
 

 

Chapter 3  

Research Methodology 

 

The purpose of this chapter is to describe the research methodology used in this 

dissertation. In particular, there are four sections. First, the research design discusses 

the model that developed from the conceptual framework. Second, the testable 

hypotheses are provided and next we will present the data and sample selection 

provides sources of data, the unit of analysis, and the sample size. Finally, data 

analysis methods are discussed. 

 

3.1 Research Design 

From the conceptual framework, this thesis developed the model to analyze 

factors that determined economic output or gross domestic product (GDP) in 

developed and developing countries. Moreover, this research can be dividing to two 

parts. First part is the study the factors affecting economic growth in developing 

country and second part, we interest in developed country. The details of two parts are 

explained below. 

Part I 

To analyze the causal relationship among gross domestic product, 

macroeconomic, social and political variables in developing country, we first classify 

data for 95 countries into 11 distinct regions based on continent, climate, and access 

to sea-lane. We then seek to isolate the intercept and slope shifters of economic 

growth in four stages. Stage one tests a standard economic model composed only of 

the interest rate, exchange rate, money supply, tourism, inflation, save, trade, 

export/import, FDI inflow, capital and labour. Stage two adds 10 regional dummy 

variables to determine which, if any of the regions are significantly higher or lower 

than the suppressed base region (Southeast Asia). Stage 3 then adds slope-shifting 
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interaction terms between each region and the economic variables to determine which 

macro variables in which regions display significantly different marginal impacts on 

growth. Step 4 extends the model of stage 3 by adding the socio-political variables 

which are schooling, political freedom, transparency (i.e. absence of corruption), and 

criminality. The model of step 4 is inspired by the new institutional economics in 

general and by the “sufficiency” economy model of the King of Thailand and the 

gross national happiness paradigm of the King of Bhutan, which posit that true 

development is inconsistent with an increase in criminality, corruption, and political 

or educational disenfranchisement. Finally, based on the significant results of each 

stage of the analysis, we shall draw practical conclusions for development policy by 

region and for the developing economies as a whole.  

This thesis will successively develop and estimate four macroeconomic models, 

starting from what we shall term the “standard macroeconomic model
2
”: 

GDP = f (money, interest, exchange, inflation, save, trade, exports/imports, FDI 

inflow, capital, labour, tourism)      (3.1) 

and ending with the completely specified “sufficiency economy-inspired model”: 

GDP = f (money, interest, exchange, inflation, save, trade, exports/imports, FDI 

inflow, capital, labour, life, schooling, lack of freedom, transparency, crime, HDI, 11 

regions, interaction terms between macro and social/political variables, interaction 

terms between regions and macro/social/political variables)    

          (3.2) 

 

 

                                                 
2

 There are two main themes in standard macroeconomics: growth and the business cycle. In the 

developing economies, the issue of, and potential for, growth are of such vital importance that growth 

must be integrally included in any complete definition of a macro model for policy orientation.  At the 

same time, however, the question of short-term stabilization is equally vital in that a) such a large 

percentage of the population lives so close to the edge of poverty and starvation, and because of b) the 

vulnerability of many/most developing economies to swings in trade and the exchange rate. Our model 

is thus a balanced hybrid of the major aspects of growth and stabilization variables as commonly 

applied to Western economies. 
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or the standard macroeconomic model and Sufficiency Economy Inspired Model 

can be specified as follow: 

 

Standard Macroeconomic Model 

tiitiitiitiiiti ExchangeInterestInterestMoneyGDP ,4

2

,3,2,1, ln)(lnlnlnln  

 

titiiitiitii

ititiiitiitii

TourismLabourCapitallowFDI

importExportTradeSaveInflationInflation

,,1312,11,10

9,87

2

,6,5

lnlnlninfln

/lnlnlnlnln









              

(3.3)

 

Sufficiency Economy Inspired Model 
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           (3.4)
 

where  

GDP  =  Log of gross domestic product at constant price. 

Money   =  Log of nominal money supply is the sum of currency 

outside banks and demand deposits other than those of the central government. A 

positive coefficient is expected, as money supply has been shown to be positively 

related with GDP.  

Interest   =  Log of nominal interest rate. Since lowering the interest 

rate encourages investors to invest more frequently and in greater amounts to GDP, a 

negative coefficient is expected. Moreover, a coefficient of the square of interest is 

used to capture a possible upward turn in the relationship between interest rate and 

GDP
3
. 

Inflation   =  Log of inflation rate with base 2000. A negative 

coefficient is expected, as high inflation has been found to negatively affect growth. 

                                                 
3
 The relationship between interest rate and GDP are assumed to be non-linear which consist of Fry 

(1997) estimates that non-linear functional forms of interest rate and economic growth, allowing higher 

interest rates to promote growth over some low range of values but then hinder it over a higher range. 
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Moreover, a coefficient of the square of inflation is used to capture a possible upward 

turn in the relationship between inflation and GDP, leading to a possible “optimal” 

inflation rate
4
. 

Exchange   =  Log of national currency per US dollar, or the nominal 

exchange rate. A positive coefficient is expected, as either a high exchange rate or 

depreciation in the domestic currency has been found to increase exports and hence 

GDP. 

Save   =  Log of the savings rate as a percent of gross national 

income. A positive coefficient is expected, as a higher savings rate has been found to 

positively affect growth. 

Trade   =  Log of the sum of exports and imports of goods and 

services as a percent of GDP. Assuming that openness to international trade is 

beneficial to economic growth, a positive coefficient is expected. 

Exports/imports  =  Log of Export-Import ratio. Assuming that more exports 

compared to imports is beneficial to economic growth, a positive coefficient is 

expected. 

FDI inflow  =  Log of foreign direct investment as a percent of GDP. 

Assuming that more foreign direct investment inflow is beneficial to economic 

growth, a positive coefficient is expected. 

Capital   =  Log of gross capital formation as a percent of GDP. 

Assuming that increasing the level of gross capital formation is beneficial to 

economic growth, a positive coefficient is expected. 

Labour   =  Log of the total labour force. A positive coefficient is 

expected, as an increase in the labour force has been found to positively affect 

productivity and lead to higher GDP. 

Tourism   =  Log of international tourism expenditures by 

international inbound visitors from other countries. Tourism expenditure is one kind 

                                                 
4
 The non-linearity is assumed which low level of inflation, the income can increase when level of 

inflation increase but for high inflation rate, the increase in inflation rate will reduce the country’s 

income. Li (2006) and Hasanov (2011) suggest there exist some threshold that the inflation has a 

significantly positive effect on growth at below threshold level, but the relationship is negative when 

inflation rates are above threshold level. 
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of export which increasing in tourism expenditure can encourage GDP, therefore 

positive impact is assumed. 

Life   =  Log of life expectancy at birth indicates the number of 

years a newborn infant would live if prevailing patterns of mortality at the time of its 

birth were to stay the same throughout its life. As higher life expectancy can keep 

workers in the workforce throughout their full potential careers, a positive coefficient 

is expected. Moreover, a coefficient of the square of life expectancy is used to capture 

a possible downward turn in the relationship between life expectancy and GDP as the 

population ages.   

School   =  Log of the ratio of school enrollment in secondary 

school measured as a share of the gross enrollment ratio. Greater enrollment ratios 

lead to greater human capital, which should be positively related to GDP. A positive 

coefficient is expected. 

Lack of Freedom =  Log of political rights based on a 40-point scale with 0 

representing the highest and 40 the lowest level of freedom. A negative coefficient is 

expected, as a lag in freedom means lower political rights, which can in turn reduce 

productivity and GDP. 

Transparency  =  Log of Corruption Perceptions Index (CPI) on a scale 

from 10 (highly clean) to 0 (highly corrupt). Corruption (lower in corruption index) 

reduces capital productivity which also reduces GDP; we therefore assumed a positive 

effect. 

Crime   =  Log of intentional homicide rates per 100,000 

population. We assumed a negative effect, i.e., that an increasing crime rate leads to 

greater economic cost and reduced GDP.  

