ,3)-
FIAPARCH(1,d,,1), d,, of ARFIMA is -0.0491 and -0.0475, respectively. All d
of ARFIMA processes are not statistically significant. This can be concluded that the
process is ARMA-FIGARCH and ARMA-FIAPARCH. Both processes are
intermediate memory or long range negative dependence for TVIX.

The estimations of both d, for ARFIMA(1,d,,1)-FIGARCH(1,d,,1) and
ARFIMA(3,d ,,3)-FIGARCH(1,d,1) are 0.5397 and 0.5568 which are more than

0.5 at 1% level of significance. This means that both processes are statistically
significant long memory and can be estimated in long run. However, the estimations

of both d, for ARFIMA(1,d_,1)-FIAPARCH(1,d,,1) and ARFIMAQ3,d..3)-

FIAPARCH(1,d,,1) are 0.3786 and 0.3950 which are less than 0.5 at 1% level of

significance. This means that both processes are statistically significant short memory

and cannot be estimated in long run. FIAPARCH is not long memory because d, is

less than 0.5.
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Hence, ARFIMA(3,d  ,3)-FIGARCH(1,d,,1) has the largest memory than

others which can be estimated in long run.
From table 4.4, mean absolute error (MAE) and mean absolute percent error

(MAPE) of all models show that ARFIMA(3,d . ,3)-FIGARCH(1,d,1) is fitted in

forecasting returns of TVIX as the lowest of both values.

Consequently, with the lowest AIC and SBIC, ARFIMA(1,-0.0857,1)-
FIGARCH(1,0.5397,1) and ARFIMA(1,-0.0910,1)-FIAPARCH(1,0.3786,1) models
are fitted to the data. However, comparing both processes, ARFIMA(1,-0.0857,1)-
FIGARCH(1,0.5397,1) is better than ARFIMA(1,-0.0910,1)-
FIAPARCH(1,0.3786,1).  ARFIMA(3,-0.0491,3)-FIGARCH(1,0.5568,1)  model
provides the best fit to the data with the lowest of MAE and MAPE in forecasting and

has the largest memory than others which can be estimated in long run.
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Table 4.3: Accuracy comparison in sample for different forecasting models of
ARFIMA-FIGARCH and ARFIMA-FIAPARCH based on concept of both AIC and

SBIC criterion

ARFIMA-FIGARCH AIC SBIC
ARFIMA(1,d,1)-FIGARCH(1,d,1)
d of ARFIMA = -0.0857, d of FIGARCH = 0.5397* 3.882 35.466
(0.2509) (0.0000)
ARFIMA(1,d,2)-FIGARCH(1,d,1)
d of ARFIMA =-0.1367, d of FIGARCH = 0.5435* 5.883 41.416
(0.4902) (0.0000)
ARFIMA(1,d,3)-FIGARCH(1,d,1)
d of ARFIMA = -0.0331, d of FIGARCH = 0.5336* 7.880 47.360
(0.7817) (0.0000)
ARFIMA(2,d,3)-FIGARCH(1,d,1)
d of ARFIMA = -0.0998, d of FIGARCH = 0.5277* 9.877 53.306
(0.6300) (0.0000)
ARFIMA(3,d,3)-FIGARCH(1,d,1)
d of ARFIMA = -0.0491, d of FIGARCH = 0.5568* 11.836 59.226
(0.5356) (0.0000)
ARFIMA-FIAPARCH AIC SBIC
ARFIMA(1,d,1)-FIAPARCH(1,d,1)
d of ARFIMA = -0.0901, d of FIAPARCH = 0.3786* 5.848 41.381
(0.3152) (0.0001)
ARFIMA(1,d,2)-FIAPARCH(1,d,1)
d of ARFIMA = -0.0858, d of FIAPARCH = 0.3797* 7.848 47.329
(0.5508) (0.0002)

ARFIMA(2,d,3)-FIAPARCH(1,d,1)
d of ARFIMA = -0.1388, d of FIAPARCH = 0.3694** 11.843 59.219

(0.7469) (0.0203)
ARFIMA(3,d,3)-FIAPARCH(1,d,1)
d of ARFIMA = -0.0475, d of FIAPARCH = 0.3940* 13.823 65.147
(0.6683) (0.0005)

Note: * and ** significant at the 1% and 5% level, respectively.
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Table 4.4: MAE and MAPE of rTVIX by ARFIMA-FIGARCH and ARFIMA-

