
CHAPTER 2 

LITERATURE REVIEW AND THEORETICAL BACKGROUND 

 

2.1 Theoretical Background 

 2.1.1 Value at Risk       

 There are numerous characters of risk in financial markets. The three main 

categories of financial risk are credit risk, operational risk, and market risk. Value at 

Risk (VaR) is primarily concerned with market risk. The concept is also applicable to 

other forms of risk. Var is a single estimate of the amount by which an institution’s 

perspective in a risk category could decline due to general market movement during a 

given holding period. Duffie and Pan (1997) and Jorion (1997) explained a general 

exposition of Var, the measure can be used by financial institutions to assess their risk 

or by regulatory committee to determine margin requirements. In either case, VaR is 

used to check the financial institution, which can still be business after catastrophic 

depression. From the outlook of a financial institution, VaR can be defined as the 

maximum loss of a financial view during the given time period for a given 

probability. In this outlook, one processes VaR as a measure of loss associated with a 

rare (or extraordinary) event under normal market conditions. Alternatively, from the 

perspective of a regulatory committee, VaR can be defined as minimum loss under 

extraordinary market events. The definition of both will result to same VaR measure, 

even though the concepts appear to be different.
 

 
In what follows, definition VaR under a probabilistic framework supposes that 

at the time index t . we are interested in the risk of financial position for the next 

periods. Let  V be the change in value of the assets in the financial position for 

time t  to t  . The quantity is measured in dollars and is a random variable at the 

time index t . Denote the cumulative distribution function (CDF) of  V by  F x . 

We define the VaR of a long position over the time horizon  with probability p as
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 Pr ( )p V VaR F VaR                   (2.1)   

 

 
Since the holder of a long financial position sustain a loss when   0V  . 

The VaR defined in (2.1) essentially assumes a negative value when p is small. The 

negative sign signifies a loss. From the definition, the probability that the holder 

would run into a loss greater than or equal to VaR over the time horizon  is p . 

Alternatively, VaR can be explained as follows. With probability (1 ),p the potential 

loss run into by the holder position over the time horizon  is less than or equal to 

VaR. 

 
The holder of a short position sustains a loss when the value of the asset 

increases. The VaR is then defined as
 

       Pr 1 Pr 1p V VaR V VaR F VaR                       (2.2)
 

for a small ,p  the VaR of a short position essentially assume a positive value. The 

positive sign signifies a loss. 

 The previous definition prove that VaR is concerned with tail behavior of the 

CDF  F x . For the long position, the left tail of  F x  is important. Thus far a short 

position focused on the right tail of  F x . Notice that the definition of VaR in (2.1) 

proceeds to apply to a short position if one uses the distribution of  V . 

Therefore, it suffices to discuss methods of VaR calculation using the long position. 

 For any univariate CDF  F x  and probability ,p such that 0 1,p  the 

quantity 

     inf |px x F x p                   (2.3) 

is called the thp  quantile of   ,F x where inf denotes the smallest real number 

satisfying   .F x p  If the CDF  F x  of (2.1) is known, the VaR is simply its thp

quantile (i.e., pVaR x ). The CDF is unknown in practice, however. Learning of VaR 

are fundamentally concerned with estimation of the CDF and/or its quantile, 

particularly the tail behavior of the CDF.  
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In practical applications, calculation of VaR implies several factors: 

 1. The probability of interest ( p ), such as 0.01p   

 2. The time horizon ( ), It might be set by a regulatory committee. 

3. The frequency of the data, which might not be the same as the time horizon 

( ). Daily observations are often used. 

 4. The CDF  F x or its quantile. 

5. The amount of the financial position or the mark-to-market value of the    

portfolio.       

 

2.1.2 Extreme Value 

 2.1.2.1 Classical Extreme Value Theory and Models 

 1. Asymptotic Model Formulation  

 In this section we want to study the distribution function of 

     1max ,..., ,n nM X X  

where 1,..., ,nX X are independent random variables having a common distribution 

function F. So nM represents the maximum of n observations. 

