
 
 

Chapter 2 

Principles, Model specification and Literature review 

2.1 Principles, Models, Rationale or Hypothesis 

In this study, the relationship between Gold Spot price and Gold Future price in 

Thailand Future Exchange (TFEX) will be studied under principles as followed: 

 

2.1.1 Future on Commodities 

Gold is the commodity under consideration. There is a relationship 

between Gold Spot price and Gold Future price as: 

ൌ   ܨ       ܵ݁ሺ்ି௧ሻ     (2.1) 

where 

 Future Price of gold = ܨ

ܵ  =  Spot price of gold  

݁  =  An irrational constant approximately equal to 2.718281828 

   Risk free rate  =  ݎ

ܶ െ   contract term (years)  =  ݐ

 

2.1.2 Cost of Carry model 

Cost of Carry approach shows the relationship between Gold Future price 

and Gold Spot price. But there are differences among futures contracts. Then the Cost 
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of Carry formulas depend to what type of futures contracts under consideration as: 

 For non-dividend paying back stock, the cost of carry is   ݎ  , since there 

are no storage costs and no income is earned. 

ൌ   ܨ        ܵ݁ሺ்ି௧ሻ     (2.2) 

 For stock an index, the cost of carry is   ݎ െ  is rate of income ݍ since ,  ݍ

earned. 

ൌ   ܨ      ܵ݁ሺିሻሺ்ି௧ሻ     (2.3) 

 For a currency, the cost of carry is   ݎ െ  .  is a foreign rateݎ    , sinceݎ

ൌ   ܨ      ܵ݁൫ି൯ሺ்ି௧ሻ     (2.4) 

 For a commodity with a proportion of storage costሺݑሻ, the cost of carry is   

ݎ   . ݑ

ൌ   ܨ      ܵ݁ሺା௨ ሻሺ்ି௧ሻ     (2.5) 

 

2.1.3 Rate of Return 

Rate of return or return of investment, in financial term can be calculated 

as: 

   ܴܱܴ   ൌ    ݈݊ ቀ 

షభ
ቁ     (2.6) 

where 

 ௧ = Final value after investment

  ௧ିଵ  =  Initial value of investment

 

  



11 
 

2.1.4 Time Series 

Time series are data or observations which have been changing along 

times. There might be either stationary or non-stationary changing for time series. If 

time series is able to explain or analyze the changes in the past, then those time series 

can be used as a tool to predict or estimate the future. 

The time series used should be stationary. There are ways to test whether 

time series are stationary or non-stationary. One of them is the Box-Jenkins Method 

of Time-Series Analysis (Autocorrelation Coefficient Function: ACF). Another is 

Dickey–Fuller’s called unit root as would be study further. 

Stationary Stochastic Process: “A stochastic process is said to be 

stationary if its mean and variance are constant over time and the value of the 

covariance between the two time periods depends only on the distance or gap or lag 

between the two time periods and not the actual time at which the covariance is 

computed.” (Gujarati, 2004 pg.797) 

Let   ܺ௧  be a stochastic time series with these properties: 

Mean:       ܧሺݔ௧ሻ    ൌ  ߤ   

Variance:  ݎܽݒሺݔ௧ሻ    ൌ ௧ݔሺܧ    െ ሻଶߤ ൌ  ଶߪ

Covariance:             ߛ    ൌ ௧ݔሾሺܧ    െ ௧ାݔሻሺߤ െ ሻሿߤ   ൌ ߪ    െ  ߤ

 

1. Unit Root Test 

Unit root test is a test of stationary using autoregressive model. In this 

study, the ADF (augmented Dickey-Fuller test) is used, start at: 

௧ݔ       ൌ ௧ିଵݔߩ     ݁௧     (2.7) 
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where 

,௧ݔ ݐ  and  ݐ ௧ିଵ= Variable time series at timeݔ െ 1 

 Autocorrelation coefficience = ߩ

݁௧ = Random error 

If  ߩ ൌ 1 , that is unit root and that also means that they are non-

stationary stochastic process. That brings the hypotheses as: 

ܪ       ߩ    ൌ 1 

ܪ       |ߩ |   ൏   1   െ1 ൏ ߩ ൏ 1 

If  ܪ  is accepted, that means they are unit root and non-stationary. 

