
CHAPTER 2

Theory and Literature Review

2.1 Theory

2.1.1 Asset Return1

Campbell, Lo, and MacKinlay (1997) give reason for using returns that for

average investors, return of an asset is a complete and scale-free summary of the

investment opportunity.

Let tP be the price of an asset at time index t . Assume for the moment that the

asset pays no dividends.

One-Period Simple Return that holding the asset for one period from date 1t  to date

t would result in a simple gross return
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The corresponding one-period simple net return or simple return is

The arithmetic return is: 1
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The logarithmic return is:
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2.1.2 Time Series

Time series are data or observations which have been changing along times.

There might be either stationary or non-stationary changing for time series. If time

series is able to explain or analyze the changes in the past, then those time series can

be used as a tool to predict or estimate the future.

1 Ruey S. Tsay. (1951). Analysis of Financial Time Series: 2nd edition, (University of Chicago:
Graduate school of Business, 1951), p.41-42
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“In regressing a time series variable on another time series variables, one often

obtains a very high 2R (in excess of 0.9) even through there is no meaningful

relationship between the two variables. Sometimes we expect no relationship between

two variables, yet a regression of one on the other variable often shows a significant

relationship”. (Gujarati, 2004 p.794), that means, the time series used should be

stationary. There are ways to test whether time series are stationary or non-stationary.

One of them is the Box-Jenkins method of time series analysis (Autocorrelation

Coefficient Function: ACF). Another is Dickey-Fuller’s called unit root as would be

study further.

Stationary Stochastic Process: “A stochastic process is said to be stationary if

its mean and variance are constant over time and the value of the covariance between

the two time periods depends only on the distance or gap or lag between the two time

periods and not the actual  time at which the covariance is computed”. (Gujarati, 2004

p.797)

Let tX be stochastic time series with these properties:

Mean:  tE X 

Variance:    2 2var t tX E X    

Covariance:   ( , )t t k t t k kCOV X X E X X          

(Charemza and Deadman, 1992, pp.118)

2.1.3 Unit Roots Test

Dickey-Fuller Test, Augmented Dickey-Fuller Test (1979). Unit Root Test

is test of stationary using an autoregressive model. The model follows as:

1t t tX X   (4)

where 1,t tX X  = Variable time series at time t and t-1

 = Autocorrelation coefficience

t = Random error
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If 1  that is a unit root means that the model would be non-stationary in this case.

The hypotheses as:

: 1oH  

: 1aH   ; 1 1  

If oH is accepted, that means tX has unit root and non-stationary.

From 1t t tX X   can be manipulated by subtracting 1tX  on both sides:

1 1 1t t t t tX X X X      

= 1( 1) t tX  

can be written as:

1t t tX X    (5)

where 1   . If 0  then 1  and oH is accepted. In another way, if 1  then

0  and aH is accepted that they are stationary. Then the hypotheses can be written

as:

0 : 0H  

: 0aH  

If 0  or 1  , from equation (4); 1t t tX X    we get:

t tX   (6)

This is a version of Dickey-Fuller Test. There are three main versions of the

test as:

1.   Test for a random walk:
1tt tX X 


   (7)

2.   Test for a random walk with drift:
10 tt tX X  


    (8)

3.   Test for a random walk with drift and deterministic time trend:
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10 1 tt tX t X   


     (9)

where 0 1, ,   = Parameters

t = Trend

As mentioned, the one used in this study is an Augmented Dickey-Fuller Test

(ADF-test) which a version for larger and more complicated set of time series model.

This test is conducted by “augmenting” the preceding three equations by adding the

lagged values of the dependent variable tX .

There are three Augmented Dickey-Fuller Tests (ADF-test) are:

1.   Test for a random walk:

1
1

m

t t i t i t
i

X X X   


     (10)

2.   Test for a random walk with drift:

0 1
1

m

t t i t i t
i

X X X    


      (11)

3.   Test for a random walk with drift and deterministic time trend:

0 1 1
1

m

t t i t i t
i

X t X X     


       (12)

For the equations (10), (11) and (12) which terms added are
1

m

i t i
i

X 


 , they

are lagged difference terms. It is test for Augmented Dickey-Fuller Test (ADF-Test)

that has developed from Dickey-Fuller Test for solve problem of serial correlation.

ADF-Test has asymptotic distribution same as DF-Test then it can be used the same

critical values.

2.1.4 Phillips Perron Test (PP Test) 2

Phillips and Perron (1988) propose nonparametric method for controlling of

serial correlation when test a unit root. The PP method estimates the non-augmented

DF test equation 1t t t ty y x       , and modifies the t-ratio of the  coefficient

2 Available: http://www.er.uqam.ca/nobel/r20564/cours/unit_root_%20Ev4_1.pdf.
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so that serial correlation does not affect the asymptotic distribution of the test statistic.