 The theoretical distribution of nM  can be calculated as follows: 

     Pr nM z   1Pr ,..., nX z X z    

         1Pr ... nX z P X z      

        
n

F z              (2.4) 

However this is not always very useful, as often the distribution function F is 

unknown. A possibility would be to estimate F with standard statistical techniques 

and to substitute into (2.4). But small discrepancies for F lead to bigger ones for nF . 

 Therefore we use an approach to directly estimate nF . We look at the 

behavior of nF  as n . We remark that for any z z , where z  is the smallest 

value of z such that   1,F z  ( ) 0nF z   as n , so that the distribution of nM  

degenerates to a point mass on z . This can be avoided by making a linear 

renormalization of the variable nM : 
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    * n n
n

n

M b
M

a


  

for constants  0na  and  nb , which chosen appropriately stabilize the location and 

scale of *

nM as n increases. 

  

 2. Extreme Types Theorem 

 If there is exist sequences of constants  0na  and  nb such that2 

    Pr ( )n n

n

M b
z G z

a

 
  

 
, as n  

where G is a non-degenerate distribution function, then G belongs to one of the 

following families: 

 I:  G z    exp exp ,   ;
z b

G z z
a

    
         

   
  

 II:   

0,                              

exp ,    

z b

G z z b
z b

a






     
   
   

 

 III:   
exp ,  

1,                                 

z b
z b

G z a

z b

      
            




 

for parameters 0na  , b and, in the case of families II and III, 0  . 

 The distribution families in Extreme Types Theorem are called the extreme 

value distributions, with types I, II and III known as the Gumbel, Fréchet and Weibull 

families respectively. 

 This theorem implies that, if nM  can be stabilized, then the normalized 

variable *

nM  has a limiting distribution that is one of the three types of extreme value 

distribution. 

 

 

                                                           
2
 R. A. Fisher and L. H. C. Tippett, Limiting forms of the frequency distribution of the largest and 

smallest member of a sample, Proc. Cambridge Phil. Soc., 1928. 
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 3. The Generalized Extreme Value Distribution 

 There is one problem with Extreme Types Theorem; the three types of limits 

have distinct forms of behavior. So there is a technique required to choose the most 

appropriate one of three families and subsequent inferences presume this choice to be 

correct. 

 The extreme types theorem can be reformulated, using only one family of 

distributions, which is called the generalized extreme value (GEV) family of 

distributions: 

 

If there exist sequences of constants  0na  and  nb  such that   

   Pr ( )n n

n

M b
z G z

a

 
  

 
, as n              (2.5) 

for a non-degenerate distribution function G, then G is a member of the GEV family 

   

 

1

exp 1
z

G z





     
     

    

             (2.6) 

defined on   :1 0 ,z z      where   , 0,   and    . 

 The apparent difficulty to know the normalizing constants can be resolved by 

assuming the hypothesis in (2.5), 

   Pr ( )n n

n

M b
z G z

a

 
  

 
 

for large enough n. Equivalently, 

    Pr nM z  n n

n

M b

a

 
  
 

 

     *( )G z  

where *G is another member of the GEV family. So if we can approximate the 

distribution of *

nM  by a member of the GEV family for large n, the distribution of nM  

can also be approximated by a different member of this family. 
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Quantiles of the GEV distribution can be obtained by inverting (2.6): 

   

  

  

1 log 1 ,  for 0

log log 1 ,         for 0
p

p
z

p


 



  

         
    

           (2.7) 

where      1pG z p   

 

The definition of the extreme quantile  1 1pz G p  where G is the distribution 

function of nM , is called the return level associated with the return period, 1 .p  

 This terminology is due to the fact, that the level 
pz  is expected to be 

exceeded on average once every 1 p years, if our data consists of annual maxima. 