Equation 2.2 can be manipulated by subtracting  ܺ௧ିଵ  on both sides as: 

௧ݔ    െ ௧ିଵݔ    ൌ ௧ିଵݔߩ    െ ௧ିଵݔ  ݁௧ 

         ൌ    ሺߩ െ 1ሻݔ௧ିଵ  ݁௧ 

௧ݔ∆  ൌ ௧ିଵݔߜ     ݁௧    (2.8) 

Where  ߜ ൌ ߩ  െ 1 , which also means that if  ߜ ൌ 0 then  ߩ ൌ 1 and 

that  ܪ is accepted. In another way round, if  ߜ ൌ 1 then  ߩ ൌ 0 and that  ܪ is 

accepted and they are stationary. Then the hypotheses can be written as: 

ܪ    ߜ    ൌ 0 

ܪ    ߜ   ൏ 1 

If  ߜ ൌ 0 or  ߩ ൌ 1, from equation 2.3 we get, 

௧ݔ∆    ൌ    ݁௧      (2.9) 

Augmented Dickey–Fuller (ADF) test is used in this study. It is a 

version for larger and more complicated set of time series models. It was assumed that 

the error term ݁௧ are correlated. It is negative number, the more negative is the 
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stronger the rejection of the null hypothesis (ܪ    ߩ    ൌ 1) that it is unit root at a 

level of confidence. Then those three DF tests are: 

1. Test for a unit root: 

௧ݔ∆    ൌ ௧ିଵݔߜ     ∑ ௧ିݔ∆ߙ

ୀଵ  ݁௧      (2.10) 

2. Test for a unit root with drift: 

௧ݔ∆    ൌ ଵߚ     ௧ିଵݔߜ  ∑ ௧ିݔ∆ߙ

ୀଵ  ݁௧    (2.11) 

3. Test for a unit root with drift and deterministic time trend: 

௧ݔ∆    ൌ ଵߚ     ݐଶߚ  ௧ିଵݔߜ  ∑ ௧ିݔ∆ߙ

ୀଵ  ݁௧    (2.12) 

where 

,ଵߚ ,ଶߚ  Parameters = ߜ

 Trend = ݐ

Terms added are  ∑ ௧ିݔ∆ߙ

ୀଵ  , they are lagged difference terms. 

Those help in making DW (Durbin–Watson statistic) to get closer to 2. 

To test the hypothesis in all three cases, we estimate the test equation 

by least squares and examine the t-statistic for the hypothesis that ߜ ൌ 0. Those t-

statistic values must be compared to specially generate critical values. The Dickey-

Fuller critical values are more negative than the standard critical values. This simplify 

that the calculated t-statistic must be larger than usual for the null hypothesis of non-

stationary  ߜ ൌ 0. 

 

2. Lag Length Criteria 

Vector autoregressive (VAR) models are widely used in forecasting 

and in analysis of the effects of structural shocks. A critical element in the 

specification of VAR models is the determination of the lag length of the VAR. There 
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are many criteria used to determine lag length, criteria which have been used to 

evaluate in this study are: 

1. Sequential modified LR test statistic  

ൌ     ܴܮ   ሺܶ െ ݉ሻሼ݈݃|Ωିଵ| െ  Ω|ሽ~߯ଶሺ݇ଶሻ|݈݃

2. Final prediction error    

ܧܲܨ ൌ   lnሺߪොଶሻ ሺ݊  ሻሺ݊ െ  ሻିଵ

3. Akaike information criterion   

ܥܫܣ  ൌ   ݊ lnሺߪොଶሻ   2

4. Schwarz information criterion   

ܥܫܵ   ൌ   ݊ lnሺߪොଶሻ  ݊ିଵ lnሺ݊ሻ 

5. Hannan-Quinn information criterion  

ܥܳܪ ൌ   ݊ lnሺߪොଶሻ  2݊ିଵ lnሺlnሺ݊ሻሻ 

Between Akaike information criterion (AIC) and Schwarz information 

criterion (SIC). There is unexplained variation in the dependent variable and the 

number of explanatory variables increase the value of Schwarz information criterion 

(SIC). Lower SIC implies either fewer explanatory variables, better fit, or both. The 

SIC generally penalizes free parameters more strongly than does the Akaike 

information criterion (AIC). 

 

3. Cointegration Test 

As a general rule, non-stationary time series variables should not be 

used in regression models, to avoid the problem of spurious regression. If ݕ௧ and ݔ௧ 

are nonstationary ܫሺ1ሻ variables, then their difference or any linear combination of 

them is expected, such that, ݁௧ ൌ ௧ݕ െ ଵߚ െ  ሺ1ሻ as well. However, there isܫ ௧ to beݔଶߚ
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an important case when ݁௧ ൌ ௧ݕ െ ଵߚ െ  ሺ0ሻ process. In this caseܫ ௧ is a stationaryݔଶߚ

 ௧ share similarݔ ௧ andݕ ௧ are coinegrated. Cointegration implies thatݔ ௧ andݕ

stochastic trends and since  ߝ௧ is stationary they would not be much different. 