The PP test is based on the statistic:

1
0 0 02

1/2
0 0

ˆ( )( ( ))
( )

2
T f se

t t
f f s 
  

  (13)

where ̂ is the estimate, and t the -ratio of  , ˆ( )se  is coefficient standard error,

and s is the standard error of the test regression. In addition, 0 is a consistent

estimate of the error variance in 1t t t ty y x       (calculated as 2( ) /T k s T ,

where k is the number of regressors). The remaining term, 0f , is an estimator of the

residual spectrum at frequency zero.

There are two choices you will have make when performing the PP test. First,

you must choose whether to include a constant, a constant and a linear time trend, or

neither, in the test regression. Second, you will have to choose a method for

estimating 0f

2.1.5 Long Memory Test 3

The presence of long memory may be defined in terms of the observed

autocorrelations, which show high dependence between very distant observations.

The autocorrelations of a long memory process is consistent with an essentially

stationary process but takes far longer to decay than the exponential rate associated

with the stationary ARMA class of processes. Defining the autocorrelation between

observation at time t and observation at time t j as j , long memory processes are

characterized by the following property:

lim
t

jt j t





  (14)

Fractionally integrated processes are long memory processes given the

property in (14). It is possible to define the fractionally integrated process ty as

follows,

3 Celso Brunetti. (1999). Long Memory, The Taylor Effect and Intraday Volatility in
Commodity Futures Markets. Department of Business Studies, The University of Edinburgh.
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(1 )d
t tL y u  (15)

where d is not integer and represents the fractional order of integration and L is the

lag operator. For values of d less than 0.5 and positive, the process ty is long

memory, and its autocorrelations are all positive and exhibit a hyperbolic rate of

decay. For 0.5 0d   the process has short memory according to (14). It is possible

to note from (15) that fractionally integrated processes are intermediate between I(0)

and I(1) processes. Following Granger and Joyeux (1980) and Hosking (1981),

rewrite (15) as follows,

(1 ) ( )d
t tL y     (16)

where i is the mean of the process ty , ( ) 0tE   , 2 2( )tE   and ( ) 0t sE    for

s t . Equation (16) defines a fractional white noise process. The fractional

difference operator (1 )dL is defined as follows,

0

( )(1 )
( 1) ( )

j
d

j

j d LL
j d





 
 

    (17)

where (.) =   the standard gamma function.

The autocorrelation function of (16) at lag j is equal to

( ) (1 )
( ) ( )j
j d d

j d d
    

  

(18)

The asymptotic approximation of Equation (18) is given by

2 1d
j cj 

where (1 )
( )

dc
d

 



Hence the autocorrelation coefficients exhibit slow hyperbolic decay for large j .
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The methods of Long memory test.

1. R/S Analysis 4

R/S test was used by Hurst (1951) to test for long memory in the pattern of

flooding by the river Nile. It was modified by Mandelbrot and Wallis (1968).

The range nR is defined as:

11 1 1
{max ( ) min ( )}

i i

n t ti ni n t t
R x x x x

  
 

     when 1, 2,....,t T (19)

where x is the sample mean given by:

1

1 n

i
i

x x
T 

  (20)

where Ts is the sample standard deviation giver by:

0.5
2

1

1 ( )
k

T t
t

s x x
T 

    
 (21)

The R/S statistics that the range rescaled (R) divided by the sample standard deviation

(S) where C is constant and H is Hurst exponent follows as:

( / ) H
sR S Ct (22)

The Hurst exponent (H) follows as:

ln( / ) ln( ) ln( ).sR S C H s  when 1 2, ,...,s t t T (23)

The value of Hurst exponent (H) shows the different features that if H value is 0.5

means the Standard Brown Motion. If H value is ( 0 0.5H  ) means Fractal Brown

Motion. If H value is ( 0.5 1H  ) means the process has long term memory and non-

period cycle.

4 Svetlana Danilenko. (2009). Long-Term Memory effect in stock prices analysis. Economics
and Management, 14. ISSN. 1822-6515.
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2.   Modified R/S Test 5

Lo (1991) modified the classical R/S statistic which was proposed by Hurst

(1951). Lo was showed that its statistical behavior is invariant over a general class of

short memory processes, but deviates for long memory ones.