 

 4. Asymptotic Models for Minima 

 Sometimes we need models for extremely small instead of extremely large 

observations. Results for the GEV distribution for minima are analogues to those 

obtained above. So if  1min ,..., ,n nM X X we can reformulate (2.5) as follows: 

 

If there exist sequences of constants  0na  and  nb such that2 

   Pr ( )
n n

n

M b
z G z

a

  
  

  
, as n  

for a non-degenerate distribution function G , then G  is a member of the GEV family 

of distributions for minima: 

   

 

1

exp 1
z

G z







    
     

     

 

defined on   :1 0 ,z z      where    , 0,   and    . 
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Proof. Let 
i iY X   for 1,..., ,i n  so if  1min ,...,n nM X X  and then n nM M  .  

Hence, for large n we have: 

    Pr nM z  Pr nM z    

      Pr nM z    

     

1

1 exp 1
z 




      
      

    

 

     

1

1 exp 1
z







     
      

     

 

on   :1 0 ,z z      where     

 

 5. Maximum Likelihood Estimation 

 Under the assumption that 1,..., mZ Z are independent variables having the GEV 

distribution, the log-likelihood for the GEV parameters when 0  is 

   

   
1

1

1

1
, , log 1 log 1

                   1

m
i

i

m
i

i

z
m

z 


    

 












     
        

    

   
    

  





 

provided that  1 0,   for 1,...,iz
i m






 
   

 
             (2.8) 

 If the inequality above is violated, it corresponds to a configuration where at 

least one of the observed data falls beyond an end-point of the distribution, then the 

likelihood is zero and the log-likelihood equals  . 

 The case 0   has to be treated separately using the Gumbel limit of the GEV 

distribution. 

 

When 0  the log-likelihood becomes 

    
1 1

, , log 1 exp .
m m

i i

i i

z z
m

 
    

  

        
          

      
 

           

(2.9) 
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 Maximization of (2.8) and (2.9) leads to the maximum likelihood estimate 

with respect to the entire GEV family. There is no analytical solution, but for any 

given dataset maximization can be easily done using standard numerical optimization 

algorithms. However some care is needed to ensure that such algorithms do not move 

to parameter combinations violating (2.8) and that numerical difficulties would not 

arise from 0  . The second problem is easily solved using (2.9) instead of (2.8) for 

values   falling within a small window around zero. 

 

 6. Profile Likelihood 

 Numerical evaluation of the profile likelihood for any of the individual 

parameters ,  or    is quite easy. For example, to obtain the profile likelihood for  , 

we fix 0  and maximize the log-likelihood with respect to the others parameters,   

and  . We repeat this operation for several 0 . The corresponding maximized values 

of the log-likelihood constitute the profile log-likelihood for  . 

 This can be applied for any return level zp as well. It requires a 

reparameterization of the GEV model, so that zp is one of the model parameters. Then 

like before we obtain the profile log-likelihood by maximization with respect to the 

remaining parameters. The reparameterization is straightforward: 

     1 log 1pz p





     
 

 

with this reparameterization the GEV model is now expressed in terms of the 

parameters  , , .pz    

 

 2.1.2.2 Threshold Model  

 1 Generalized Pareto Distribution 

 The models seen in previous chapters have some weaknesses. Modelings only 

block maxima as in part 2.1.2 that is a wasteful approach if other data on extremes are 

available. The r largest order statistic model is better but sometimes it is useful to 

avoid the procedure of blocking. 
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 Let ... ,X ,X 21 be a sequence of independent and identically distributed random 

variables, having marginal distribution function F. It is natural to regard as extreme 

events those of the iX  that exceed some high threshold u . The main result is 

contained in the following theorem. 