HDI   =  Log of the Human Development Index. As a rising 

Human Development Index can lead to increasing labour productivity and GDP, we 

assumed a positive effect. 
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Part II 

This part will present the relationship among gross domestic product, 

macroeconomic, social and political variables in developed country with deal section 

sample bias issue. The structure of the sample selection model is a two equation 

system: the first equation is the outcome equation which can be the same as (3.3) or 

(3.4) and the second equation is the selection equation which can be written as: 

 

titititititi HealthGNIpcHfreeortHs ,,4,3,2,10, exp     

          (3.5) 
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Assuming that more exports compared to imports is beneficial to income of 

country which can lead the probability that country to be a developed country, a 

positive coefficient is expected. 

tiHfree ,  =   
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A positive coefficient is expected, as an increase in level of freedom means 

higher political rights, which can in turn encourage productivity and GDP and country 

will become to a developed country. 

tiGNIpc ,
 = Gross National Income per capita (constant US dollar). As a 

rising Gross National Income per capita can lead to increasing probability that country 

to be a developed country, we assumed a positive effect. 

tiHealth ,  = Health expenditure (percentage of gross domestic product). A 

positive coefficient is expected, as higher health expenditure has been found to 

positively affect probability that country to become a developed country. 
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3.2 Research Hypotheses 

Based on the review literature, conceptual framework and objectives, this 

research will, across three separate research papers, test the following specific 

empirical hypotheses: 

H1. The macroeconomic variables are important to determine change in output in 

both of developed and developing countries. 

H2. The social and political variable is significant to explain change in economic 

output in both of developed and developing countries. 

H3. The policy implication is different in 11 regions of developing countries and 

also in developed economies. 

H4. Money supply has positively impact on Gross Domestic Product. 

H5. The relationship between interest rate and output are non-linear and there 

exists negative impact of interest rate on output and also coefficient of the square of 

interest rate is positive. 

H6. There exists a positive relation between exchange rate and national income 

and depreciation in domestic currency will lead to increase in export income and also 

national income. 

H7. There exists non-linear relation between inflation and output which lower 

inflation can encourage economic growth while high inflation reducing economic 

growth. 

H8. There are positive relationship between saving rate and economic output.  

H9. The international trade can increase national income. So the relationship is 

positive. 

H10. Surplus of export compare to import is beneficial to economic growth, hen 

there are positive impact of export-import ratio on economic growth. 
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H11. Foreign direct investment (FDI) and economic growth points to a positive 

FDI-growth relationship. 

H12. There is a linkage between capital formation and economic growth and 

increase in capital formation can lead to increase in economic output. 

H13. Labour supply is one of determinants of the feature of national income. The 

relationship between labour supply and national income is positive and increase in 

labour force will boost productivity and raise national income. 

H14. Tourism expenditure has positive impact on Gross Domestic Product.  

H15. Life expectancy can encourage economic growth and increase in life 

expectancy leads to an increase in health of the population and increase in 

productivity of labour and hence raise in output. 

H16. There are positive effects of enhanced human capital formation or school 

enrollment to economic growth. 

H17. Lack of freedom can reduce the productivity and Gross Domestic Product 

which there exists negative relationship between lack of freedom and Gross Domestic 

Product. 

H18. Corruption will reduce competition and reduce private investment and, 

hence, the stock of producible inputs in the long run. The relationship between 

corruption and economic growth is negative.  

H19. Crime increase economic cost and reduce Gross Domestic Product and there 

exist the negative impact of crime on economic growth. 

H20. There exists positive relation between Human Development Index and 

economic growth. 

H21. There exists sample selection bias which indicates the traditional indicator 

of development is not appropriate. 
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H22. Increase in Gross National Income per capita, health care expenditure, high 

of export, and high of economic freedom can help country to become developed 

country. 

 

3.3 Data and Sample Selection 

The study draws upon multiple data sources for annual data spanning the period 

1996 to 2008 on a host of macroeconomic, social and political indicators for a sample 

of 95 developing countries drawn from Central and Eastern Europe, Middle East, 

Latin America, the Commonwealth of Independent States, Asia and Sub-Saharan 

Africa and a sample of 22 developed countries (Table 3.1). The countries are divided 

according to 2008 GNI per capita which are provided by World Bank. The developing 

countries had income below $12,275 and developed countries had income above 

$12,276. 

To test for non-homogeneity within the sample of developing country, Asia is 

subdivided into South Asia, Southeast Asia and the socialist emerging economies of 

China and Vietnam; while Africa is divided into four north-south/coastal-interior 

groupings.  

Some social indicators such as schooling, lack of freedom, transparency, crime 

and HDI were not available for a uniform period for each country. Consequently, the 

number of observations varied across our sample countries, leading us to conduct 

estimations over an incomplete panel data. 

All series were obtained from the International Monetary Fund’s International 

Financial Statistics (IFS) (IMF,2009), the World Development Indicators 2010 (WDI) 

database and the Central Bank of each country. Level of political freedom data were 

acquired from Freedom in the World data (,2011), the Corruption Perceptions Index 

from Transparency International (2011), Intentional homicide rates per 100,000 

population from the  Geneva Declaration on Armed Violence and Development report 

(2008) and the Human Development Index from the Human Development Report 

(2010). All variables were converted into natural logarithms prior to the empirical 

analysis.  
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Table 3.1: List of countries by region  

Type of Country List of Countries 

Developed Country Australia, Austria, Canada, Cyprus, Czech Republic, 

Denmark, Finland, Hong Kong , Iceland, Israel, Japan, Korea, 

Malta, New Zealand, Norway, Singapore, Slovak Republic, 

Slovenia, Sweden, Switzerland, United Kingdom, United 

States 

Developing 

Country 

Middle East 

Algeria, Egypt, Iran, Mauritania, Morocco, Saudi Arabia, 

Tunisia, Republic of Yemen 

Central and Eastern Europe 

Albania, Bulgaria, Croatia, Estonia, Hungary, Latvia, 

Lithunia, Macedonia, Poland, Romania, Turkey 

Latin America (LA) 

Argentina, Belize, Bolivia, Brazil, Chile, Colombia, Costa 

Rica , Dominican Republic, Guatemala, Guyana, Haiti, 

Honduras, Jamaica, Mexico, Paraguay, Peru, Trinidad and 

Tobago, Uruguay, Venezuela 

Commonwealth of Independent States (CIS) 

Armenia, Azerbaijan, Belarus, Kazakhstan, Kyrgyz Republic, 

Georgia, Russia, Ukraine 

South Asia (SA) 

Bangladesh, India, Nepal, Pakistan, Sri Lanka 

Southeast Asia (SEA) 

Cambodia, Fiji, Indonesia, Malaysia, Myanmar, Papua New 

Guinea, Philippines, Solomon Islands, Thailand, Lao People's 

Dem.Rep 

Socialist emerging Asia (CHVN) 

China, Vietnam 

Northern coastal Africa (NCA) 

Cameroon, Equatorial Guinea, Ghana, Nigeria, Cape Verde, 

Senegal, Sierra Leone, Côte d'Ivoire, Togo 

Southern coastal Africa (SCA) 

Gabon, Kenya, Madagascar, Mauritius, Mozambique, 

Namibia, Seychelles, South Africa, Tanzania 

Northern interior Africa (NIA) 

Burkina Faso, Central African Rep., Ethiopia, Mali 

Southern interior Africa (SIA) 

Botswana, Burundi, Republic of Congo, Lesotho, Malawi, 

Rwanda, Swaziland, Uganda, Zambia, Zimbabwe 
Source: Adapted from IMF (2009). 
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Descriptive statistics of the variables included in the tables of results are shown in 

Table 3.2 and Table 3.3. 