As a result, Lo modified the classical R/S method, mainly according to
0.5

2

1

1 ( )
k

T t
t

s x x
T 

    
 and the modified function is

1

1( / )
( )

A
n

s
n n

R
R S

A q
 

where
11 1 1

{max ( ) min ( )}
i i

n t ti ni n t t
R x x x x

  
 

     when 1, 2,....,t T

The modified R/S statistic is defined as:

11 1 1

1 max ( ) min ( )
ˆ ( )

i i

n t ti ni n t tn

Q x x x x
q   

 

      
  (24)

where 2 2

1 1 1

1 2ˆ ( ) ( ) ( ( ) ( )( )
k k T

n t j t i t
t t i t

q x x q x x x x
T T

  
   

       
   (25)

= 2

1
2 ( ( )

k

n j j
t

q  


  (26)

where ( ) 1
1j

iq
q

  


when q T , 2
n and j are the sample variance and

autocovariance of x .

3.   GPH Test 6

Geweke and Porter-Hudak (1983) proposed to use information from the

periodogram to estimate the spectral density at very low frequencies.

The spectral regression follows as:
2

ˆln ( ) ln 2sin( )
2

j
j jI c d e




         
when 1,2,...,j m (27)

5 Huang Fei-xue, Jin Jian-dong and Li Yan-xi (2010). Comparable Analysis of Long-Term
Memory of EUR/USD Based on Non-parametrical Statistics. Management science and engineering,
Vol. 4, No. 3, pp.117-127.

6 Koong, C.S., Tsui, A.K.C., and Chan, W.S. On tests for Long Memory in Pacific Basin Stock
Return. National University of Singapore. pp. 89-94.
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where
1

( 1)

1ˆ ˆ( ) cos( )
2

T

j i j
i T

I i  




 

 
  

 
 is the periodogram at harmonic frequency.

2
j

j
T
  are the Fourier frequencies for 1,2,...,j m with m T and î is the

usual lag- i sample autocovariance. The null hypothesis of no memory, the slope of

the regression d equal zero and the usual t-statistic can be employed to perform the

test.

2.1.6 AR Model 7

The Autoregressive Model (AR model) is the simplest form of ARIMA model

which is the similar to a linear regression model. The model can be follows as

1 1 2 2 ...t t t p t p tY C Y Y Y d          (28)

where C is the constant level, 1tY  , 2tY  , t pY  are part series values (lags), r are

coefficients to be estimated, td is random variable (assumed to be independent and

represent random shocks). If t pY  is the further lag with a nonzero coefficient then AR

model is to be order p (AR (p)).

2.1.7 MA Model 7

The Moving Average Model (MA Model) is an extreme autoregressive model

which is the current observations depends on all past observations. The model can be

follows as
2 3

1 1 2 3 ...t t t t tY Y Y Y d          (if i
i   ) (29)

assume that C is zero without loss of generality
2 3

1 1 2 3 ...t t t t td Y Y Y Y         (30)

Multiply the expression for 1td  by 

2 3
1 1 1 2 3 ...t t t td Y Y Y          (31)

so by subtraction

1t t td d Y   (32)

7 Box-Jenkins Time Series Analysis. pp. 469-471. Available: http://www.statistical-solutions-
software.com/BMDP-documents/BMDP-2T.pdf
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This equation shows that tY is a linear function of all the past lags is equivalent to tY as

only a few past shocks of linear function. The MA model of order q or MA(q) can be

written as

1 1 2 2t t t t q t qY d d d Y        (33)

2.1.8 ARMA Model 7

The ARMA model combined from the AR and MA models for stationary

series for both past values and past shocks which the model can called ARMA (p, q)

model with p order AR terms and q order MA terms. The model can be follows as

1 1 2 2 1 1 2 2t t t p t p t t t q t qY C Y Y Y d d d Y                  (34)

where p is coefficient of t pY 

2.1.9 ARIMA Model 7

The autoregressive integrated moving-average (ARIMA) model is reference

by Box and Jenkins (1976). The order of an ARIMA model is usually denoted by the

notation ARIMA (p, d, q), where p is the order of the autoregressive part, d is the

order of the differencing and q is the order of the moving-average process.

The ARIMA (p, d, q) has the general multiplicative seasonal form as:

( ) ( ) (1 )(1 ) ( ) ( )s s d s
t tZ d            (35)

where 1( ) (1 ... )p
p         is non-seasonal autoregressive operator

1( ) (1 ... )s s Ps
P         is the seasonal autoregressive operator of order p

1( ) (1 ... )s s Qs
Q         is the seasonal moving average operator of order q

1( ) (1 ... )q
q         is non-seasonal moving average operator

(1 )(1 )s d   is seasonal differencing and non-seasonal differencing of

order d

 is the backshift operator that 1( )t tY Y  .
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2.1.10 ARFIMA Model 8

The autoregressive fractionally integrated moving-average (ARFIMA) model

was proposed by Granger and Joyeux (1980) and Hosking (1981) proposed the

processes are capable long term persistence of model.

