
 

Chapter 2 

Methodology  

 

2.1 Extreme Value Theory  

The main idea of this thesis is the application of Extreme Value 

Econometrics to analyse the palm oil prices. Extreme Value Theory (EVT) is the 

concept of modeling and measuring extreme events which occurs with a very small 

probability (Brodin and Kluppelberg, 2008). It provides the methods for quantifying 

such events and their consequences statistically. Generally, there are two principal 

approaches to identify the extremes in real data. The Block Maxima (BM) and Peaks-

Over-Threshold (POT) are central for the statistical analysis of maxima or minima 

and of exceedances over a higher or lower threshold (Lai and Wu, 2007). This thesis 

uses both univariate and bivariate extreme value, as each type of estimation adopt BM 

and POT. Finally, the third objective of this paper employs the extreme value copulas 

model. 

The first objective applies both univariate BM and POT to predict 

extreme events of palm oil prices in the future. 

 

2.2 Univariate Block Maxima  

The BM model studies the statistical behaviour of the largest or the 

smallest value in a sequence of independent random variables (Lei and Qiao, 2010; 

Lei et al., 2011). One approach to working with extreme value data is to group the 

data into blocks of equal length and to fit the data to the maximums of each block 

whilst assuming that n (number of blocks) is correctly identified.  

Let Zi (i=1,…,n) denote the maximum observations in each block (Coles, 

2001). Zn is normalized to obtain a non-degenerated limiting distribution. The BM 

approach is closely associated with the use of Generalized Extreme Value (GEV) 

distribution with cumulative density function (c.d.f) (Lei and Qiao, 2010):   
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Where μ, σ > 0 and ξ are location, scale and shape parameter, 

respectively. The GEV includes three extreme value distributions as special cases: the 

Frechet distribution is ξ > 0, the Fisher-Tippet or Weibull distribution is ξ < 0, and the 

Gumbel or double-exponential distribution is ξ = 0. Depending on the parameter ξ, a 

distribution function is classified as fat tailed (ξ > 0), thin tailed (ξ = 0) and short 

tailed (ξ < 0) (Odening and Hinrichs, 2003). Under the assumption that Z1, …, Zn are 

independent variables having the GEV distribution, the log-likelihood for the GEV 

parameters when ξ ≠ 0 is given by (Coles, 2001): 

ℓ(ξ, μ, σ) = -nlog σ- (1+1/ξ) 
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The case ξ = 0 requires separate treatment using the Gumbel limit of the 

GEV distribution. The log-likelihood in that case is:  

ℓ(μ, σ) = -nlog σ- 
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The maximization of this equation with respect to the parameter vector (μ, 

σ, ξ) leads to the maximum likelihood estimate with respect to the entire GEV family 

(Coles, 2001).  

 Estimates and confidence intervals with the maximum likelihood estimate 

of pz  for 10  p , the p1  return level, is obtained as  
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where )1log( pyp  . Moreover, by the delta method,  
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2.3 Univariate Peak-Over-Threshold  

The POT approach is based on the Generalized Pareto Distribution (GPD) 

introduced by Pickands (1975) (cited in Lei and Qiao, 2010).  The GPD estimation 

involves two steps, the choice of threshold u and the parameter estimations for ξ and σ 

which can be done using Maximum Likelihood Estimation (Bensalah, 2000). These 

are models for all large observations that exceed a high threshold. The POT approach 

deals with the distribution of excess over a given threshold wherein the modelling is 

to understand the behaviour of the excess loss once a high threshold (loss) is reached 

(McNeil, 1999). Previous studies have shown that if the block maxima have an 

approximate distribution of GEV, then the excesses from the threshold have a 

corresponding Generalized Pareto Distribution (GPD) with c.d.f. (Lai and Wu, 2007, 

Lei and Qiao, 2010):   
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1  > 0}, where y (growth rate price 

exceeds) is random variable, σ (σ > 0) and ξ (-∞ < ξ < +∞) are scale and shape 

parameters, respectively. The family of distributions defined by this equation is called 

the GPD family. Having determined a threshold, the parameters of GPD can be 

estimated by log-likelihood.  

Suppose that the values Y1,…, Yn are the n excesses of a threshold u. For 

ξ ≠ 0, the log-likelihood is (Coles, 2001) 

ℓ(σ, ξ) = -nlogσ – (1+1/ξ)  
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provided that (1+ξyi/σ) > 0 for i=1,…,n  

The maximum likelihood procedures can also be utilized to estimate the 

GPD parameters, given the threshold (Lei and Qiao, 2010).  
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Estimates and confidence intervals with the maximum likelihood estimate 

of Nz  for the N-year return level is defined by  

  0,1)(  
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  forNnuz uyN , 

0),log(   forNnuz uyN ,                                        (8) 

where N is the level expected to be exceeded once every N years. If there 

are yn  observations per year, this corresponds to the m-observation return level, 

where ynNm  . u  is the probability of an individual observation exceeding the 

threshold u. The 


u  is the maximum likelihood estimate of u . This has a natural 

estimator of 
n
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 , the sample proportion of points exceeding u. Furthermore, by 

the delta method, 
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evaluated at ),,(
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The second objective uses the bivariate BM and POT to analyze the 

relationship between soybean oil and palm oil prices, crude oil and palm oil prices. 