Table 3.2: Descriptive Statistics of 95 developing countries 

Variable Obs. Mean St. Dev. Min. Max 

GDP (billion $ US) 1235 276.67 719.11 1.15 4327.45 

Macroeconomic Indicator 

MONEY (billion $ US) 1235 79.116 364.774 0.344 2429.223 

INTEREST (percent per 

Annum) 1235 10.58 6.78 1.91 33.50 

EXCHANGE (per US 

Dollar) 1235 795.16 2161.72 0.47 9825.00 

INFLATION (percent per 

Annum) 1235 195.86 77.83 117.39 448.45 

SAVE (percent) 1235 21.87 8.36 1.15 42.62 

TRADE (percent)  1235 85.86 37.98 26.97 170.73 

EXPORTS/IMPORTS 

(percent) 1235 0.95 0.42 0.35 2.80 

FDI_INFLOW (percent) 1234 6.12 6.67 0.03 40.99 

CAP (billion $ US) 1235 47.30 172.00 0.16 1140.00 

LABOUR (million) 1235 34.41 118.00 0.13 777.00 

TOURISM (billion $ US) 1235 13.41 0.94 0.01 409.87 

Socio-political Indicator 

LIFE (years) 1235 67.07 8.77 45.40 78.92 

SCHOOL (percent)  935 73.38 24.17 21.93 105.62 

LACK_FREEDOM 565 22.68 10.81 2.00 38.00 

TRANSPARENCY  809 3.24 1.08 2.00 6.60 

CRIME (per 100,000 

population) 694 11.42 15.34 0.42 60.92 

HDI 459 0.63 0.13 0.28 0.80 
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Table 3.3 Descriptive Statistics of 22 developed countries 

 

Obs Mean Std. Dev. Max Min 

GDP (billion $ US) 286 983.086 2,424.344 14,369.080 3.635 

Macroeconomic Indicator 

MONEY (billion $ 

US) 277 272.467 753.678 4,756.582 0.004 

INTEREST  

(percent per annum) 286 6.906 4.195 22.599 0.000 

EXCHANGE  

(per US Dollar) 286 71.118 233.397 1,401.440 0.187 

INFLATION  

(percent per annum) 286 105.814 25.781 215.247 56.687 

SAVE (percent) 286 23.810 8.049 55.699 5.198 

TRADE (percent) 286 108.268 86.893 438.092 18.969 

EXPORTS/IMPORTS 

(percent) 286 1.039 0.156 1.648 0.644 

FDI_INFLOW 

(percent) 286 5.293 6.329 36.615 -10.140 

CAP (billion $ US) 286 193.926 460.011 2,295.612 0.705 

LABOUR (million) 286 15.325 32.863 158.000 0.144 

TOURISM 

 (billion $ US) 286 14.143 22.028 117.969 0.180 

Social and Political Indicator 

LIFE (years) 286 78.534 2.107 82.588 72.566 

SCHOOL (percent) 272 104.907 17.088 161.781 76.732 

LACK_FREEDOM 126 37.643 4.874 40.000 17.000 

TRANSPARENCY 264 7.780 1.744 10.000 3.500 

CRIME (per 100,000 

population) 168 1.705 1.738 19.000 0.000 

HDI 109 0.856 0.046 0.937 0.764 

 

Compare the descriptive statistics between developing countries and developed 

countries. Table 3.2 and 3.3 show the average GDP of developing countries is 276.67 

billion $ US while the average GDP of developed countries is 983.086 billion $ US 

which higher than average GDP of developing countries about 3.5 times. The average 

money supply , save , trade , export-import ratio , capital , life expectancy , school 

enrolment ,lack of freedom, transparency and HDI of developed countries also higher 

than developing countries. 
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3.4 Data Analysis Methods 

Several methods are used to analyze the data and test the hypotheses. The data 

analysis methods that are used in this study can be classified to two parts. First, we 

analyze the relationship among gross domestic product, macroeconomic, social and 

political variables by using panel cointegration technique. Second, to deal with the 

sample selection bias problem in indentify level of country’s development, this study 

employed panel sample selection model to take into account the selective nature of 

the samples.  

Part I 

The thesis shall conduct tests of the causal relationship among gross domestic 

product and the other macroeconomic aggregates and social indicators in developing 

country in four stages: 

1) tests for the order of integration in the gross domestic product, money supply, 

interest rate, exchange rate, inflation rate, saving rate, trade, exports/imports, FDI 

inflow, capital formation, labor, tourism expenditure, life expectancy, school 

enrollment, lack of freedom, transparency, Crime rate, HDI series. 

2) panel co-integration to examine the long-run relationships among the variables 

3) estimate equation using fixed effect and random effect approach and using 

Hausman test and poolability test to check whether model is Fixed Effect Model 

(FEM) or Random Effect Model (REM). Moreover, when our model is FEM model 

then we can apply Least Square Dummy Variable approach to our model. Moreover, 

this thesis also applies Generalized Method of Moment (GMM) method to corrective 

for serial correlation and non-exogeneity of the regressors. 

4) Panel error correction model to estimate the short-run relation among the 

variables. 
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Part II 

To investigate the relationship among gross domestic product and the other 

macroeconomic aggregates and social indicators in developed country, we shall use 

stages 1) and 2) same as part I but in the stage 3) the dissertation employs panel 

sample selection model with copula approach. First, this thesis will present the 

estimated result without controls for selection bias and then this thesis provide 

economic output model was estimated by sample selection model with copula 

approach. 

The panel unit root test, panel cointegration, the panel estimation methodology, 

panel error correction model and panel sample selection model with copula approach 

can be described as follow:  

3.4.1. Panel Unit Root Test 

Before testing for the presence of co-integrating relationship among 

macroeconomic and social indicator in developing and developed countries, time 

series properties of the panel data need to be examined. This thesis employed six 

panel unit root tests: Levin et al. (2002), or LLC, Breitung (2001), Im et al. (2003), or 

IPS, Fisher-type tests using ADF (Maddala and Wu, 1999), and Fisher-type tests 

using PP tests (Choi, 2001), and Hadri (2000) to check for the presence of stationarity 

around a deterministic trend or mean with a shift against a unit root. The properties of 

panel-based unit root tests under the assumption that the data is independent and 

identically distributed (i.i.d.) across individuals. 

In general, the type of panel unit root tests is based upon the following 

regression which include lagged dependent variable to remove autocorrelation; 

itit

p

L

LtiiLtiiit uzyyy
i

 


 
1

,1,      (3.6) 

where i=1,2,…,N is the country, t =1,2,…,T is time series observation are 

available, itz is the deterministic components and itu  is iid (0, )2

i . itz  could be zero, 

one, the fixed effects ( i ) or fixed effect as well as a time trend (t). 
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For most of the six tests considered, except Hadri, the null hypothesis is 

that all series have a unit root, that is ii  0 . Each specific test has a different 

alternative hypothesis, depending upon different degrees of heterogeneity under the 

alternative hypothesis. The details of each test can be explained as follow 

(Baltagi,2008): 

1) Levin, Lin and Chu (LLC) Test 

In the Levin, Lin and Chu (LLC) (2002) tests, one assumes 

homogeneous autoregressive coefficients between individuals, i.e. ii    and tests 

the null hypothesis 0:  ioH against the alternative
 

0:  iaH .  

The structure of the LLC analysis may be specified as follows:

  

itit

p

L

LtiiLtiiit uzyyy
i

 


 
1

,1,      (3.7) 

where Ni ,...,2,1 , Tt ,...,2,1     

Since the lag order ip  is unknown and can vary across individuals, LLC 

suggest a three-step procedure to implement their test. 

Step 1: Perform separate augmented Dickey-Fuller (ADF) regression for 

each cross-section   

itit

p

L

LtiiLtiiit uzyyy
i

 


 
1

,1,    (3.7) 
 

For a given T, choose a maximum lag order maxp  and then use the t-

statistic of iL̂  to determine if a smaller lag order is preferred. 

Step 2 two auxiliary regressions are run to get orthogonalized residuals: 

1) Run ity  on ),...,1(, iLti pLy    and itz  to get residual itê  

2) Run 1ity  on ),...,1(, iLti pLy    and itz  to get residual 1
ˆ

itv  

Then standardize the residuals to control for different variance across 

individual: 
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uiitit ee ̂/ˆ~       (3.8) 

uiitit vv ̂/ˆ~
11       (3.9) 

where ui̂ is standard error for each ADF regression, for i=1,...,N. 