The model can be written the general form as:

( )(1 ) ( )d
p t q tY         (36)

Where d is the fractional difference parameter,  is the backshift operator that

1( )t tY Y  , (1 )d is differencing operator of order d,  is constant term, ( )p  is

the autoregressive operator of order p, ( )q  is the moving average operator of order

q, t is error term. When 0 0.5d  means that the process is long memory. For

0.5 0d   the process is called intermediate memory. The process exhibits

nonstationary if 0.5 1d  . A series exhibits a stationary and invertible ARMA

process with geometrically bounded autocorrelations if 0.5 0.5d   .

2.1.11 ARFIMAX Model9

Ebens (1999) proposed the ARFIMAX model and estimated the realized

volatilities of Dow Jones Industrial Average (DJIA) portfolio using this model. His

original model is as follow,

2
0 1 1 2 1(1 ) (1 ( )) ln( ) (1 ( ))d

p t t t p tL L h r I r I L      
        (37)

where t ~ 2. . . (0, )i i d N  , L is the back shift operator,
1

( )
p

i
q i

i
L L 



 and

1
( )

q
i

q i
i

L L 


 . Realized volatilities are denoted by 2
th , the indicator ( )I I  takes

value of one when return 1 10( 0)t tr r   and is zero otherwise. This model was

8Olanrewaju. I. Shittu and Olaoluwa Simon Yaya. (2009) Measuring Forecast Performance of
ARMA and ARFIMA Models: An Application to US Dollar/UK Pound Foreign Exchange Rate.
Department of Statistics, University of Ibadan Nigeria. European Journal of Scientific Research, ISSN
1450-216X Vol.32 No.2 (2009), pp.167-176

9 Jia Geng. (2009) Two Essays on Financial Econometrics. The Graduate School of Clemson
University. pp. 20-23.
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generated based on the classical ARMA (p, q) model where the ARMA coefficients

are 0 , ( )pL and ( )pL . The new items in the model are a fractional integration

parameter (d) to capture the slow hyperbolic decay in the sample autocorrelation

function; lagged negative ( 1 ) and positive ( 2 ) returns to capture the leverage effect

in the distribution of 2ln( )th .

Jia Geng (2009) modified ARFIMAX model which is given below,

2
1 1 2 1(1 ) (1 ( ))(ln ) (1 ( ))d

p t t t p tL L h K k r I k r I L   
        (38)

Compare a model with the original ARFIMAX model. The general form of

modified model can be written as:

(1 ) (1 ( ))( ) (1 ( ))d
p p tL L y XB L       (39)

Ebens (1999) used conditional sum-of-squares maximum likelihood (SSML)

estimator (advocated by Hosking 1984) to estimate the coefficients of the model. Jia

Geng (2009) use modified profile likelihood method (MPL) to estimate the model.

Bloomfield (1993), and Doornik and Ooms (1999) proved, based on Monte Carlo

simulation, that MPL will eliminate the negative bias commonly found in SSML.

The likelihood function follows as:

2 ' 11 1log ( , , , , ) log(2 ) log log
2 2 2
TL d z z           (40)

where z y XB  ,  is the auto covariance matrix of '
1( ,..., )Ty y y . The auto

correlation matrix 2

1

z

R


 , then rewrite (40) into

2 ' 1
2

1 1log ( , , , ) log(2 ) log log ( )
2 2 2 2
T TL d R z R z



    


     (41)

Take the derivative of (41) with respect to 2
 and let it equal to zero, then

1 ' 11log ( , , , ) log(2 ) log log( )
2 2 2 2
T T TL d R T z R z          (42)
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Take the derivative with respect to  and get,

1 ' 11 ˆ ˆlog ( , , ) log(2 ) log log( )
2 2 2 2
T T TL d R T z R z         (43)

Then modified profile likelihood for ARFIMAX (p, d, q) as follows equation

1 ' 1 '1 1 2 1ˆ ˆlog ( , , ) (1 log(2 )) ( ) log log( ) log
2 2 2 2
T T kL d R T z R z X RX

T
     

       (44)

where k is the degree of freedom

Cheung and Diebold (1994) found that most of the errors in fractional-

integrated estimation are from the mean. If the sample is not very large, we can use

the average of the sample to replace the mean in the likelihood function and get a

better estimation. Following this approach:

2
1 1ˆ(1 ) (1 ( ))(ln ) (1 ( ))d

p t t p tL L h k r I L   
      (45)

where ̂ is the average of 2ln th

Ebens (1999) only estimated the ARFIMAX model without autoregression

term, or FIMAX model. Jia Geng (2009) estimate model using the likelihood

function. ARFIMAX (1,d,1,X) is the full model where “1” is the first order

autoregression term, “d” is the fractional integration parameter, “1” is the first order

moving average term, and “X” means there are exogenous variables in the model.