In this study Johansen Cointegration Test, a multivariate version of the 

univariate DF test.  Consider a reduced form VAR of order :  

௧ݕ ൌ ௧ିଵݕଵܣ  ڮ  ௧ିݕܣ  ݔܤ௧   ௧ߝ

where ݕ௧ is a k-vector of I(1) variables, ݔ௧ is a n-vector of deterministic trends, and 

  :௧ is a vector of shocks.  We can rewrite this VAR asߝ

௧ݕ∆ ൌ Πݕ௧ିଵ   Γݕ௧ି

ିଵ

ୀଵ

 ௧ݔܤ   ௧ߝ

where   

Π ൌ  ܣ



ୀଵ

െ 1, Γ ൌ െ  ܣ



ୀାଵ

 

The Π matrix represents the adjustment to disequilibrium following an 

exogenous shock.  If Π has reduced rank ݎ ൏  ݇ where ݎ and ݇ denote the rank of 

Π and the number of variables constituting the long-run relationship, respectively, 

then there exist two ݇ ݎ matrices ߙ and ߚ, each with rank r, such that Π ൌ  ᇱ andߚߙ

 is a ߚ is called the cointegration rank and each column of ݎ  .௧ is stationaryݕᇱߚ

cointegrating vector (representing a long-run relationship). The elements of the ߙ 

matrix represent the adjustment or loading coefficients, and indicate the speeds of 

adjustment of the endogenous variables in response to disequilibrating shocks, while 

the elements of the Γ matrices capture the short-run dynamic adjustments.  Johansen’s 

method estimates the Π matrix from an unrestricted VAR and tests whether we can 

reject the restrictions implied by the reduced rank of Π.  This procedure relies on 
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relationships between the rank of a matrix and its characteristic roots (or eigenvalues).  

The rank of Π equals the number of its characteristic roots that differ from zero, which 

in turn corresponds to the number of cointegrating vectors.  

 

4. Vector Autoregression (VAR) models 

In cointegration relationship we assumed that ݕ௧ is dependent variable 

and ݔ௧ is independent variable and treat the relationship between these two as 

regression model. But we can still do it another way round as ݕ௧ for independent 

variable and ݔ௧ as dependent variable. Then we have two possible regression models 

relating them are: 

௧ݕ ൌ ଵߚ  ௧ݔଵଵߚ  ݁௧
௬   ,   ݁௧

௬~ܰ൫0, ௬ߪ
ଶ൯   (2.13) 

௧ݔ ൌ ଶߚ  ௧ݕଶଵߚ  ݁௧
௫   ,   ݁௧

௫~ܰሺ0, ௫ߪ
ଶሻ   (2.14) 

In this two series system there can be only one relationship between ݔ௧ 

and ݕ௧ and so it must be the case that ߚଶଵ ൌ ଵ

ఉభభ
  and  ߚଶ ൌ െ ఉభబ

ఉభభ
 . And ݔ and ݕ are 

normalized by this two equations and then we can start discussing the vector 

autoregressive (VAR) models by:  

௧ݕ   ൌ ଵߚ  ௧ିଵݕଵଵߚ  ௧ିଵݔଵଶߚ  ௧ݒ
௬      (2.15) 

௧ݔ ൌ ଶߚ  ௧ିଵݕଶଵߚ  ௧ିଵݔଶଶߚ  ௧ݒ
௫   (2.16) 

These two equations describe a system in which each variable is a 

function of its own lag, and the lag of the other variable in the system. Equation 2.17, 

 ݔ  ,௧ିଵ. Equation 2.18ݔ ௧ିଵ and the lag of other variableݕ is a function of its own lag ݕ

is a function of its own lag ݔ௧ିଵ and the lag of other variableݕ௧ିଵ. Together the 
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eqation constitute a system known as a vector autoregressive (VAR) and since the 

maximum lag is of order 1, we have a VAR(1). 

If ݔ and ݕ are stationary ܫሺ0ሻ variables, the above system can be 

estimated using least squares applied to each equation. If ݔ and ݕ are non-

stationary ܫሺ1ሻ and not cointegrated, we work with the first differences. In this case, 

the VAR model is 

௧ݕ∆ ൌ ௧ିଵݕ∆ଵଵߚ  ௧ିଵݔ∆ଵଶߚ  ௧ݒ
∆௬   (2.17) 

௧ݔ∆ ൌ ௧ିଵݕ∆ଶଵߚ  ௧ିଵݔ∆ଶଶߚ  ௧ݒ
∆௫   (2.18) 

All variables are stationary ܫሺ0ሻ, and the system can again be estimated 

by least squares. The VAR model is a general framework to describe the dynamic 

interrelationship between stationary variables. If ݔ and ݕ are stationary ܫሺ0ሻ variables, 

the system will be used. But if they are not cointegrated, the interrelation between 

them using a VAR framework differences. If they are non-stationary ܫሺ1ሻ and 

cointegrated, we need to modify the system of equation to allow for the cointegrated 

relationship between the ܫሺ1ሻ variables. 