Step 3: Run the pooled regression 
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is the estimated variance of itu~ . 

The necessary condition for the Levin-Lin-Chu test is 0/ TNT , 

while sufficient conditions would be 0/ TNT and kTNT / .( TN  means that the 

cross-sectional dimension N is a monotonic function of time dimension T.) 

However, the LL test has some limitations about the test depends 

crucially upon the independence assumption across individuals and hence not 

applicable if cross sectional correlation is presents and the assumption that all cross-

sections have or do not have a unit root is restrictive.  
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2) Im, Pesaran and Shin (2003) tests  

Im, Pesaran and Shin (2003) extended the Levin and Lin framework to 

allow for heterogeneity in the value of the autoregressive coefficient under the 

alternative hypothesis. Im, Pesaran, and Shin,hereafter IPS, begin by specifying a 

separate ADF regression for each cross section: 

itit

p

L

LtiiLtiiit uzyyy
i

 


 
1

,1,    (3.11) 

The null hypothesis is that each series in the panel contains a unit root 

which can be written as 00  iH   for all i, while the alternative hypothesis, allows 

for some (but not all) of the individual series to have unit root, is given by:    




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NNifor

Nifor
H

i

i

a
,...,,0

,...,2,1,0
:

1

1




    (3.12) 

 

Formally, it requires non-zero fraction of the individual processes is 

stationary. This condition is necessary for the consistency of the panel unit root test. 

After estimate the separate ADF regressions, IPS compute define their t-

bar statistic as a simple average of the individual ADF statistics, iTt , for the null as: 





N

i

iTt
N

t
1

1
      (3.13) 

IPS assumes that iTt  are i.i.d. and have finite mean and variance.  

In the case where the lag order is always zero ( 0ip  for all i), IPS 

provides a simulated critical value for t  for different numbers of cross sections 

N,series length T and Dickey-Fuller regressions containing intercepts only or 

intercepts and linear trends. 

In the general case where the lag order ip  may be nonzero for some 

cross-sections, IPS shows that a property standardized t  converges to a standard 

normal variate as N under the null hypothesis. 

The IPS test statistic is as follow: 
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  (3.14) 

The value of  0iittE   and  0iittVar   have been computed by IPS 

via simulations for different values of T  and spi ' . 

In practice, however, to use their tables, it is necessary to restrict all the 

ADF regressions to individual series having the same lag length. 

 

3) Breitung (2001) test 

The LLC and IPS test require N  such that 0TN ,i.e. N should 

be small enough relative to T. This means that both tests may not keep nominal size 

well when either N is small or N is large relative to T. Breitung (2001) studied the 

local power of LLC and IPS tests statistics versus a sequence of local alternatives. He 

found that both tests suffer from a dramatic loss of power if individual specific trends 

are included. This is due to the bias correction that also removes the mean under the 

sequence of local alternatives. 

Breitung (2001) suggested a test statistic that does not employ a bias 

adjustment whose power is substantially higher than that of LLC or the IPS test using 

Monte Carlo experiments. 

Breitung (2001) followed 3 steps which are; 

Step 1 : two auxiliary regressions are run to get orthogonalized residuals: 

Run ity  on ),...,1(, iLti pLy    to get residual itê  

Run 1ity  on ),...,1(, iLti pLy    to get residual 1
ˆ

itv  

The residual are then adjusted to correct for individual-specific 

variances. 
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Step 2 : the residual ite~  are transformed using the forward 

orthogonalization transformation employed by Arellano and Bond (1991) 
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Also 

*

1itv   = itiit v
T

t
vv ~1~~

1,1


  with intercept and trend 

= 1,1
~~

iit vv   with intercept and no trend 

= 1
~

itv   with no intercept and no trend 

Step 3 : compute the panel test statistics. Run the pooled regression 

***

ititit uve         (3.16) 

and obtain the t-statistic for 0:0 H which has in the limit of 

standard N(0,1) distribution. 

 

 

4) The Fisher’s type test: Maddala and Wu (1999) and Choi (2001) test 

A common feature of the LL and IPS tests is that they are designed for 

balanced panels. While sometimes, like in our case, all individual series have the 

same length, researchers often have to deal with unbalanced panels. Unlike the LL 

and IPS tests, the procedure advocated by Maddala and Wu (1999), hereafter MW, 

and Choi (2001) does not require a balanced panel and it is nonparametric. 

Moreover, the null and alternative hypotheses are the same as those of 

the IPS tests which are 

MWH ,0   : 0 i
 for i  

MWAH ,   : 0i   for 1,...,2,1 Ni   and 0i  for NNi ,...,1  

making the IPS and MW tests directly comparable. 

Like the IPS tests, the MW test is based on N independent tests on the N 

individuals. However, while the LL test combines the test statistics, the MW test, 
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following Fisher (1932), combined the observed significance levels. It is very simple 

to use, once the p-values are available. If 
ip denotes the p-value from the DF test on 

the thi  time series then, in the case of cross-sectional independence, we have the 

asymptotic result that 





N

i

ipP
1

ln2             (3.17) 

has a 2  distribution with N2  degrees of freedom as iT  for all N . 

The Fisher test holds some important advantages: 1) it does not require a 

balanced panel as in the case of IPS test; 2) it can be carried out for any unit root test 

derived; 3) it is possible to use different lag lengths in the individual ADF regression. 

In addition, when N is large, it is necessary to modify the P test since in 

the limit it has a degenerate distribution. Having for the P test   2ln2  ipE and 

  4ln2  ipVar , Choi (2001) demonstrated Z-test that 

 

 1,0)2ln2(
1

1

Np
N

Z
N

i

i  


               (3.18) 

This statistic corresponds to the standardized cross-sectional average of 

individual p values. Under the cross-sectional independence assumption of the ip ’s, 

the Lindeberg-Levy central limit theorem is sufficient to show that under the unit root 

hypothesis Z converges to a standard normal distribution as 
seqNT ),(  . 

 

 

5) Hadri (2000) test 

Hadri (2000) proposed a test similar to the KPSS unit root test that has a 

null hypothesis of no unit root in any of the series against the alternative of a unit root 

in the panel.  

More specifically, Hadri adopts the following representation of his 

model components: 

itititit rzy         (3.19) 
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where itz is the deterministic component, itr  is a random walk: 

ititit urr  1 . itu ~  2,0 uiid   and it ~  2,0 iid  are mutually independent normals 

that are IID across i and over t.  

Using back substitution, model (3.19) becomes 

ititit

t

s

isitit ezuzy  



1

    (3.20)  

where 



t

s

itisit ue
1

  

The stationarity hypothesis is simply 0: 2

0 uH   in which case itite  . 

The LM statistic can be defined as: 
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which is consistent and has an asymptotically normal distribution as 

seqNT ),(  and 



t

s

isit eS
1

ˆ  are the partial sum process of the OLS residuals from 

(3.20) and 2ˆ
e  be a consistent estimator of 2

e  under the null hypothesis 0H . 

Hadri (2000) suggested an alternative form of the LM statistic allows for 

heteroskedasticity across i say 2ˆ
ei , which is: 
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         ( 3.22) 

The Hadri panel unit root tests require only the specification of the form 

of the OLS regressions: whether to include only individual specific constant terms, or 

whether to include both constant and trend terms. 
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3.4.2. Panel Cointegration Test 

If the variables appear to be non-stationary, we must proceed to test for 

cointegration. In this study, we shall employ Pedroni (2004) and Kao et.al. (1999) to 

test whether there are relationships among gross domestic product, macroeconomic 

and social variables. Both tests are Residual-based panel cointegration test statistics. 

However, Kao et.al. (1999) considered the spurious regression for the panel data and 

introduced the DF and ADF type tests, while Pedroni (2004) suggested a Phillips–

Perron-type test for cointegration. 