 

Given ... ,X ,X 21  be a sequence of independent random variables with common 

distribution F, and let3 

   
 nn XXM ,...,max 1              (2.10) 

Denote an arbitrary term in the  iX  sequence by X, and suppose that F satisfies, so 

that for large n,    zGzMn Pr              (2.11) 

where     



























 


 






1

1exp
z

zG  

for some , 0    and  . Then, for large enough u, the distribution function of 

  ,X u  conditional on ,X u is approximately 

   

 





1

~11













y
yH              (2.12)

 

defined on  0: yy  and   0~1  y , where 

      u~ .

 
 The family of distributions defined by Equation (2.12) is called the 

generalized Pareto family. The theorem above says that if block maxima follow a 

distribution G, then threshold excesses have a corresponding approximate distribution 

within the Pareto family. Moreover the parameters of the generalized Pareto 

distribution (GPD) are uniquely determined by those of the associated GEV 

distribution. We see that changing the block size n would affect the values of the GEV 

parameters, but not those of the corresponding GPD. 

 The duality between the GEV and generalized Pareto families means that the 

shape parameter   is dominant in determining the qualitative behavior of the GPD, 

just as it is for the GEV distribution. 

                                                           
3
 A. C. Davison and R. L. Smith, Models for Exceedances over High Thresholds, Vol. 52, Journal of 

the Royal Statistical Society, Series B (Methodological), 1990. 
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 If 0   the distribution of excesses has an upper bound of .u    

 If 0   the distribution has no upper limit. 

 If 0   the distribution is also unbounded, which should again be interpreted 

by taking the limit 0  in Equation (2.12), leading to 

   

  0,~exp1 







 y

y
yH


            (2.13) 

corresponding to an exponential distribution with parameter 1 .  

 

 2 Threshold Selection 

 The GPD approach contrasts with the block maxima approach tough the 

characterization of an observation as extreme if it exceeds a high threshold. The issue 

of threshold choice is analogous to the choice of block size in the bock maxima 

approach. The lower the threshold the easier the asymptotic model is violated, leading 

to bias. The higher the threshold is the fewer the excesses data available to estimate 

our model, leading to high variance. Usually we adopt the lower threshold as possible, 

subject to the limit model providing a reasonable approximation. Two methods are 

available to find the best threshold. 

 The first method is an exploratory technique carried out prior to model 

estimation, based on the mean of the GPD. When 0   the mean of the GPD is 

   

 







1
YE               (2.14) 

Then we find that starting from a threshold 0u  where the GPD is appropriate the mean 

is a linear function of u for every 0.u u  According to this, the estimates   and   are 

expected to change linearly with u, at levels of u for which the GPD is appropriate. 

This leads to the following procedure. The locus of points 

   

  




















max

1

:
1

, xuux
n

u
un

i

i

u

 

where    unxx ,...,1 consist of the nu observations that exceed u, and maxx is the largest of 

the Xi  that is the mean residual life plot. Above a threshold u0 at which the 

generalized Pareto distribution provides a valid approximation to the excess 
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distribution, the mean residual life plot should be approximately linear in u. 

Confidence intervals can be added to the plot based on the approximate normality of 

sample means. 

 The second procedure for threshold selection is to estimate the model at a 

range of thresholds. This method is described in detail in section "Threshold Choice 

Revisited". 

 

 3 Parameter Estimation 

 When the threshold is determined, the parameter of the GPD can be esti- 

mated by maximum likelihood. Suppose that the values kyy ,...1 are the k excesses of a 

threshold u. For 0  the log-likelihood is derived from (2.12) as 

   

   



k

i

iyk
1

)1log(11log,           (2.15) 

given   01 1  

iy  for 1,..., ;i k  otherwise, ),(  . If 0  the log-

likelihood is obtained from (2.12) as 

   

  



k

i

iyk
1

1log              (2.16) 

 To find these parameters numerical techniques are required as analytical 

maximization is not possible. 