 

2.4 Bivariate Block Maxima 

This method is concerned with parametric and non-parametric cases. This 

thesis chooses the parametric models. A brief summary of bivariate BM is given 

below: 

Let (X, Y) denote a bivariate random vector representing the component-

wise maxima of an i.i.d. sequence over a given period of time. Under the appropriate 

conditions the distribution of (X, Y) can be approximated by a bivariate extreme value 

distribution (BEVD) with c.d.f. G. The BEVD is determined by its two univariate 
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margins G1 and G2 respectively, which are necessarily EVD, and by its Pickands 

dependence function A (Rakonczai & Tajvidi, 2010).  
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A(W) is responsible for capturing the dependence structure between the 

margins and determines only up to the condition that it is convex, passes through the 

points (0,1), (1,1) and (1/2,1/2) binds the upper left and right corners. The properties 

of function A are (1) A(w) is convex, (2) max{(1 − w), w} ≤ A(w) ≤ 1 and (3) A(0) = 

A(1) = 1. Rakonczai and Tajvidi, (2010) explained in their paper that the lower 

bounds in the second item of the properties of A corresponds to the complete 

dependence G(x,y) = min{G1(x),G2(y)}, while the upper bound corresponds to 

(complete) independence G(x,y) = G1(x)G2(y).  

The Parametric Bivariate Extreme Value Distributions have nine models 

(Stephenson, 2011) as follow: 

The logistic distribution function with parameter dep = r  is  
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where 10  r . The independence case corresponds to 1r . For 0r , 

we get complete dependence.  

The asymmetric logistic distribution function with parameter dep = r and 

asy = ),( 21 tt  is  
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where  10  r  and 1,0 21  tt . When 121  tt , the model reduces to 

the symmetric logistic model. Independence is obtained by 1r together with either 

01 t  or  02 t . Complete dependence is obtained in the limit when 121  tt  and 

0r .  

The Husler-Reiss (HR) distribution function with parameter dep = r  is 
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where Φ(.) is the standard normal distribution function and 0r . 

Independence is obtained in the limit as 0r . Complete dependence is obtained as 

r tends to ∞. 

The negative logistic distribution function with parameter dep =  r   is 

 rrr yxyxyxG
1

][exp),(
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where  r  > 0. Independence is obtained in the limit as 0r . Complete 

dependence is obtained as r tends to ∞. 

The asymmetric negative logistic distribution function with parameters   

dep = r and asy = ),( 21 tt  is  
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where 0r and 1,0 21  tt . When 121  tt , the model reduces to the 

negative logistic model. Independence is obtained in the limit as either r , 1t  or  2t  

approaches zero. Complete dependence is obtained in the limit when 121  tt  and r  

tends to infinity. 

The bilogistic distribution function with parameters α and β is 

    11 )1(exp),( qyxqyxG                      (16) 

where ),;,( yxqq   is the root of the equation 

.1,0,0)1()1()1(    yqqx  

when    the bilogistic model is equivalent to the logistic model with 

dependence parameter dep = α = β. Independence is obtained as α = β approaches to 

one, and when one of α, β is fixed and the other approaches to one. Complete 

dependence is obtained in the limit as α = β approaches to zero. 

The negative bilogistic distribution function with parameters α and β is 

    11 )1(exp),( qyxqyxyxG                    (17) 

where ),;,( yxqq   is the root of the equation 

.0,0,0)1()1()1(    qyxq  

when    the negative bilogistic model is equivalent to the negative 

logistic model with dependence parameter dep = .11    Independence is obtained 
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as α = β tends to ∞, and when one of α, β is fixed and the other tends to ∞. Complete 

dependence is obtained in the limit as α = β approaches to zero. 

The Coles-Tawn distribution function with parameters α>0 and β>0 is 

 )1,;()],1;(1[exp),(   qyBeqBexyxG                    (18) 

where )/( xyyq   and Be ),;( q is the beta distribution function 

evaluated at q with shape1= α and shape2 = β. Independence is obtained as α = β 

approaches to zero, and when one of α, β is fixed and the other approaches to zero. 

Complete dependence is obtained in the limit as α = β tends to ∞. 

The asymmetric mixed distribution function with parameters α and β has 

a dependence function with the cubic polynomial form is shown below 

1)()( 23  wwwwA                      (19) 

where 0 and 03   , 1  and 12   . These constraints 

imply that β lies in the interval [-0.5,0.5] and that α lies in the interval [0,1.5], though 

α can only be greater than one if β < 0. Complete dependence cannot be obtained. 