 

5. Impulse responses 

Impulse response functions are techniques which used to analyze 

problems in macroeconomics and also are functions show the effects of shocks on the 

adjustment path of the variables. 

 The Univariate Case 

Consider a univariate series ݕ௧ ൌ ௧ିଵݕߩ   ௧ and subject it to aݒ

shock of size ݒ in period 1. Assume an arbitrary starting value of ݕ at time zero: 

ݕ ൌ 0. At time ݐ ൌ 1, following the shock, the value of ݕ will be: ݕଵ ൌ ݕߩ  ଵݒ ൌ
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ଶݒAssume that there are no subsequent shocks in later time periods ሺ .ݒ ൌ ଷݒ ൌ ڮ ൌ

0ሻ, at time ݐ ൌ ଶݕ ,2 ൌ ଵݕߩ ൌ ݐ at time ,ݒߩ ൌ ଷݕ ,3 ൌ ଶݕߩ ൌ ଵሻݕߩሺߩ ൌ  and so ݒଶߩ

on. Thus the time path of ݕ following the shock isሼݒ, ,ݒߩ ,ݒଶߩ  ሽ. The value of the ڮ

coefficients ሼ1, ,ߩ ,ଶߩ  following ݕ ሽ are known as multipliers, and the time path of ڮ

the shock is known as the impulse response function. 

 The Bivariate Case 

Consider an impulse response function analysis with two time 

series based on a bivariate VAR system of stationary variables: 

௧ݕ ൌ ଵߜ  ௧ିଵݕଵଵߜ  ௧ିଵݔଵଶߜ  ௧ݒ
௬    (2.19) 

௧ݔ ൌ ଶߜ  ௧ିଵݕଶଵߜ  ௧ିଵݔଶଶߜ  ௧ݒ
௫   (2.20) 

In this case, there are two possible shocks to the system, one to ݕ 

and another to ݔ, then, there would be four impulse response functions as: 

- The effect of a shock to ݕ on the time path of ݕ and ݔ. 

- The effect of a shock to ݔ on the time path of ݕ and ݔ. 

The actual mechanics of generating impulse responses in a system 

is complicated by; 

1. One has to allow for interdependent dynamics (the multivariate analog of 

generating the multipliers) 

2. One has to identify the correct shock from unobservable data. 

From these two complications lead to what is known as the 

identification problem. If there is no identification problem, the system would be as 

described in equation 2.26 and 2.27. There is a true representation of the dynamic 

system, ݕ is related only to lags of ݕ and ݔ, and ݔ is related only to lags of ݕ and ݔ. In 

another words, is related only to lags of ݕ and ݔ are related in a dynamic but not 
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contemporaneously. The current value is related only to lags of ݔ௧ does not appear in 

the equation for ݕ௧ and the current value ݕ௧ does not appear in the equation for ݔ௧. 

Also, we need to assume the errors ݒ௧
௫ and ݒ௧

௬ are independent of each other and 

,௬~ܰ൫0ݒ ௬ߪ
ଶ൯ and ݒ௫~ܰሺ0, ௫ߪ

ଶሻ. 

Consider the case when there is a one standard deviation shock to ݕ 

so that at time ݐ ൌ 1, ௧ݒ
௬ ൌ ௬ߪ ൌ 0. Assume ݒ௧

௫ ൌ 0 for all ݐ. It is traditional to 

consider a standard deviation shock rather than a unit shock to overcome 

measurement issue. Assume ݕ ൌ ݔ ൌ 0. Since we are focusing on how a shock 

changes the paths of ݕ and ݔ, we can ignore the intercepts, then; 

1. When ݐ ൌ 1, the effect of a shock of size ߪ௬ on ݕ is  

ଵݕ ൌ ଵݒ 
௬ ൌ   ,௬ߪ

and the effect on ݔ is  

ଵݔ ൌ ଵݒ 
௫ ൌ 0. 