2.1.12 ARCH Model 10

The autoregressive conditional heteroscedastic model were introduced by

Engle (1982). The model designed to capture the volatility of financial returns.

The model can be written as:
2 2 2 2

0 1 1 1 2 1...t t t t p              (46)

or 2 2
0

1

p

t i t i
i

    


  where 0 0  and 0i  , 0i  (47)

10 The free encyclopedia. (2011), ARCH Model Available:
http://en.wikipedia.org/wiki/Autoregressive_conditional_heteroskedasticity
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2.1.13 ARFIMAX-GARCH Model 11

The univariate GARCH specification allows to define dynamics for the

conditional mean from the general ARFIMAX model with the addition of ARCH-in-

mean effects introduced in Engle (1987). The ARFIMAX-ARCH-in-mean

specification may be formally defined as,

( )(1 ) ( ) ( )d
t t tL L y L      when t ~ 2. . . (0, )i i d N  (48)

with the left hand side denoting the Fractional AR specification on the demeaned data

and the left hand side the MA specification on the residuals. ( )L is the lag operator,

(1 )dL is the long memory fractional process with 0 1d  , and equivalent to the

Hurst Exponent 0.5H  , and t defined as,

,
1

m
k

t i i t t
i

x   


   (49)

where we allow for m external regressors x and ARCH-in-mean on either the

conditional standard deviation, k = 1 or conditional variance k = 2.

The standard GARCH model 11

The standard GARCH model (Bollerslev (1986)) can be written as:

2 2 2

1 1 1

p qm

t j jt j t j j t j
j j j

        
  

 
    
 
   (50)

with 2
t denoting the conditional variance, ω the intercept and 2

t the residuals from

the mean filtration process discussed previously. The GARCH order is defined by

( , )p q , with possibly m external regressors j which are passed pre-lagged. If

variance targeting is used, then ω is replaced by,

2 ˆ(1 )P  (51)

11 Alexios Ghalanos. (2011) A package for flexible GARCH modelling in R. Introduction to the
rugarch package. pp.3-5.  Available:
http://cran.r-project.org/web/packages/rugarch/vignettes/Introduction_to_the_rugarch_package.pdf
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where 2 is the unconditional variance of 2 which is consistently estimated by its

sample counterpart at every iteration of the solver following the mean equation

filtration, and j represents the sample mean of the thj external regressors in the

variance equation (assuming its stationarity), and P̂ is the persistence and defined

below. One of the key features of the observed behavior of financial data which

GARCH models capture is volatility clustering which may be quantified in the

persistence parameter P̂ .

For the GARCH model this may be calculated as,

1 1

ˆ
p q

j j
j j

P  
 

   (52)

Related to this measure is the ’half-life’ (call it 2h l ) defined as the number of days it

takes for half of the expected reversion back towards 2( )E  to occur,

log 2
2 ˆlog

e

e

h l
P


 (53)

Finally, the unconditional variance of the model 2̂ , and related to its persistence, is,

2 ˆˆ
ˆ1 P
 


(54)

where ̂ is the estimated value of the intercept from the GARCH model.

2.1.14 Information Criteria: Akaike Information Criteria (AIC),

Bayesian Information Criterion (BIC) and Hannan-Quinn Information Criterion

(HQC) 12

The Akaike (1974, 1976) and Schwarz (1978) information criteria for

selecting the most parsimonious correct model are respectively.

12 Herman J. Bierens. (2006). Information Criteria and Model Selection. Pennsylvania State
University. Available: http://econ.la.psu.edu/~hbierens/INFORMATIONCRIT.PDF.
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Akaike:
2 ln( ( )) 2( ) n

n
L k kc k

n n
 
  (55)

Hannan-Quinn:
2 ln( ( )) 2 ln(ln( )( ) n

n
L k k nc k

n n
  
  (56)

Schwarz:
2 ln( ( )) ln( )( ) n

n
L k k nc k

n n
  
  (57)

where ( )nL k = the maximized value of the likelihood function for the

estimated model.

k = number of parameters used.

n = the sample size.

Since the Schwarz information criterion is derived using Bayesian arguments,

this criterion is also known as the Bayesian Information Criterion (BIC).