1) Pedroni’s (2004) test 

Pedroni (2004) proposed a residual-based test for the null of 

cointegration for dynamic panels with multiple regressors in which the short-run 

dynamics and the long-run slope coefficients are permitted to be heterogeneous across 

individuals. The test allows for individual heterogeneous fixed effects and trend terms 

and no exogeneity requirements are imposed on the regressors of the cointegrating 

regressions.  

The residuals estimation from static cointegrating long-run relation for a 

time series panel of observables yit 

itKitKiitiitiiiit exxxty   ...2211   (3.23) 

where i =1,…,N, t = 1,…,T and k = 1,…, K 

The variables ity  and itx  are assumed to be I(1), for each member i of 

the panel, and under the null of no cointegration the residual ite  will also be I(1). i  

and i  are scalar denoting fixed effects and unit-specific linear trend parameters, 

respectively and i  are the cointegration slopes which permitted to vary across 

individuals, so that considerable heterogeneity is allowed by this specification. 

Pedroni (2004) provided seven statistics for the test of the null 

hypothesis of no co-integration in heterogeneous panels. Pedroni (2004) tested can be 

classified into two categories. One group of such tests are termed “within dimension” 
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(panel tests) and the other “between dimension” (group tests). The “within dimension” 

tests pool the data across the ‘‘within dimension,’’ thereby taking into account 

common time factors and allowing for heterogeneity across members. The ‘‘between 

dimension’’ tests allow for heterogeneity of parameters across members, and are 

called ‘‘group mean cointegration statistics.’’  

In fact, even if both sets of test verify the null hypothesis of no 

cointegration: 

,1:0 iH i   

where i is the autoregressive coefficient of estimated residuals under 

the alternative hypothesis ( ititiit uee  1
ˆˆ  ), alternative hypothesis specification is 

different: 

- the panel cointegration statistics impose a common coefficient under 

the alternative hypothesis which results: 

,1: iH i

w

a    

- the panel group mean cointegration statistics allow for heterogeneous 

coefficients under the alternative hypothesis and it results: 

,1: iH i

b

a   

Seven of Pedroni’s tests are based upon the estimated residuals itê  from 

the long-run model and test statistics that we employ are as follows: 

Within dimension (panel tests): 

(a) Panel v -statistic     
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(b) Panel  -statistics. 
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(c) Panel PP-statistic.   
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(d) Panel ADF-statistic.  
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Between dimension (group tests): 

(e) Group  -statistics. 
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(f) Group PP-statistic.  
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(g) Group ADF -statistic. 
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where 2̂  is the pooled long-run variance for non parametric model 

given as  

N

i iLN
1

2

11
ˆˆ/1   and  22 ˆˆ2/1ˆ

iii S  , where iL̂  is used to adjust for 

autocorrelation in panel parameter model, 
2ˆ
i and

2ˆ
iS are the long-run and 

contemporaneous variances for individual i,and 
2ˆ
iS  is obtained from individual ADF-
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test of 
titiiti vee ,1,,   .

 
2*ˆ

iS  is the contemporaneous variances from the parametric 

model, 
tie ,

ˆ  is the estimated residual from the parametric cointegration,while tie ,
*ˆ  is the 

estimated residual from parametric model. iL11
ˆ is the estimated long-run covariance 

matrix for 
tie ,

ˆ and 
iL is the ith component of low triangular Cholesky decomposition 

of matrix i  for 
tie ,

ˆ with the appropriate lag length determined by the New-West 

method. 

It is straightforward to observe that the first category of four statistics 

includes a type of non-parametric variance ratio statistic, a panel version of a non-

parametric Phillips and Perron (1986) v -statistic, a non-parametric form of the 

average of the Phillips and Perron t-statistic and an ADF type t-statistic. 

The second category of panel cointegration statistics is based on a group 

mean approach and includes a Phillips and Perron type v -statistic, a Phillips and 

Perron type t-statistic and an ADF type t-statistic. The comparative advantage of each 

of these statistics will depend on the underlying data-generating process. 

The statistics can be compared to appropriate critical values; if critical 

values are exceeded then the null hypothesis of no cointegration is rejected, implying 

that a long-run relationship between the variables does exist. 

Pedroni (2004) simulation showed that, when T > 100, seven statistics 

have the same power. For little samples (T < 20), the most powerful test is the ADF 

test based on the between dimension (group t-statistic). 

2) Kao Tests (1999)  

Kao et.al (1999) presented two types of cointegration tests in panel data, 

the DF and ADF types tests. Kao tested the residuals ti ,̂  of the OLS panel estimation 

by applying DF type tests: 

 

titiiti ,1,,
ˆˆ           (3.31) 
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The null hypothesis of no cointegration, H0: ρ=1, is tested against the 

alternative hypothesis of stationary residuals, H1: 1 . The OLS estimate of ρ and t-

statistic are given as 
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where  

 

TN

ee

s

N

i

T

t

itit

e


 



 1 1

2

1
2

ˆˆˆ 

   (3.34) 

Kao et.al (1999) proposed the following four DF type tests  
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where 
12 ˆˆˆˆ   uuv  and 

12

0
ˆˆˆˆ   uuv . While DF  and tDF  

are besed on the strong exogeneity of the regressors and errors, *

DF  and *

tDF  are for 

the cointegration with endogeneous relationship between regressors and errors. For 

the ADF tests, the following regression is considered 
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With the null hypothesis of no cointegration, the ADF test statistic can 

be constructed as  
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where ADFt  is the t-statistic of ρ in (3.39). The asymptotic distributions 

of DF , tDF , *

DF , *

tDF  and ADF converge to a standard normal distribution N(0,1). 

 

3.4.3. Estimation Methodology 

If we find that all variables are co-integrated, we can then employ ordinary 

least square (OLS) and the Generalized method of moments (GMM) to estimate 

equation (3.3) and (3.4). 

In this thesis, fixed effects as well as random effects models are considered. 

The fixed effects model is simpler to conduct and is defined according to the 

following regression model: 

ititiit uXy    Ni ,...1  iTt ,...1         (3.41) 

ity  indicates the dependent variable while itX determines the vector of k 

explanatory variables. The data is incomplete in the sense that there are N countries 

observed over varying time period length iT  for Ni ,...1 . i , Ni ,...1 , are constant 
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coefficients specific to each country. Their presence assumes that differences across 

the considered countries appear by means of differences in the constant term. These 

individual coefficients are estimated together with the vector of coefficients β. 

In order to validate the fixed effects specification, the question is to prove, 

according to the empirical application, that the individual coefficients, i , Ni ,...1 ,, 

are not all equal. 

This corresponds to the following joint null hypothesis: 

  NH ...: 210           (3.42) 

It is rather the acceptation of the alternative hypothesis which is interesting 

if we want to differentiate between the situations in each country considered in the 

sample and confirm the existence of significant heterogeneity across countries. The 

appropriate statistic of the test is a Fisher distributed one with 
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where 0SSR and 1SSR  are, respectively, the sum of squared residuals 

provided by the estimation of the constrained model (under the null hypothesis that is 

no individual specific coefficients are considered) and the sum of squared residuals 

relative to the fixed effects model (equation (3.41)). 

In the random effects case, the model is defined as follows: 

ititiu Xy    Ni ,...1  iTt ,...1          (3.44) 

where itiit v  reflect the error component disturbances which i ~ 

IIN(
2,0  ) and independent of itv ~ IIN( 2,0 v ).The estimation of the model is 
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conducted by the feasible generalized least squares method. First, convergent 

estimates of the variances 
2

  and 2

v  are needed. They are obtained by the following 

formulae:  
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itv̂  are the residuals issued from the estimation of the fixed effects model 

(equation (3.41)) and iv̂ are individual means of these residuals over each time period 

relative to each country. Next, the first term in equation (3.46) indicates the residuals 

issued from the estimation of the unit means regression where 
i

b̂  are called the 

between estimators. 