2. When ݐ ൌ 2, the effect of the shock on ݕ is 

ଶݕ  ൌ ଵݕଵଵߜ   ଵݔଵଶߜ ൌ ௬ߪଵଵߜ  ଵଶ0ߜ ൌ  ௬ߪଵଵߜ

and the effect on ݔ is 

ଶݔ ൌ ଵݕଶଵߜ   ଵݔଶଶߜ ൌ ௬ߪଶଵߜ  ଶଶ0ߜ ൌ  ௬ߪଶଵߜ

3. When ݐ ൌ 3, the effect of the shock on ݕ is 

ଷݕ  ൌ ଶݕଵଵߜ   ଶݔଵଶߜ ൌ ௬ߪଵଵߜଵଵߜ  ଵଶ0ߜ ൌ  ௬ߪଵଵߜଵଵߜ

and the effect on ݔ is 

ଷݔ ൌ ଶݕଶଵߜ   ଶݔଶଶߜ ൌ ௬ߪଶଵߜଶଵߜ  ଶଶ0ߜ ൌ  ௬ߪଶଵߜଶଵߜ
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By repeating the substitutions for ݐ ൌ 4,5,  we obtain the impulse ڮ

response of the shock to ݕ on ݕ as ߪ௬ሼ1, ,ଵଵߜ ሺߜଵଵߜଵଵ  ,ଶଵሻߜଵଶߜ ڮ ሽ and the impulse 

response of the shock to ݕ on ݔ as ߪ௬ሼ0, ,ଶଵߜ ሺߜଶଵߜଵଵ  ,ଶଵሻߜଶଶߜ ڮ ሽ 

If there is one standard deviation shock to ݔ so that at time 

ݐ ൌ 1, ଵݒ
௫ ൌ  is ݕ ௫ onߪ ௫. Two periods after the shock, the effect of a shock of sizeߪ

ଵݕ ൌ ଵݒ
௬ ൌ 0, and the effect of the shock on ݔ is ݔଵ ൌ ଵݒ

௫ ൌ  ௫. Two periods after theߪ

shock, when ݐ ൌ 2, the effect on ݕ is 

ଶݕ ൌ ଵݕଵଵߜ   ଵݔଵଶߜ ൌ ଵଵ0ߜ  ௫ߪଵଶߜ ൌ  ௫ߪଵଶߜ

and the effect on ݔ is 

ଶݔ ൌ ଵݕଶଵߜ   ଵݔଶଶߜ ൌ ଶଵ0ߜ  ௫ߪଶଶߜ ൌ  ௫ߪଶଶߜ

By repeating the substitutions for ݐ ൌ 4,5,  we obtain the impulse ڮ

response of the shock to ݔ on ݕ as  ߪ௫ሼ0, ,ଵଶߜ ሺߜଶଵߜଵଶ  ,ଶଶሻߜଵଶߜ ڮ ሽ and the impulse 

response of the shock to ݔ on ݔ as ߪ௫ሼ1, ,ଶଶߜ ሺߜଶଵߜଵଶ  ,ଶଶሻߜଶଶߜ ڮ ሽ 

The advantage of examining impulse response functions (and not 

just VAR coefficients) is that they show the size of the impact of the shock plus the 

rate at which the shock dissipates, allowing for interdependencies. 

 

6. Least Squares Estimation 

Another way to estimate the relationship and make use of the sample 

observation is Least Squares Estimation. There is the way to estimate the line of data 

we have and the intercept and slope of this line can tell us the relationship between 

them. The line which best fit the data using the least squares principle are ܾଵ and ܾଶ, 

the least squares estimates of ߚଵ and ߚଶ (the parameter of relationship in the 

regression analysis). Then comes the least squares equation that is: 
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ොݕ ൌ ܾଵ  ܾଶݔ     (2.21) 

The vertical distances from each point to the fitted line are the least 

squares residuals. They are given by 

݁̂ ൌ ݕ െ ොݕ ൌ ݕ െ ܾଵ  ܾଶݔ   (2.22) 

The least squares estimators: 

ܾଶ ൌ
∑ሺ௫ି௫ҧሻሺ௬ି௬തሻ

∑ሺ௫ି௫ҧሻమ      (2.23) 

ܾଵ ൌ തݕ െ ܾଶݔҧ      (2.24) 

Where ݕത ൌ
∑ ௬

ே
 and ݔҧ ൌ

∑ ௫

ே
 are the sample means of the observations 

on ݕ and ݔ. 

 Coefficient of determination (ࡾ) 

From equation 2.22 we can derive that: 

ݕ െ ොݕ ൌ ݁̂      (2.25) 

ݕ െ തݕ ൌ ሺݕො െ തሻݕ  ݁̂    (2.26) 

∑ሺݕ െ തሻଶݕ ൌ ∑ሺݕො െ തሻଶݕ  ∑ ݁̂
ଶ   (2.27) 

where 

 ∑ሺݕ െ  (ݕ total variation in) ܶܵܵ :തሻଶ  =  Total sum of squaresݕ

∑ሺݕො െ   തሻଶ = Sum of squares due to the regression: ܴܵܵ (explainedݕ

sum of squares) 

∑ ݁̂  = Sum of squares due to error: ܵܵܧ (unexplained sum of  

squares) 

From these abbreviations then comes; 

ܵܵܶ ൌ ܴܵܵ   (2.28)     ܧܵܵ
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The decomposition of the total variation in ݕ in to a part that is 

explained by the regression model and a part that is unexplained allows us to define a 

measure, coefficient of determination (ܴଶ). That is the proportion of variation in ݕ 

esplained by ݔ within the regression model. 