These criteria take the general form as:

2 ln( ( )) ( )( ) n
n

L k k nc k
n n

  
  (58)

where ( )n =2 in the Akaike case and ( ) ln( )n n  in the Schwarz case. Using these

criteria, the model is selected that corresponds to ˆ arg min ( )k m nk c k

2.1.15 The Mean Absolute Error (MAE) 13

The Mean Absolute Error (MAE) is a quantity used to measure how close

forecasts or predictions are to the eventual outcomes. In form of the mean absolute

error (MAE) follows as:

1 1

1 1n n

i i i
i i

MAE f y e
n n 

    (59)

13The free encyclopedia. (2011). The Mean Absolute Error (MAE).
Available: http://en.wikipedia.org/wiki/Mean_absolute_error.
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As the name suggests, the mean absolute error is an average of the absolute

errors i i ie f y  , where if is the prediction and iy is the true value. The alternative

formulations may include relative frequencies as weight factors.

2.1.16 The Mean Absolute Percentage Error (MAPE) 14

The Mean Absolute Error (MAE) is measure of accuracy in a fitted time series

value in statistics. It usually has been expressed accuracy by a percentage and the

formula of MAPE follows as:

1

1 n
t t

t t

A F
MAPE

n A


  (60)

where tA = the actual value

tF = the forecast value

Rule of the mean absolute percentage error (MAPE) can interpretation follow as:

- If the MAPE value is less than 10%, it is highly accurate forecast.

- If the MAPE value is between 10% to 20%, it is good forecast.

- If the MAPE value is between 20% to 50%, it is reasonable forecast.

- If the MAPE value is greater than 50%, it is inaccurate forecast.

2.1.17 The Root Mean Squared Error (RMSE) 15

The Root Mean Squared Error (RMSE) is a frequently used measure of the

differences between values predicted by a model and the values actually observed.

The formula of RMSE follows as:

2

1

ˆ( )n
t t

t

y y
RMSE

n


  (61)

where ty = the actual value

ˆty = the forecast value

14The free encyclopedia. (2011). The Mean Absolute Percentage Error (MAPE).
Available: http://en.wikipedia.org/wiki/Mean_absolute_percentage_error.

15The free encyclopedia. (2011). The Root Mean Squared Error (RMSE).
Available: http://en.wikipedia.org/wiki/Root-mean-square_deviation#Normalized_root-mean-
square_deviation.
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2.2   Literature review

Literature review about gold

Narisa Samutsakhon (2004) was studied how to forecast the gold price. The

data used the selling price of gold bars and ornamental gold based on 120 monthly

from 1994 to 2003. The model is ARIMA model using Box-Jenkins follow as 4 step

that identification, parameter estimation, diagnostics checking and forecasting.

The result of the study found that the AR(2), MA(2), MA(5) have lowest

value of root mean square error and Theil’s inequality coefficient so it can be the best

model to forecast the price of gold bars and ornamental gold. For the value of root

mean square error of the AR(2), MA(2), MA(5) is 0.020343 and Theil’s inequality

coefficient of the AR(2), MA(2), MA(5) is 0.001139. For monthly prices of gold bars

from January to April 2004 using the AR(2), MA(2), MA(5) model be 7,692.72,

7,715.80, 7,755.11 and 7,761.17 baht per Thai gold weight unit. For monthly prices of

ornamental gold at the same period using the AR(2), MA(2), MA(5) model be

7,871.89, 7,893.76, 7,915.98 and 7,917.87 baht per Thai gold weight unit.

Nuchsara Gaysornpratoom (2007), this study forecasts the gold price using

Neural Networks Model compare with ARIMA and GARCH – M Models. The data

used the daily gold bars from January 2, 2004 to March 28, 2006 totally 550

observations.

The results of the study found that the best model for forecasting the gold

price by using ARIMA that be ARIMA (6, 2, 0) which means absolute percentage

error is 0.66. For the best GARCH-M that be GARCH-M (1, 3) which means absolute

percentage error is 0.76. For forecasting the gold price on the Neural Networks model

which yielded the lowest mean absolute percentage error of 2.05. This study

concludes that the model for forecasting the gold price upon the value of mean

absolute percentage error so ARIMA model is the best model because it used the error

term to explain variable.

Kanokwan Kampiew (2010), the aims of this study is to examine the

relationship between world’s gold spot price and the U.S. exchange rate using

cointegration. The data used daily data of world’s gold spot price, the U.S. exchange
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rate against the Euro and the U.S. exchange rate against Yen from 4th January 1999 to

11th May 2010 totally 2,937 observations. The model was used cointegration method.