The second stage consists in the estimation by ordinary least squares of the 

following transformed regression model: 

iiitiiitiiiu XXyy  




 













 





  1ˆ1ˆ1ˆ  (3.47) 

with: 

 
22

2

ˆˆ

ˆˆ

uiv

v
i

T





  Ni ,...1         (3.48) 

Finally, a Hausman specification test is conducted in order to compare the 

two categories of specifications. It may be proven that, under the null hypothesis, the 

two estimates (equations (3.41) and (3.47)) could not differ systematically since they 

are both consistent. So, the test can be based on the difference. Under the null 

hypothesis, the Hausman (1978) statistic is asymptotically distributed as chi-square 

with k degrees of freedom and is written down as follows: 
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1







    (3.49) 

where 
F̂  and GLS̂  are, respectively, the estimates of the fixed effects and 

random effects models. )(ˆ V are the corresponding variance-covariance matrices of 

these estimated coefficients. 

1) The Least Squares Dummy Variable (LSDV) Estimator 

Under this approach of estimation of (3.41), it is assumed that any 

differences across economic agents can be captured by shifts in the intercept term of a 

standard OLS regression. This leads to the least square dummy variable (LSDV) 

estimator of a fixed effects regression model. The LSDV model can be estimated by 

defining a series of group-specific dummy variables dgit=1 (g=i). In terms of (3.44), 

this gives 

iuy  ititi uX    

     ititNitNitit uXddd   ...2211   (3.50) 

This model is easily estimated by standard OLS over the full panel to 

yield the LSDV estimator. 

2) Dynamic Ordinary Least Square (DOLS) and Generalized Method 

of Moment (GMM) 

Kao et.al (2000) showed that OLS̂  is inconsistent when using this 

estimator for panel data. As a corrective to OLS for serial correlation and non-

exogeneity of the regressors, a panel version of the DOLS estimator can be used, 

based upon the equation 

it

K

Kk

kitikitit

i

i

xxy   


 ,     (3.51) 

where  
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and where 

itz  = is the 2(K+1) x 1 vector of regressors  kitkitiitit xxxxz   ,,,   

ity~  = itit yy  , and the subscript 1 outside the brackets indicates the first 

elements of the vector used to obtain the pooled slope coefficient. 

Another method is GMM. Formally, model (3.51) may be transformed into 

the following difference equation: 

)()()( 1111   itititititititit uuzzXXyy        (3.53) 

i=1,…,n t=2,…,Ti        

However, from (3.53) a bias arises: since 21   itit yy  is correlated with the 

transform error term ( 1 itit uu ), an OLS on dynamic panel data will be inconsistent. 

But if there are valid instruments, then GMM can be used to estimate the equation 

with lags of the dependent variable two periods back as an instrumental variable. 

 

3.4.4. Panel Vector Error Correction model 

Once the variables are co-integrated, the causality test will be performed. 

We shall use a panel-based (VECM) to identify the existence and direction of a long-

run equilibrium relationship using the two-step procedure of Engle and Granger 

(1987). In the first step, we shall estimate the long-run model using Eq. (3.3) or (3.4) 

to obtain the estimated residual ε (the error correction term; eit hereafter). In the 

second step, we go on to estimate the panel Granger causality model with dynamic 

error correction. That model can be estimated using instrumental variables to deal 

with the correction between the error term and the lagged dependent variables.  

For the second step, the equation VECM can be written as follows: 
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11211111 itpit
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ippit
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ipitiit xyey        (3.54a) 

22221122 itpit

p

ippit

p

ipitiit yxex     (3.54b) 

where ity  is dependent variable, itx  is independence variable, 1it  and 

2it are serially uncorrelated error terms and i1  and i2  stand for unobserved fixed 

effects. This model will include both long run and short run information where 12  

and 22  are the impact multiplier (the short run effect) and 1 and 2  is the feed back 

effect (adjustment effect and shows number of disequilibrium being corrected) which 

are tested using t-statistics.  

 

3.4.5. Panel Sample Selection with Copula Approach 

1) Model and Likelihood 

The structure of the sample selection model (in its simplest parametric 

form) is two equations system: the first equation is  

The Selection equation 






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

00

01
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*

itiitit

itiitit
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uzdif

uzdif
d





    (3.55) 

where *

itd  is the latent decision variable, itz are the regressors affecting 

the decision rule, and *

itd  determines the observability or not for all the members in 

the sample of the outcome equation,  

The Outcome equation 

itiitit xy  *
      (3.56) 

where ititit dyy  *  and *

ity  is the latent variable, which is only 

observable when the latent decision variable 0* itd  or consequently when 1itd . i   
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( ),...,1 Ni  denotes the individual and t ( ),...,1 Tt  denotes the time period.   and   

are unknown parameter (column-) vectors, and itx , itz  are vectors of strictly 

exogenous explanatory variables with possible common elements. i  and i are 

unobservable time-invariant individual-specific effects, which presumably correlated 

with the regressors. it and itu are idiosyncratic errors not necessarily independent of 

each other.  

Without sample selectivity, that is with 1itd  for all i and t, equation 

(3.56) is the standard panel data linear regression model.  

Compute the conditional expectation of ity given itx  and the probability that ity  is 

observed: 

)0,( * ititit dxyE   0, *  itititiit dxEx     

      iititititiit zuxEx   ,   

          (3.57) 

This leads to consistent estimates of   under the following condition: 

),( iititititi zuxE   ),( iitititi zuxE     

      0),(  iitititit zuxE   t,  

           (3.58) 

or we can say that the estimated   will be unbiased when 0)( iE   and 

it is independent of itu (that is, 0)( itit uE  ),so that the data are missing 

”randomly,” or the selection process is ”ignorable.” 

However, in the case where selection is nonrandom, and/or if a 

correlation with individual heterogeneity is present, the conditional expectation in 

(3.58) is unequal to zero then OLS estimates on the selected subsample or equation 

(3.56) is inconsistent. In another way, assume that it  and itu  are jointly distributed 

with distribution function );,(  itit uf  where   is a finite set of parameters (for 
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example, the mean, variance, and correlation of the random variables). Then we can 

write the expectation of error term (by Bayes rule) 

);(
);,(

);,(
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
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          (3.59) 

);(  z is a (possible) nonlinear function of z and the parameters  . 

That is, in general the conditional expectation of ity given itx  and the probability that 

ity  is observed to be equal to the usual regression function itx  plus a nonlinear 

function of the selection equation regressors itz that has a non-zero mean. 

To estimate   and control for sample selection bias, several models have 

been examined and/or estimated (Hausman and Wise (1979), Kyriazidou(1997), 

Rochina-barrachina(1999) and Wooldridge(1995)). In general, two main approaches 

have been followed in the development of panel data sample selection model 

estimators: two-step estimators follow the idea of Heckman (1979) and maximum 

likelihood estimators. However, in the applied literature, various more or less suitable 

methods have been used for the estimation of the panel data version of the sample 

selection model, and it is not obvious which of the suggested specifications to choose. 

Jensen et al. (2001) compared the different estimation methods for a panel data 

sample selection model for various data generating processes, is made, by a Monte 

Carlo study. The specification chosen for the panel part of the estimations in their 

paper is parametric panel data random effects model where the two equations are 

estimated simultaneously by maximum likelihood. Therefore, in this dissertation, we 

prefer treated unobserved heterogeneity as random effects and estimate the result 

using the maximum likelihood approach.  

Since we estimate (3.55) and (3.56) simultaneously using maximum 

likelihood, we have to specify the joint distribution of the error components it  and 

itu . Assume it  and itu  are jointly distributed with distribution function );,(  itit uf . 
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Furthermore, we make the following assumptions concerning the random effects and 

their interactions with the idiosyncratic errors: 

0][][  ii EE   

iiitit u  ,,   

Thus, the individual-specific components ( i  and i ) in the selection 

equation (3.55) and the equation of the interest (3.56)  may be correlated, but they are 

assumed to not be correlated with the idiosyncratic error terms.  

The likelihood of a single observation, conditional on the random 

effects, is then 

),,,( iiitL     = ),;,( iiitit uf   

   =
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(3.60)
 

where the first term is the contribution when 0* itd , since then 0itd  

and the second term is the contribution when 0* itd .  

The presence of the conditional distribution  iitititu
zuf 


  in 

the likelihood of presenting complications in estimation and, thus conditional copulas 

calculated by  
 
v

vuC
vuC

vu





,
,  might be useful. 