Independence is obtained when both parameters are zero.  

 

2.5 Bivariate Threshold Exceedances 

There are at least two ways of defining exceedances in higher dimensions. 

In the first definition, a distribution is fitted to the observations 

 ),(),(),( yx uuyxyx   where xu  and yu are suitable thresholds for each margin. 

Second definition aims to fit a distribution to  where 

),( yx uu  is defined as before. These distributions will be called Type І and Type ІІ 

bivariate generalized Pareto distributions (BGPD), respectively (Coles & Tawn, 

1991), (Coles, 2001).  

In this thesis, the strength of the dependence between variables is 

estimated by fitting joint exceedances to bivariate extreme value distribution using 

BGPD type І. From univariate GPD, the details for approximating the tail of X by  
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Suppose  11 , yx ,….,  nn yx ,  are independent realizations of a random 

variable ),( YX  with joint distribution function  yxF , on regions of the from 

yx uyux  , , for large enough xu  and yu . The marginal distributions of F each 

have an approximation of equation (16), with respective parameter sets ),,( xxx   

and ),,( yyy  (Coles, 2001). The finding of this equation can approximate the tail 

of X and Y for yx uyux  ,
 
 with ),,:( xxxxG  and ),,:( yyyyG  , respectively. 

The Bivariate Generalized Pareto Distributions (BGPD) type I is 

  0y0,x,y)V(x,expy)G(x,                      (21) 

The specified models of BGPD type I have nine models. The definition 

and equation of each model is given in bivariate block maxima.  

Finally, the third objective adopts the extreme value copula to find the 

dependence structure between the return on palm oil future price in the future 

markets. 

 

2.6 Extreme Value Copulas  

Copulas have become the attention multivariate modeling in various 

fields. A copula is a function that links together univariate distribution functions to 

from a multivariate distribution function (Patton, 2007). The relevance of copulas 

stems from a famous result by Sklar (1959) (cited in Segers, 2005). For simplicity, we 

confined it to the bivariate case. Let X and Y be the stochastic behavior of two 

random variables with respective marginal cdf’s F(x) and G(y) is appropriately 

described with joint distribution function 

H(x,y) = P(X ≤ x, Y ≤ y)                                                                        (22) 

and marginal distribution functions 

F(x) = P(X ≤ x), G(y) = P(Y ≤ y)                                                             (23)                                                  

Since F(x) and G(y) are uniformly distributed between 0 and 1, then the 

joint distribution function C on [0,1]
2
 for all (x,y) є R

2
 such that: 

H(x,y) = C(F(x), G(y))                                                                             (24) 

where C is called the copula associated with X and Y which couples the 

joint distribution H with it margins.  Equation (20) is equivalent to H(F
-1

(u),G
-1

(v)) = 
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C(u,v) as a consequence of the Sklar’s Theorem, where u = F(x), v= G(y) are 

marginal distributions of X,Y. The implication of the Sklar’s Theorem is that, after 

standardizing the effects of margins, the dependence between X and Y is fully 

described by the copula (Lu, et al, 2008). A comprehensive overview of the copulas 

properties can be referred to the work by Nelsen (1999). This thesis combines the 

copula construction with the extreme value theory.  

The extreme value copula family is used to represent the Multivariate 

Extreme Value Distribution (MEVD) by the uniformly distributed margins. Consider 

a bivariate sample (Xi,Yi), i=1,….,n. Denote component-wise maxima by Mn = 

max(X1,…,Xn) and Nn = max(Y1,…,Yn). The object of interest is the vector of 

component-wise block maxima: Mc = (Mn, Nn)´. The bivariate extreme distribution H 

can be connected by an extreme value copula (EV copula) Co: (Segers, 2005) 

)),,;(),,,;((),( 222111  yGxFCyxH o                                                  (25) 

Where iii  ,  are GEV parameters and F(x) and G(y) are GEV margin. 

By Sklar’s Theorem, the unique copula Co of H is given by 

0),,(),(  tvuCvuC t
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o                                                           (26) 

The EV copula has more family.  In this thesis, the two family applied are 

Gumbel and HuslerRiess. (Cited in Lu et al., 2008) 

Gumbel copula: 
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The independence copula is obtained in the limit as r = 1, and complete 

dependence is obtained in the limit as r = ∞.  

HuslerReiss copula: 
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Where vvuu ln,ln
~~

 and Φ is the standardized normal distribution. 

The independence copula is obtained in the limit as r = 0, and complete dependence is 

obtained in the limit as r = ∞. For the estimation of copulas parameters, we used Exact 
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Maximum Likelihood method (EML): the parameters for margins and copula are 

estimated simultaneously, see Yan (2007) for details. 