The results of this study for ADF-test found that the world’s gold spot price,

the U.S. exchange rate against the Euro and the U.S. exchange rate against Yen has

unit root with an I(1) process. For the cointegration test and the error correction

mechanism that world’s gold spot price, the U.S. exchange rate against the Euro and

the U.S. exchange rate against Yen has relationship in the short run and the long run.

For the result of Granger Causality test that the U.S. exchange rate against the Euro

has a relationship in the form of bi-directional but in case of the U.S. exchange rate

against Yen has a relationship in form of one directional.

Literature review about Stock

Pierre Giot and S´ebastien Laurent (2001), this study is how to compute a

daily VaR measure for two stock indexes. The data used the French CAC40 stock

index for the period from 1995 to 1999, totally 1249 daily observations and the SP500

futures contracts on the Chicago Mercantile Exchange for the period from January

1989 to December 2000, totally 3241 daily observations using the one-day-ahead

forecast of the daily realized volatility. The model used the skewed Student APARCH

model for daily data and ARFIMAX model.

The result of the study found that all the P-value of the CAC40 data are larger

than 0.05 for both for long and short VaR. For all the P-value of the SP500 data are

larger than 0.05 except short VaR at level 1%  and 0.25%  . However, VaR

based on ARFIMAX (0, ,1)d -skewed student model for daily realized volatility

provides adequate one-day-ahead VaR forecast.

Adnan Kasman and Erdost Torun (2007), this paper examines the Long

Memory in the Turkish stock market return and volatility using the ARFIMA-

FIGARCH model. The data are daily returns of Istanbul Stock Exchange (ISE) for the

period 1988 to 2007.

The results show that the ARFIMA-FIGARCH model has long memory in

return series. The long memory in the Turkish stock returns implies that the stock

prices consist of the shocks in the past. However, the evidence of long memory in
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volatility shows that risk is an important determinant of the behavior for the stock data

in the Turkish stock market.

Hussein Ali Al-Zeaud (2011), the aim of this study was to predict the

volatility for banks sector using Autoregressive Integrated Moving Average (ARIMA)

models. The data is the Amman Stock Exchange (ASE) in the period from 1/1/2005 to

1/4/2010.

The results of the study shows that the financial time series on some period

had high fluctuations of the banks sector because the affect from the decision makers

in the investment portfolios, asset allocation decisions, risk management conditions,

selling or buying in the financial markets, information available to the investors. In

this test the best model from ARIMA test was chosen based on the value of MSE that

the best model for banks sector is ARIMA (2, 0, 2) because this model gives the

minimum mean square error which is 0.0001003.

Pattararat Puapanpattana (2011), the aims of this study was to forecast the

rate of return on the Stock Exchange of Thailand using the ARFIMAX method. The

data was used from the closing prices of five stocks such as PTT, PTTEP, SCC,

KBANK and CRALL based on daily data and covering the period from June 1, 2009

to May 30, 2010 totally 225 days. This study used the unit root test such as ADF test

and PP test, the result shows that the data has stationary at I(0). For Long Memory

Test by using R/S test, modified R/S test and GPH test, the result shows that the rate

of return on stock has long memory.

The results of the study found that the best model for forecasting the rate of

return on the PTT stock is ARFIMAX (0, -0.150750, 0, 3.64425, 5.68629, 5.51736),

for the rate of return on the PTTEP stock is ARFIMAX (0, -0.165075, 0, 2.74490,

2.16771, 1.32123), for the rate of return on the SCC stock is ARFIMAX (1,-0.230285,

0, 3.53497, 4.58694, 1.07939), for the rate of return on the KBANK stock is

ARFIMAX (0, -0.0270916, 0, 5.11903, -7.24994, -1.55422) and the rate of return on

the CPALL stock is ARFIMAX (0, -0.0207286, 0, -0.0106983, 0.391607,

0.000135854). However, the MAPE value for the rate of return from the data has

accurate result.
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Literature review about exchange rate

Abdol S. Soofi, Shouyang Wang and Yuqin Zhang (2006), this paper tested

long memory in the Asian Foreign Exchange Rates. The data used was 12 Asian daily

dollar exchange rates series such as Chinese Renminbi (CNY), Hong Kong Dollar

(HKD), Indonesia Rupiah (IDR), Indian Rupees (INR), Japanese Yen (JPY), South

Korean Won (KRW), Malaysian Ringgit (MYR), Philippines Pesos (PHP), Pakistani

Rupees (PKR), Singapore Dollar (SGD), Thai Baht (THB) and Taiwan Dollar

(TWD). The method for this research based on long memory method such as rescaled

range analysis (R/S analysis), the GPH analysis and the Whittle method.