57 

First, observe that the conditional density is  iitititu
zuf 


 . The 

u
f


 denotes the probability density function of *

ity , given event 0* itd . It functional 

form can be written as follows in terms of marginal density and distribution functions. 
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       (3.61) 

Then substitute (3.61) for (3.60) 
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        (3.62) 

where the F  and f   are the cumulative density function and probability 

density function respectively for the variables referred by subscripts. uF  will be used 

from now on to denote  0Pr)( *  ititu duF   iitit zu   Pr  

)( iitu zF   .Furthermore, from this point F  denote )( itF   

  )(Pr iititiititit xyFxy    , and )( itff   .  

When a distribution is specified for the random effects it is 

straightforward to integrate them out of the likelihood function. If  ii  ,  is 

distributed according to the distribution function G    we have: 
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(3.63) 

iT  is the number of observations for an individual. In the estimations of 

this dissertation, G    is specified as a bivariate discrete distribution with 2x2 points 

of support. If the distribution assumptions are satisfied, then this estimator will be 

consistent for and  , but it does not allow for a correlation between the observed 

and unobserved variables. 

The log-likelihood function is 





N

i

iLogLLogL
1

     (3.64) 

However, the random effects formulation can be criticized on the 

grounds that it neglects the correlation that may exist between the random effects and 

the explanatory variables. If this correlation is ignored, the estimates of the parameters 

of interest (here   and  ) are biased. Mundlak (1978) proposed a way to correct for 

this correlation. Basically, what he does in the linear model, is to 

approximate )( ii xE  by a linear function and to include the individual means of the 

explanatory variables in the two equations. In the models of this dissertation, the 

individual means of the main variables of interest are included. A simple joint F-test 

of these correction terms then makes it possible to determine whether the correlation 

is actually present in the random effects model and hence, whether it makes a 

difference to make the Mundlak correction. 
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The component of (3.62) that is the most difficult to evaluate is 

),( itituF 



. The next subsection provides the evaluation of ),( itituF 




 which 

several specification for the joint distribution ),( itituF  .  

In general the multivariate normal distribution is assumed. However, this 

assumption can often be seen as excessively restrictive. Smith (2003) suggested 

applying the copula approach, especially the Archimedean copula to the sample 

selection model and the result also shows that the copula approach is well suited to 

apply to a model where the sample selection is biased, using cross-section data. 

Therefore, this thesis provides the Gaussian copula, Gumbel (1960) copula , Ali-

Mikhill-Haq (1978) copula, Clayton (1978) copula, Frank (1979) copula, and Joe 

(1997) copula to construct the joint distribution ),( itituF  . 

 

2) Modeling using the copula approach 

This subsection presents necessary background on copula and then will 

present the modeling using the copula approach. 

2.1) Background 

The notion of copula was introduced by Sklar (1959), when answering a 

question raised by M. Fréchet about the relationship between a multidimensional 

probability function and its lower dimensional margins. A copula is a function that 

links together univariate distribution functions to form a multivariate distribution 

function. If all of the variables are continuously distributed, then their copula is 

simply a multivariate distribution function with uniform (0, 1) univariate marginal 

distributions. The main advantage of copulas consists in representing the joint 

probability distribution by separating the impact of the marginals from the association 

structure, explained by the copula functional form.  Copulas have been increasingly 

explored in the literature. Joe (1997) and Nelsen (2006) provided a complete 

monograph of an introduction to the theory of copulas and a large selection of related 
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models. Another reviews such as Frees and Valdez (1998) and Cherubini et al. (2004) 

provided more detail about the application in actuarial and financial settings. 

2.2) Copula properties and dependence structure 

(1) Copula properties 

In this section, we give the general definition of copulas and an 

equivalent definition for the random variable context. We begin with the definition of 

copula for the bivariate case (Nelson (2006)). 

Definition 1. A copula  is a function C : ]1,0[]1,0[ 2   which satisfies: 

 (a) For every vu,  in ]1,0[ , ),,0(0]0,[ vCuC  and uuC ]1,[ and ;],1[ vvC   

 (b) For every 2121 ,,, vvuu in ]1,0[  such that 21 uu  and 21 vv  , 

0),(),(),(),( 11211222  vuCvuCvuCvuC . 

The importance of copulas in statistics is described in Sklar’s Theorem: 

Theorem 1 Sklar’s Theorem Let X and Y be random variables with joint distribution 

function H and marginal distribution functions uxF )(  and vyG )( , respectively. 

Then there exists a copula C such that 

),( yxH  = ))(),(( yGxFC     

= ),( vuC     (3.65) 

for all x, y in   where ),( vuC  is the copula that captures the 

dependence structure between X and Y.  If F and G are continuous, then C is unique. 

Otherwise, the copula C is uniquely determined on Ran(F)×Ran(G). Conversely, if 

C is a copula and F and G are distribution functions, then the function H, defined by 

(3.65), is a joint distribution function with margins F and G. 

Thus copulas link joint distribution functions to their one-dimensional 

margins as proven by Nelsen(2006). 
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The function ),( vuC is known as the copula of ),( yxH  and describe 

how ),( yxH  is coupled with the marginal distribution function )(xF  and )(yG . 

Copulas themselves can be generated in several different ways, including the method 

of inversion, geometric methods and algebraic methods (Nelson (2006)). For instant, 

given a known bivariate distribution ),( yxH  with continuous margin )(xF  and 

)(yG , the inversion method inverts the relationship in equation (3.66) to obtain a 

copula: 

),( vuC  = ),Pr( vVuU   

  = ))(),(Pr( 11 yFYxFX    

   =  )(),( 11 yFyxFxF      (3.66) 

As a consequence of Sklar’s Theorem, we encounter the Fréchet -

Hoeffding bounds for copulas, i.e., for any copula C  and for all vu, in ]1,0[ , 

),(),min(),()0,1max(),( vuMvuvuCvuvuW    

          (3.67) 

where W is termed the Fréchet lower bound for copulas and M is the 

Fréchet upper bound for copulas. All other copulas take values in between these 

bounds on each point of their domain, the unit square. The Fréchet upper bound 

corresponds to perfect positive dependence and the lower bound corresponds to 

perfect negative dependence. 

 

(2) Dependence Structure 

As copulas are regularly used as tool for modeling and capturing the 

dependence of two or more random variables, one must specify of how to measure 

dependence. Traditionally the dependence between two random variables is measured 

by the linear correlation coefficient. However, the linear correlation is useful only for 

elliptical distribution and when the dependence is not described by an elliptical 

distribution it can be quite misleading to use a linear correlation. Therefore, it might 

be more reasonable to use copula based measures of dependence, which are scale 
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invariant (see Embrechts (2002) for caveats on using the correlation coefficient for 

measuring dependence).  

One of these more robust copula based measures are Spearman’s rho 

and Kendall's tau, which provide alternative nonparametric measurements of 

dependence between variables that, unlike the simple correlation coefficient 

(Pearson’s correlation coefficient), do not require a linear relationship between the 

variables.  Spearman’s rho and Kendall's tau rely on the concept of concordance. 

Consider two pairs of observations ( ii yx , ) and ( jj yx , ) from the continuous random 

variables(X,Y). We call these pairs of observations concordant if  

( ji xx   )( ji yy  ) > 0 and discordant if ( ji xx   )( ji yy  )  < 0. Hence, 

two random variables are said to be concordant, when large values of one random 

variable are associated with large values of the other, and similarly small values tend 

to be associated with each other. 

Using the concept of concordance, we are now able to introduce a 

measure of association known as Kendall's tau. Its sample version is defined as the 

fraction of concordant pairs of observations in the sample minus the fraction of 

discordant pairs of observations. The population version of Kendall's tau is defined as 

the difference between the probability of concordance and the probability of 

discordance. 

