
CHAPTER 3 

METHODOLOGY 

 

3.1 Scope of the Study and Data Collection 

This study uses daily MSCI Emerging Market Index in Asia; China, India, 

Indonesia, Malaysia, Philippines, South Korea, Singapore, Taiwan, and Thailand over 

the period of January 1, 2001 through December 31, 2011. The paper is considered to 

estimate Value at Risk (VaR) using an Extreme Value Theory applied in modeling 

extremes : Block maxima models modeled by the generalized extreme value (GEV) 

distribution; threshold models realized large values over some high threshold, which 

can be simulated by the generalized pareto distribution (GPD). 

 

3.2 Research Methodology / Data Analyzing Method 

This paper is used extreme value theory and statistical approaches. Extreme 

value theory relates to the asymptotic behavior of extreme observations of a random 

variable. It provides the fundamentals for the statistical modeling of rare events, and 

is used to compute tail risk measures. Researchers have contributed abundant 

theoretical discussion on EVT such as Embrechts et al. (1997), Reiss and Thomas 

(1997), and Coles (2001). Modeling of extreme value theory, there are two ways if 

identified extremes in data.  

 This paper is considered a random variable which may represent daily losses 

or returns. The first approach considers the maximum (or minimum) the variable 

takes in periods. The second approach focuses on the largest value variable over some 

high threshold. 

 

 3.2.1 Block Maxima or Generalized Extreme Value Distribution (GEV)  

An approach is the one of studying the limiting distributions of the 

sample extreme, which is presented under a single parameterization. In this case, 

extreme movements in the left tail of the distribution can be characterized by the 

negative numbers (Jiahn-Bang Jang, 2007) 
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Let iX  be the negative of the thi  daily MSCI Emerging Market Index price in Asia 

between day i  and day 1i  . Define as 1(ln ln )i i iX P P    

where,  iP and 1iP  are the daily MSCI Emerging Market Index price in Asia of 

day i  and day 1i  . Suppose that
1, 2 ,..., nX X X  be the random variables with an 

unknown cumulative distribution functionCDF ;
 

( ) Pr( )iF x X x  . Extreme values 

are defined as maxima of the n  independently and identically distributed random 

variable 1 2, ,..., nX X X . 

 Then, let nX  be the maximum negative side movements in the MSCI 

Emerging Market Index price in Asia returns, that is, 
1, 2max( ,..., )n nX X X X . Since 

the extreme movements are the focus of this study, the exact distribution of nX  can 

be written as 

  
Pr( )nX   1 2Pr( , ,..., )nX X X       
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 In practice the parent distribution F  is usually unknown or not precisely 

known. The empirical estimation of the distribution ( )nF a  is poor in this case. Fisher 

and Tippet (1928) derived the asymptotic distribution of ( )nF a . Suppose n and n

are sequences of real number location and scale measures of the maximum statistic 

nX . Then the standardized maximum statistic 
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distribution families such as 
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( )H z    exp exp ,      z z       
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 These forms go under the names of Gumbel, Frechet, and Weibull 

respectively. Here μ and σ are the mean return and volatility of the extreme values x  

and   is the shape parameter or called 1   the tail index of the extreme statistic 

distribution. With 0, 0, 0      represent Gumbel, Frechet, and Weibull types of 

tail behavior respectively. In fact Gumbel, Frechet, and Weibull types can be fit for 

exponential, long, and short tails respectively. 

 According to Embrechts and Mikosch (1997) suggested a generalized extreme 

value (GEV) distribution which included those three types and can be used for the 

case stationary GARCH processes. GEV distribution has the following form 
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  (3.3) 

Then, suppose that block maxima 
1, 2 ,..., nB B B  are independent variables from 

a GEV distribution, the log-likelihood function for the GEV, under the case of 0  , 

can be given as 
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For the Gumbel type of GEV form, the log-likelihood function can be written as 
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   As Smith (1985) declared that, for 0.5  , the maximum likelihood 

estimators, for , ,  and  , satisfy the regular conditions and therefore having 

asymptotic and consistent properties. The number of blocks, k and the block size form 

a crucial tradeoff between variance and bias of parameters estimation. 

 

 3.2.2 Peak over threshold or Generalized Pareto Distribution (GPD)    

 Jiahn-Bang Jang, 2007 stated that Peaks over Thresholds (POT) 

method utilizes data over a specified threshold. Define the excess distribution as  
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where h  is the threshold and F is an unknown distribution such that the CDF of the 

maxima will converge to a GEV type distribution. For large value of threshold h , 

there exists a function ( ) 0h  such that the excess distribution of equation (2.21) will 

approximate by the generalized Pareto distribution (GPD) with the following form 
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where 0x   for the case of 0 , and 0  x,   and 
 0 x h



 
 for the case of 0  .  

 Define 
1, 2 ,..., kX X X  as the extreme values which are positive values after 

subtracting threshold h . 

For large value of h , 
1, 2 ,..., kX X X is a random sample from a GPD, therefore 

the unknown parameters   and    h can be estimated with maximum likelihood 

estimation on GPD log-likelihood function. 

 Based on equation (3.6) and GPD distribution, the unknown distribution F  

can be derived as 

    , ( )( ) 1 ( ) ( ) ( )hF y F h H x F h   
                

(3.8)      

Therefore the estimator of (3.8)   is     ( ) 1 ( ) ; , ( ) ( )F h F h H x h F h             (3.9) 
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 where   and ( )h  are parameters of GPD log-likelihood. High quantile VaR

and expected shortfall can be computed using (3.8). First, define ( )  qF VaR q as the 

probability of distribution function up to thq quantile 
qVaR . 

Therefore,   
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           Next, given that 
qVaR  is exceeded, define the expected loss size, expected 

shortfall ( )ES , as 

 
   | |q q q q qES E X X VaR VaR E X VaR X VaR               (3.11) 

 From (3.10), (Jiahn-Bang Jang, 2007) 
qES can be computed using 

qVaR  and 

the estimated mean excess function of GPD distribution.  

Therefore,  
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