The results of this study found that the first difference of log of the remminbi

per dollar exchange rate series at the level has unit root and follow a random walk

process. For the log of the return in Korean won is A=0.20 and Singapore dollar is

A=0.20, 0.25 that the confidence interval contains zero. For the log of the return in

Malaysian ringgit is A=0.25, 0.30 that the confidence interval does not contain zero.

However, Japanese yen and Malaysian ringgit found that the evidence of long

memory and the return of the other series cannot reject the hypothesis because they

are generated from short memory.

Huang Fei-Xue, Jin Jian-dong and Li Yan-Xi (2010), this study was a

comparable analysis of Long-Term Memory of EUR/USD based on non-parametrical

statistics. The data used daily exchange closing price series of EUR to USD and

covers from 4th January 1999 to 29th November 2008. This research based on long

memory methods such as classical R/S method, modified R/S method and V/S

method and takes the method of non-parametrical statistics.

The results of this study found that the histogram test on distribution of returns

between EUR and USD shows the skewness is not 0 and kurtosis is large than 3. For

Jarque-Bera (JB) test is the null hypothesis of normal distribution has rejected because

the value of JB test is larger than threshold value at 1% and 5%. For the result of the

classical R/S test that H value is 0.6124, the recycle length is 160 days and the

correlation scale is 1.3432. For the result of the modified R/S test and classical R/S

test that V has 2% bias statistics. This study concludes that the daily return rate of

EUR/USD has long memory.
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Literature review about ARFIMAX model

Chin Wen Cheong (2007), this study proposed to combine a few long

memory models in a financial market volatility model using daily, range and high

frequency data. The data used the Kuala Lumpur stock exchange (KLSE) index for

the period from 1st January 2003 to 15th January 2006 totally 745 and 266710

observations. The model used in combination with ARFIMAX, HAR and ARCH-type

generalized models.

The result of the study found that the HARFIMAX-GARCH has the highest

log-likelihood value that it is -104.78 and the AIC value is 0.3491 to compare with

others. The BIC value of the HARFIMAX-GARCH is 0.4299 that it is suffered

greater in comparison with the others. For AR-GARCH and ARFIMA-FIGARCH

shows similar results in log-likelihood value. In the ARCH-type model shows the

smallest results that MSE is 0.0072, ME is -0.0017 and MAE is 0.0658. However, the

ARCH-type model cannot be used to predict future volatility.

Stavros Degiannakis (2008), this study was applied in estimating and

forecasting the intra-day realized volatility using ARFIMAX and ARFIMAX-TARCH

model. The data is CAC40 and DAX30 for the period from July 1995 to December

2003.

The results of the study found that the in-sample evaluation for the ARFIMAX

(1, ,1)d -TARCH (1, 1) model was estimated CAC40 is 1.411473 and DAX30 is

1.291441 that achieves the minimize value of Schwarz’s Bayesian Criterion (SBC).

The Mean Square error (MSE) for CAC40 is 28.032 and DAX30 is 7.329 that the

ARFIMAX (1, ,1)d -TARCH (1, 1) model has lowest value. For out-of-sample

evaluation, the ARFIMAX (1, ,0)d -TARCH (1, 1) model in case of DAX30 is

superior to the ARFIMAX (2, , 2)d model. In case of CAC40, the ARFIMAX (1, , 2)d

-TARCH (2, 1) model does not achieve the lowest value in the predicted mean

squared error loss function. However, case of the in-sample evaluation that the

ARFIMAX-TARCH is superior to the ARFIMAX and for DAX30, in case of the out-

of-sample evaluation that the ARFIMAX-TARCH is superior to the ARFIMAX.



31

Toshiaki Watanabe, Masato Ubukata (2009), this research analyzed daily

realized volatility and ARCH Type model. The data was chosen that the Nikkei 225

stock index options and the period from May 29, 1996 to September 27, 2007. The

model has been used to estimate that the ARFIMA(X) model, ARCH model and find

the performance of option pricing that used the MAE (Mean Absolute Error), RMSE

(root mean square error), MAPE (Mean Absolute Percentage Error) and RMSPE

(Root Mean Square Percentage Error).

The results of the study found that GARCH or EGARCH model perform best

in DITM (deep-in-the-money). For ARFIMAX model performs best for the root mean

square percentage error and the mean absolute percentage error in DOTM (deep-out-

of-the-money). For OTM (out-of-the-money) that the ARFIMAX model performs

best for the root mean square error. For ATM (at-the-money) and ITM (in-the-money)

that the ARFIMAX model performs best no matter which loss function is used.

However, the ARFIMAX model performs best with daily realized volatility.