]0))([(]0))([( 21212121  YYXXPYYXXPXY  

          (3.68) 

These probabilities can be evaluated by integrating over the distribution 

of ( 2X , 2Y ).So that, in terms of copulas, Kendall’s  becomes  

  

1

0

1

0

1),(),(4 vudCvuCC      (3.69) 

where C is the copula associated to (X, Y ). 

Note that the integral above is the expected value of the random 

variable ),( VUC , 

where VU , ~ )1,0(U with joint distribution function ,C i.e. 

1)),((4),(  VUCEYX . 
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Another measure of association of (X,Y) is the Spearman’s rho. 

Spearman’s rho for the random vector (X,Y) is defined as 

   )0))((0))(((3 31213121  YYXXPYYXXPXY

         (3.70) 

where ),(),,( 2211 YXYX and ),( 33 YX are independent random vectors with 

a common joint distribution function H. 

In terms of the copula C  associated to the pair ),( YX  becomes   

3)),((123),(123),(12

1

0

1

0

1

0

1

0

    VUCEdudvvuCvuuvdCC    

(3.71) 

In addition, both assume the value of zero under independence and are 

not dependent on the margins F(.) and G(.). Hence, these two concordance measures 

are used to characterize dependence structures in the copula literature, rather than the 

familiar Pearson’s correlation coefficient. 

 

3) Example of copulas 

This section will present a few of copulas that were used in this study. 

For exhaustive lists of copula functions and various methods for constructing copulas 

books by Joe (1997) and Nelson (2006) may be consulted. Moreover, the copula 

family studied in this dissertation includes the Gaussian copula, Gumbel (1960) 

copula , Ali-Mikhill-Haq (1978) copula, Clayton (1978) copula, Frank (1979) copula, 

and Joe (1997)  copula which are shown as follows: 
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(1) Gaussian copulas 

The (bivariate) Gaussian copula proposed by Lee (1983). It can easily be 

derived from the bivariate normal distribution and has the following distribution 

function 

);,( vuCGaussian  = ));(),(( 11  vuG

  

= dsdt
tstsu v

 
 

  















)( )(

2

22

2

1 1

)1(2

2
exp

12

1 






  

(3.72) 

where   is the linear correlation coefficient of the corresponding 

bivariate normal distribution  and restricted to the interval (-1, 1) and G  is the 

standard bivariate normal distribution and 1  denoting the inverse of the univariate 

Gaussian distribution. Note that it can be shown that the Gaussian copula does not 

have a tail dependence for   < 1. The (bivariate) Gaussian copula satisfies  

),(),(),( vuMvuCvuW Gaussian  , which is said to be comprehensive. 

 

(2) Archimedean Family of Copulas 

One of the most important classes of copulas is known as Archimedean 

copulas. There are a various reasons to apply Archimedean family in practice. These 

copulas are very easy to construct. Archimedean copulas allow a wide range of 

possible dependence behavior and all commonly encountered Archimedean copulas 

have simple closed form expressions. In addition, the Archimedean representation 

allows us to reduce the study of a multivariate copula to a single univariate function. 

An Archimedean copula can be written in the following way: 

)]()([),( 1 vuvuC         (3.73) 

for all ]1,0[, vu  and where     ,01,0:  is called the generator of 

the copula which satisfying: 0)0(   and 0)1(  ; 0)(),1,0(  tt  ,this says that 

  is decreasing; 0)(),1,0(  tt  , this says that  is convex. 
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   1,0,0:1   is the inverse of the generator of the copula, which is 

defined as 

 




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

0

)(
)(

1

1 t
t


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t

t

)0(;

)0(0;




 

where  tttt  )(inf)(1   for )1,0(t . 

 The (.)  depends on a single parameter   that reflect the degree of 

dependence. Archimedean copula are systematic in the sense of ),( vuC = ),( uvC and 

associative in the sense of  wvuCC ),,( =  ),(, wvCuC . 

For   with a continuous second derivative, we can compute the density 

),( vuf of C by taking derivatives: 

 ),( vuC    = )()( vu    

  ),(),( vuCvuC u   = )(u  

  ),(),(),( vuCvuCvuC uv  +   ),(),( , vuCvuC vu  = 0 

Therefore,  

),(),( , vuCvuf vu  = 
 

  vuC

vuCvuCvuC uv

,

),(),(),(








   

          (3.74) 

where the derivatives do not exists on the boundary )0()()(   vu . 

The conditional density of the Archimedean copula, which will be used 

in this study, is  

)),((

)(),(

vuC

v

v

vuC













     (3.75) 

obtained by differentiating (3.73) with respect to v and rearranging the 

result. 
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The measure of dependence is relatively straightforward for 

Archimedean copulas because Kendall’s tau simplifies it to a function of the generator 

function  

    


1

0
)(

)(
41 dt

t

t




     (3.76) 

See Genest and Mackay (1986) for a derivation. 

Particular examples are )ln()( tt   and  )ln()( tt  , which are, 

respectively, generators of product copula   and the Gumbel family of copulas 

);,( vuC     








 
1

lnlnexp vu  where ),1[  . Example of families of 

Archimedean copula are listed in Table 3.4 

Table 3.4. Examples of families of bivariate Archimedean copulas. 

Name Copula ),( vuC  
Parameter 

space 
Generator )(t  Kendall’s   

Clayton  
1

)1(



  vu  0  )1(
1




t  10   
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 1
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

e

e t

 11    

Ali-Mikhail-

Haq )1)(1(1 vu

uv


 11    tt /)]1(1ln[   3

1
1817.0  

 

Joe  )1()1()1()1((1 vuvu   1  ))1(1ln( t  10   

Source : Nelson (2006) 

Frank Copula is “comprehensive” in the sense that it attains all of the 

Fréchet lower bound, independence, and the Fréchet upper bound. Frank Copula 

permits negative dependence between the marginals and the dependence is symmetric 

in both tails, similar to the Gaussian and Student-t copulas. Moreover, for the Clayton 

copula, the parameter of dependence was restricted on the region ),0(  which means 
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it attains the Fréchet upper bound, but for no value does it attain the Fréchet lower 

bound. The Clayton copula cannot account for negative dependence, but it exhibits 

strong left tail dependence and relatively weak right tail dependence. Another Copula 

family is Gumbel Copula. The dependence parameter of Gumbel Copula is restricted 

to the interval ),1[  which corresponds independence and the Fréchet upper bound, 

but this copula does not attain the Fréchet lower bound for any value of  .Similar to 

the Clayton copula, Gumbel does not allow negative dependence, but in contrasts to 

Clayton, Gumbel exhibits strong right tail dependence and relatively weak left tail 

dependence. Moreover, for Ali-Mikhail-Haq , the copula parameter  lies on a closed 

interval between -1 and +1 which dependence parameter shows that it does not 

contain the Fréchet bounds. The dependence parameters of Joe Copula are the same as 

Gumbel Copula which is restricted to the interval ),1[  . 

For Archimedean copulas, the following conditional density appearing 

in the likelihood (3.62) simplifies to  
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    (3.77) 

 where C  denotes    )(),(, ititu FuFCFFC   , which is evaluated 

as )]()([1

 FFu  . 

 

 

The single observation likelihood of any Archimedean copula families 

can be written as 
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(3.78) 

where  iituitu zFuF  )( ,    iititit xyFF    . 

As the functional form of )(t  is generally quite easy to derive, the 

likelihood is relatively easy to code. For example, under the Clayton family , the 

likelihood is  
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In Table 3.5, expresses for the component 















)(

)(
1









C

F
of the 

likelihood given for the selected families of Archimedean copulas. 
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Table 3.5 Expressions for 
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Source: Smith(2003) 

 

4) Selection of the copula function 

The choice of copula can be made using information criteria such as the 

Akaike information criterion (AIC) or the Bayesian information criterion (BIC) or the 

Schwartz information criterion (SIC). Both AIC and BIC penalize the negative 

maximum log-likelihood of the estimated model by the number of parameters in the 

model. These criteria are AIC = -2 log (maximum likelihood) + 2 (number of 

parameters) and BIC = -2 log (maximum likelihood) + (number of parameters)(log of 

the sample size). A smaller relative AIC or BIC represents a better model fit.  