ܴଶ ൌ ௌௌோ

ௌௌ்
ൌ 1 െ ௌௌா

ௌௌ்
     (2.29) 

The closer to 1, the closer the sample values ݕ are to the fitted 

regression equation ݕො ൌ ܾଵ  ܾଶݔ. If  ܴଶ ൌ 1, then all the sample data fall exactly 

on the fitted least squares line, so ܵܵܧ ൌ 0 and the model fits the data perfectly. If 

they are uncorrelated and show no linear association, then the least squares fitted line 

is identical to ݕത, so that ܴܵܵ ൌ 0 and ܴଶ ൌ 0. When 0 ൏ ܴଶ ൏ 1, means that the 

proportion of the variation in ݕ about its mean that is explained by the regression 

model. 

 Durbin-Watson (DW) Statistic 

Durbin–Watson statistic is a test statistic used to detect the 

presence of autocorrelation (a relationship between values separated from each other 

by a given time lag) in the residuals (prediction errors) from a regression analysis. 

The hypotheses usually considered in the Durbin-Watson test are: 

ܪ    ߩ    ൌ 0 

ܪ    ߩ   ൌ 1 

with the test statistic: 

݀ ൌ
∑ ሺ݁ െ ݁ିଵሻଶ

ୀଶ

∑ ݁
ଶ

ୀଶ
 

Where ݅ is the number of observations, ݀ ൌ 2 indicates no 

autocorrelation. The value of ݀ always lies between 0 and 4. If the Durbin–Watson 
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statistic is substantially less than 2, there is evidence of positive serial correlation. If 

Durbin–Watson is less than 1.0, there may be values of ݀ indicate successive error 

terms are, on average, close in value to one another, or positively correlated. If ݀  2  

successive error terms are, on average, much different in value to one another. 

 

7. Cointegrating Regression 

If these variables under the study are cointegrated. We only focus on 

the classical analysis of ܫ ሺ1ሻ and ܫ ሺ0ሻ  systems and estimate the Vector 

Autoregressive (VAR) model as the equations 2.19 and 2.20. 

௧ݕ∆ ൌ ௧ିଵݕ∆ଵଵߚ  ௧ିଵݔ∆ଵଶߚ  ௧ݒ
∆௬ 

௧ݔ∆ ൌ ௧ିଵݕ∆ଶଵߚ  ௧ିଵݔ∆ଶଶߚ  ௧ݒ
∆௫ 

As we can see that lag length in these equations are ݐ and ݐ െ 1. But in 

time series data of limited length, this assumption of errors is violated if a relationship 

between and is insignificant; that is if lag length is 0. Vector Autoregression (VAR) 

model would not fit the estimation anymore. We should estimate the cointegration 

regression to study the relationship in this case.  

Engle and Granger (1987) note that a linear combination of two or 

more ܫ ሺ1ሻ series may be stationary, or ܫ ሺ0ሻ, in which case we say the series are 

cointegrated. Such a linear combination defines a cointegrating equation with 

cointegrating vector of weights characterizing the long-run relationship between the 

variables. Consider the ݊  1  dimensional time series process, with cointegrating 

equation: 

௧ݕ ൌ ௧ݔ
ߚ′  ଵ௧ܦ

ᇱ ଵߛ   ଵ௧ݑ

where    
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ଵ௧ܦ௧ = ሺܦ 
ᇱ ଵ௧ܦ

ᇱ ሻᇱ = Deterministic trend repressor 

and the regressors equations are: 

௧ݔ     ൌ   Γଶଵ
ᇱ ଵ௧ܦ  Γଶଶ

ᇱ ଶ௧ܦ   ଶ௧ߝ

ଶ௧ߝ∆ ൌ   ଶ௧ݑ  

 Dynamic OLS 

Jose G. Montalvo (1994)’s study compared the estimator efficiency 

among OLS (Ordinary Least Squares) estimator, CCR (Canonical Cointegration 

Regression) estimator, CCRPW (CCR estimator using a VAR pre-whitened kernel 

estimator of the long-run covariance matrix) and DOLS (Dynamic OLS) estimator. The 

result of this study shows that DOLS estimator has smaller bias and root mean squared 

error than the other estimators. 