  

 4 Return Levels 

 We have introduced the notion of return levels and return periods for the GEV 

distribution. The same can be done for the generalized Pareto distribution. Suppose 

that the generalized Pareto distribution with parameters  and   is a suitable model 

for exceedances of a threshold, u, by a random variable X. That is, for x >u we have: 

   

 





/1

1Pr


















 


ux
uXxX  

Following that, 

 





/1

1Pr


















 


ux
xX u     
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where  uXu  Pr . So, the return level of xm that is exceeded on average once 

every m observations is the solution of 

   
m

uxm
u

1
1

/1
















 


 


             (2.17) 

By rearranging of the terms we obtain: 

   

  1






um mux                (2.18) 

if m is sufficiently large to be sure that xm>u. For all the equations above we have 

assumed that 0 . If 0  we obtain  um mux  log , sufficiently large. 

 To estimate return levels we substitute  and   by their maximum likelihood 

estimates. For u  we remark that the number of exceedances of u follows the 

binomial Bin  un , distribution, and therefore the maximum likelihood estimate of u

is 
n

k
u ̂  where k is the number of observations exceeding the threshold u. 

 From properties of the binomial distribution we deduce that

    nVar uuu /ˆ1ˆˆ   , so the variance-covariance matrix for  ˆ,ˆ,ˆ
u

 is 

approximately 
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where 
,i jv  denotes the  ,i j term of the variance-covariance matrix of  ˆˆ , .   Hence, 

using the delta method we obtain 

)ˆ( mxVar  VxT

m  mx                         (2.19) 

where 

  T
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 5 Threshold Choice Revisited 

 Sometimes the mean residual life plot can be difficult to interpret as a method 

of threshold selection. Therefore we introduce a complementary technique. 

 By (2.10), if a generalized Pareto distribution is a reasonable model for 

excesses of a threshold 
0u , then excesses of a higher threshold u  also follow a 

generalized Pareto distribution. The parameters , ,  and   coming from the GEV 

distribution G will not change. The only value that will change is the generalized 

Pareto scale parameter ,  which we denote by 
u for a threshold of 0.u u  It follows 

that 

   
 00 uuuu                (2.20) 

By reparametrization of the scale parameter as 

   
uu  *  

we obtain that 
*  is constant with respect to u . So if 

0u  is a valid threshold estimates 

of both 
*  and    should be constant above 

0u . 

 This argument suggests plotting 
*̂  and ̂  plotting against u, and selecting u0 

as the lowest value of u for which the estimates remain near-constant. 

  

 6 Model Checking 

Probability plots, quantile plots, return level plots and density plots are all 

useful for assessing the quality of a fitted generalized Pareto model. Assuming a 

threshold u, threshold excesses    kyy 1 and an estimated model Ĥ , the 

probability plot consists of the pairs 

       kiyHki i ,,1;ˆ),1/(             (2.21) 

where 
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by 0ˆ  . If 0ˆ  , using (2.13) constructs the plot in place of (2.12). Then assumes

0ˆ  again, the quantile plot consists of the pairs  
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   },,1),)),1/((ˆ{( )(

1 kiykiH i             (2.22) 

where 

   

]1[
ˆ

ˆ
)(ˆ ˆ1   




yuyH  

If the generalized Pareto model is reasonable for modeling excesses of u, then both 

the probability and quantile plots should consist of points that are approximately 

linear. 

A return level plot consists of the locus of points {(m, xm)}for large values of 

m, where mx̂ is the estimated m-observation return level:  

  1ˆ
ˆ

ˆ
ˆ

ˆ








um mux             (2.23) 

if 0ˆ  , as with the GEV return level plot, it is usual to plot the return level curve on 

a logarithmic scale to emphasize the effect of extrapolation, and also to add 

confidence bounds and empirical estimates of the return levels. 

Finally, the density function of the fitted generalized Pareto model can be 

compared to a histogram of the threshold excesses (Stuart Coles 2001, p.84-86). 