FIAPARCH
ARFIMA-FIGARCH
Model Day 1 2 3 4 5 Average
ARFIMA(1,d,1)- MAE 0.02 023 023 008 0.19 0.15
FIGARCH(1,d,1) MAPE (%) 1.67 0.95 099 094 1.00 1.11
ARFIMA(1,d,2)- MAE 0.01 024 023 0.08 0.19 0.15
FIGARCH(1,d,1) MAPE (%) 0.69 1.00 1.00 0.98 0.99 0.93
ARFIMA(1,d,3)- MAE 0.02 023 023 0.08 0.20 0.15
FIGARCH(1,d,1) MAPE (%) 1.58 0.95 098 0.95 1.0l 1.09
ARFIMA(2,d,3)- MAE 0.02 024 023 008 0.20 0.15
FIGARCH(1,d,1) MAPE (%) 1.63 096 098 0.93 1.0l 1.10
ARFIMA(3.d,3)- MAE 0.00 0.25 0.21 0.08 0.18 0.14
FIGARCH(1,d,1) MAPE (%) 022 1.01 0.90 098 0091 0.80
ARFIMA-APARCH
Model Day 1 2 3 4 5 Average
ARFIMA(1,d,1)- MAE 0.02 0.23 0.23 0.08 0.19 0.15
FIAPARCH(1,d,1) MAPE (%) 1.56 0.96 0.99 094 1.00 1.09
ARFIMA(1,d,2)- MAE 0.02 0.23 0.23 0.08 0.19 0.15
FIAPARCH(1,d,1) MAPE (%) 1.56 0.96 0.99 093 1.00 1.09
ARFIMA(2,d,3)- MAE 0.02 0.23 0.23 0.08 0.19 0.15
FIAPARCH(1,d,1) MAPE (%) 140 0.96 0.99 093 1.00 1.06
ARFIMA(3,d,3)- MAE 0.00 0.24 0.21 0.08 0.18 0.15
FIAPARCH(1,d,1) MAPE (%) 034 1.00 092 1.01 0.93 0.84
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Figure 4.2.1: Actual and Forecasting rTVIX by ARFIMA(1,d,1)-FIGARCH(1,d,1)
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Figure 4.2.2: Actual and Forecasting rTVIX by ARFIMA(1,d,2)-FIGARCH(1,d,1)
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Figure 4.2.3: Actual and Forecasting rTVIX by ARFIMA(1,d,3)-FIGARCH(1,d,1)
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Figure 4.2.4: Actual and Forecasting rTVIX by ARFIMA(2,d,3)-FIGARCH(1,d,1)
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Figure 4.2.5: Actual and Forecasting rTVIX by ARFIMA(3,d,3)-FIGARCH(1,d,1)
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Figure 4.3.1: Actual and Forecasting rTVIX by ARFIMA(1,d,1)-FIAPARCH(1,d,1)
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Figure 4.3.2: Actual and Forecasting rTVIX by ARFIMA(1,d,2)-FIAPARCH(1,d,1)
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Figure 4.3.3: Actual and Forecasting rTVIX by ARFIMA(2,d,3)-FIAPARCH(1,d,1)

ARFIMA(2,d,3)-FIAPARCH(1,d,1)

0.3 )
0.01086000
-+ BO
02+ 0.194189293
-+ BO
ol -+ BO 7
: S
= -
- [z
- 0.00348800 g
g 07 :
: + B0 §
(3}
: E644-248011 0T 042005
01 1L 0.00008826 1 BO )
-+ -BO
-0.2 +
-0.233151045 IS
-0.00469100
N -BO




72

Figure 4.3.4: Actual and Forecasting rTVIX by ARFIMA(3,d,3)-FIAPARCH(1,d,1)
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However, the process of ARFIMA is not statistically significant. Therefore,
the null hypothesis of ARFIMA is accepted. The process becomes a short memory
corresponding to a standard ARMA process. ARMA-FIGARCH and ARMA-
FIAPARCH are estimated.

From table 4.5, the AIC and SBIC criteria values strongly favor the ARMA-

FIGARCH formulation over the ARMA-FIAPARCH. However, the value of d, for

ARMA-FIAPARCH is greater than FIGARCH with statistically significant at the 1%
level. This means that the ARMA-FIAPARCH process is statistically significant
longer memory and can be estimated in long run than ARMA-FIGARCH, also with
the larger statistically significant value of power term. Moreover, positive shocks

have a higher volatility than negative shocks as y <0. This implies that positive
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shocks on TVIX are negative shocks in index options because TVIX and SET50

Index options are oppositely correlated.

Table 4.5: ARMA-FIGARCH and -FIAPARCH on Returns of TVIX

ARMA-FIGARCH ARMA-FIAPARCH
Coefficient t-value Coefficient t-value
AR(1) 0.7806* 6.0140 -0.5026 -0.9686
(0.000) (0.3334)
MA(1) -1.0190%* -6.2510 0.2924 0.4962
(0.000) (0.6200)
MA(2) 0.1750%* 2.7090 - -
(0.0071) -
® 0.0241 0.9844 0.0907 0.9409
(0.3256) (0.3473)
a -0.5326%* -2.8270 -0.4586 -0.9125
(0.005) (0.3621)
B -0.3833 -1.6130 -0.3869 -0.6275
(0.1076) (0.5307)
Y - - -0.3267 -1.1520
- (0.2500)
) - - 1.3510%* 3.498
- (0.0005)
D 0.4026* 5.3820 0.5457* 3.7250
(0.000) (0.0002)
AIC 1.886 3.856
SBIC 29.522 35.440

Note: * Significant at the 1% level

4.7  Conclusion

This paper applies SET50 Index options with the CBOE volatility index, VIX,
formulae as a TVIX which is the benchmark for stock market volatility and
leveraging, whereby leverage allows traders to make a significant amount of money

from a relatively small change in price.
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We also analyze ARFIMA-FIGARCH - FIAPARCH models for the best
prediction for returns of TVIX. From the viewpoint of AIC and SBIC,

ARFIMA(1,d, ,1)-FIGARCH(1,d,1) 1s the best fit for modeling. However, from
the viewpoint of MAE, MAPE and d,, our empirical results show that
ARFIMA(3,d, ,3)-FIAPARCH(1,d,1) is the best accuracy in forecasting returns of

TVIX with the largest memory.

Moreover, with the statistically significant of d_, and d,, the process

becomes ARMA-FIGARCH and ARMA-FIAPARCH for the data. Therefore, both
processes are also estimated. The results show that ARMA-FIGARCH is better fit to
the data by using AIC and SBIC criteria values, however, ARMA-FIAPARCH is
longer memory than ARMA-FIGARCH and capture asymmetric effect.

However, both the Stock Exchange of Thailand and Security Exchange
Commission should firstly develop and launch TVIX as a hedging diversification tool
in the market in order, for the investors, to learn and be acquainted with TVIX for a

few years primarily, and apply the forecasted model to forecast TVIX.