Chen, McCoskey, and Kao (1996) investigated the finite sample 

proprieties of the OLS estimator, the t-statistic, the bias-corrected OLS estimator, and 

the bias-corrected t-statistic. They found that the bias-corrected OLS estimator does 

not improve over the OLS estimator in general. The result of their study suggests that 

alternatives, such as the FMOLS (Fully Modified OLS) estimator or the DOLS 

(Dynamic OLS) estimator may be more promising in cointegrated regression. 

 

2.2 Literature Review 

Chris Brooks, Alistair G. Rew and Stuart Ritson examined the lead–lag 

relationship between the FTSE 100 index and index futures price employing a number 

of time series models. Using 10-min observations from June 1996–1997, it is found 

that lagged changes in the futures price can help to predict changes in the spot price. 

The best forecasting model is of the error correction type, allowing for the theoretical 
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difference between spot and futures prices according to the cost of carry relationship. 

This predictive ability is in turn utilized to derive a trading strategy which is tested 

under real-world conditions to search for systematic profitable trading opportunities. 

It is revealed that although the model forecasts produce significantly higher returns 

than a passive benchmark, the model was unable to outperform the benchmark after 

allowing for transaction costs. 

 

Engle, Robert F. & Granger, C. W. J. studied the relationship between co-

integration and error correction models, first suggested in Granger (1981), is here 

extended and used to develop estimation procedures, tests, and empirical examples. If 

each element of a vector of time series X୲ first achieves stationary after differencing, 

but a linear combination αX୲', is already stationary, the time series xt are said to be co-

integrated with co-integrating vector α. There may be several such co-integrating 

vectors so that α becomes a matrix. Interpreting α'X୲, = 0 as a long run equilibrium, 

co-integration implies that deviations from equilibrium are stationary, with finite 

variance, even though the series themselves are non-stationary and have infinite 

variance. The paper presents a representation theorem based on Granger (1983), 

which connects the moving average, autoregressive, and error correction 

representations for co-integrated systems. A vector auto-regression in differenced 

variables is incompatible with these representations. Estimation of these models is 

discussed and a simple but asymptotically efficient two-step estimator is proposed. 

Testing for co-integration combines the problems of unit root tests and tests with 

parameters unidentified under the null. Seven statistics are formulated and analyzed. 

The critical values of these statistics are calculated based on a Monte Carlo 
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simulation. Using these critical values, the power properties of the tests are examined 

and one test procedure is recommended for application. In a series of examples it is 

found that consumption and income are co-integrated, wages and prices are not, short 

and long interest rates are, and nominal GNP is co-integrated with M2, but not M1, 

M3, or aggregate liquid assets.  

 

Heany, Richard studied Data on commodity prices from the London Metals 

Exchange was used to examine the connection between factors of the cost-of-carry 

relationship, spot price, futures price, interest rate to maturity, and stock level effects. 

Results for the commodity of lead support unit root processes for interest rates and 

stock levels. However, results for spot price and futures price are unconfirmed. 

 

Lucy F. Ackert and Marie D. Racine used a no-arbitrage, cost-of-carry 

pricing model to examine whether equity spot and futures markets are cointegrated. A 

stock index and its futures price should be cointegrated if the cost of carry is 

stationary. Otherwise, the appropriate co-integrating relationship is trivariate and 

includes the index, futures price, and cost of carry. This paper studies the relationships 

among the Standard and Poor’s 500 index, associated index futures price series, and 

interest rate for January 4, 1988, through June 30, 1995, and finds that all three series 

are non-stationary. This paper further finds that the index and futures price are not 

cointegrated unless the cost of carry is included in the co-integrating relationship. 

These findings are consistent with the no-arbitrage pricing model and do not appear to 

be sensitive to the presence of structural breaks in the series. 
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Montalvo, Jose G. compared the finite sample performance of the canonical 

correlation regression estimator (CCR) and Stock and Watson's (A simple estimator 

of cointegration vectors in higher order integrated systems, Econometrica, 1993, 

61(4), 783-820) dynamic ordinary least squares estimator (DOLS) using the models 

proposed by Inder. The CCR estimator shows smaller bias than the OLS and the fully 

modified. The DOLS estimator performs systematically better than the CCR 

estimator. 

 

Nimanussornkul, Chaiwat investigated volatility and volatility spillovers of 

returns across the financial markets and across the countries in South-East Asia. The 

daily returns of each market are used to model the volatility and asymmetric effects. 

Univariate conditional volatility and multivariate conditional volatility are employed. 

The univariate conditional volatility models report that the coefficients in the 

conditional variance equations are most significant in both the short and long run. 