 

2.2 Literature Review 

2.2.1 Value at Risk   

In term of evaluation in Value at Risk, Jaroslav Baran and Jiří Witzany (2010) 

applied extreme value theory in estimating low quantiles of profit and losses 

distribution and the results are compared to common VaR methodologies. The result 

confirms that EVTGARCH is superior to other methods. Gençay and Selçuk (2004), 

they investigate the extreme value theory to generate Value at Risk to estimate and 

study the tail forecasts of daily returns for stress testing. Then, Bali (2003) studies 

how to estimate volatility and Value at Risk by an Extreme Value Approach and 

determines the type of asymptotic distribution for the extreme changes in U.S. 

Treasury yields. In this paper, the thin-tailed Gumbel and exponential distribution are 

worse than the fat-tailed Fréchet and Pareto distributions.  

 In the analysis of Stelios Bekiros and Dimitris Georgoutsos (2003) conduct a 

comparative evaluation of the predictive performance of various Value-at-Risk (VaR) 
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models. Both estimation techniques are based on limit results for the excess 

distribution over high thresholds and block maxima respectively. The results we 

report reinforce previous ones according to which some “traditional” methods might 

yield similar results at conventional confidence levels but at very high ones the 

extreme value theory methodology produces the most accurate forecasts of extreme 

losses. Moreover, Yasuhiro Yamai and Toshinao Yoshiba (2002) investigate the 

comparison of value-at-risk (VaR) and expected shortfall under market stress. The 

paper found that First, VaR and expected shortfall may underestimate the risk of 

securities with fat-tailed properties and a high potential for large losses. Second, VaR 

and expected shortfall may both disregard the tail dependence of asset returns. Third, 

expected shortfall has less of a problem in disregarding the fat tails and the tail 

dependence than VaR does. 

  

 2.2.2 Extreme Value Theory Approach   

 Extreme value theory is most use in evaluation of Value at Risk in Financial 

market. Martin Odening and Jan Hinrichs4 (2010), who investigate on Using Extreme 

Value Theory to Estimate Value-at-Risk, stated that this article examines problems 

that may occur when conventional Value-at-Risk (VaR) estimators are used to 

quantify market risks in an agricultural context. For example, standard Value at risk 

methods, such as variance-covariance method or historical simulation, can fail when 

the return distribution is fat tailed. This problem is aggravated when long-term Value 

at risk forecasts is desired. Extreme Value Theory is proposed to overcome these 

problems. For a stock market study, Vladimir Djakovic, Goran Andjelic, and Jelena 

Borocki (2010) investigate the performance of extreme value theory (EVT) with the 

daily stock index returns of four different emerging markets. Research results 

according to estimated Generalized Pareto Distribution (GPD) parameters indicate the 

necessity of applying market risk estimation methods and it is clear that emerging 

markets such as those of selected emerging markets have unique characteristics.  

                                                           
4
 Professor of Farm Management and PhD candidate, respectively. Department of Agricultural 

Economics, Humboldt University Berlin, Germany.  
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 In the analysis of gold price return, the study of Jiahn-Bang Jang (2007) has 

been examined to illustrate the main idea of extreme value theory and discuss the tail 

behavior. The results show that GPD model with threshold is a better choice. Also, 

Blake LeBaron and Ritirupa Samanta (2004) investigate that how to apply Extreme 

Value Theory (EVT) to construct statistical tests. The result shows that EVT elegantly 

frames the problem of extreme events in the context of the limiting distributions of 

sample maxima and minima. In financial market study, Neftci (2000) found that the 

extreme distribution theory fit well for the extreme events in financial markets. 

Moreover, Alexander J. McNeil (1999) investigates about Extreme Value Theory for 

Risk Managers. In this paper, the tail of a loss distribution is of interest, whether for 

market, credit, operational or insurance risks, the POT method provides a simple tool 

for estimating measures of tail risk. 

  

 

 

 