This means that the volatility in each market is changing over time. Moreover, 

asymmetric effects in stock markets are found in the Indonesia and Singapore stock 

markets, but without leverage. In contrast, Indonesia and Philippines bond markets 

show leverage. Therefore, investors should be aware of time-varying risk in 

SouthEast Asia financial markets, as well as the different impacts of positive and 

negative shocks in Indonesia and Singapore stock markets, and the Indonesia and 

Philippines bond markets.  

The CCC model reports that the estimated correlations of stock markets yield 

the constant conditional correlation in most cases. Moreover, a portfolio that is 

constructed from assets in Vietnam and Malaysia stock markets can diversify 
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portfolio risk efficiently. Investors can diversify risk by investing in the Thai bond 

market and other countries’ stock markets. For bond markets, the results of CCC 

suggest that including only Singapore and Thai bonds in portfolios can achieve lower 

risk.  The results of VARMA-GARCH for each pair of assets between stock and bond 

markets show that the Thai stock market and the other bond markets have volatility 

spillovers to each other. For pairs of assets in stock markets, the volatility spillovers 

between the markets are mixed. Based on the data since the year 2000, asymmetric 

effects for each pair of assets in nearly every country were found. For the bond 

market, the results suggest that they have no volatility spillovers for the Thai bond 

market based on VARMA-GARCH and VARMA-AGARCH models. The study only 

in bond markets, the results show that the Singapore bond market volatility has 

spillovers to other bond markets, such that the volatility of a developed country 

affects the volatility of developing countries. Speculators may operate in developing 

countries, particularly Indonesia and Philippines, to earn capital gains from volatile 

markets.  

The DCC reports that, for both stock and bond, coefficients estimated are 

significantly different from zero, which means that the conditional correlations are 

time-varying, so that constant condition correlations do not hold. 

 

Supornjag, Jutamas analyzed fluctuation of rate of return of stock index 

futures in the derivative market using ARIMA-EGARCH model. The study 

investigated the stock index futures in four countries: Thailand, the United States of 

America, Japan, and Hong Kong by using time-series data of closing price reported 

since April, 28th 2007 to May, 31st 2008. The result of the unit root test revealed that 
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the rate of return of stock index futures in the four countries was stable. Finally, this 

study concludes that the appropriate model for forecasting the rate of return of stock 

index in each market is different depending on the movement of stock price in each 

country. That would help investors understand the fluctuation patterns of the rate of 

return of stock index futures, and then they can manage their investments according to 

their investment goal further. 

 

Taka, Angkana analyzed the relationship between fold price and oil price in 

Thailand using co-integration method. Three prices are selected in this study, namely 

bullion price, ornaments price and Dubai oil price. The results show that both gold 

prices and oil prices have a unit root and the same order of integration. To the co-

integration method, the empirical results indicate that the estimated residuals are 

stationary. Thus, gold prices and oil price have the relationship in long term and two-

way relationship in short-term. 

 

Paspipatkul, Patairat investigated the domestic price transmission analysis 

employed Vector Autoregressive Model (VAR) and Vector Error Correction Model 

(VEC). The result shows the appropriate lags orders equals 2 and the long-term 

equilibrium exists with Cointegration Vector (r) equals to 2. The RSS1 of Haad Yai 

was determined by its own price lagged by 1 period (coefficient - -0.0808). However, 

no factors were found to be significantly related to RSS3 of Haad Yai. Market 

efficiency study was analyzed by Cointegration and Error Correction Model. Since it 

was not apparent if risk premium exist in rubber futures trading, two scenarios, i.e. 

with and without risk premium were assumed. 
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Results of the analyses for with and without risk premium models reject the 

null hypothesis of unbiasedness fir the Kuala Lumper, London and New York 

exchanges as related to Haad Yai RSS1 but do not reject null hypothesis for the 

Singapore futures exchange. As for RSS3 of Haad Yai, the hypothesis was also 

rejected for the same futures exchanges in addition to the Tokyo and Kobe markets. 

The results of market efficiency analysis for the Songkla port reveal that the 

hypothesis cannot be rejected for the Kuala Lumper, London and Singapore RSS1 and 

RSS3 for with and without risk premium models (but be rejected for New York 

RSS1) As for the Bangkok port, the hypothesis testing shows that Kuala Lumper and 

Singapore futures prices were also unbiased predictors of the Bangkok RSS3 F.O.B. 

prices. It can be asserted that there exists oversea futures prices appropriate for 

predicting the future spot prices of rubber sheets in Thailand and the Singapore 

exchange was found to be unbiased price predictor for both grades of rubber in all 

three spot markets in Thailand.  

 


