

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่

Copyright[©] by Chiang Mai University All rights reserved

Figure 1 Linearity between standard chlorpyrifos concentration (0.1, 0.5, 1.0, 1.5 and 2.0 mg/l) and area of GC-FPD peak from chromatograph.

Table 1 Percent degradation of chlorpyrifos by ultrasonication, ozonation and the combination treatments.

Treatment			Chlorpyrifos o	degradation (%)*	63	
Treatment	10 min	20 min	30 min	40 min	50 min	60 min
Control	1.40±0.83d	5.87±1.28d	7.87±0.85c	10.76±0.39c	11.37±0.44c	11.38±1.54c
108 kHz	19.67±3.07bc	35.11±6.22b	41.20±4.91ab	50.65±12.91ab	54.18±3.78b	55.81±11.18b
400 kHz	17.96±0.10bc	30.19±3.72bc	37.85±4.70b	43.29±6.25b	48.87±7.81b	58.80±9.16b
700 kHz	18.27±3.21bc	25.95±5.13bc	30.73±5.97b	39.62±6.05b	48.24±7.81b	63.05±7.39b
1 MHz	31.09±10.96b	43.13±2.00ab	48.04±13.47ab	61.25±10.49ab	69.03±5.73ab	75.00±5.85b
O_3	38.33±5.17ab	44.10±10.2ab	52.54±13.41ab	57.42±13.76ab	61.52±4.84b	64.54±3.41b
108 kHz/O ₃	31.42±10.31b	51.60±7.21ab	58.60±5.61ab	58.06±12.87ab	63.41±4.61b	65.44±3.47b
400 kHz/O ₃	41.21±5.05ab	52.20±6.55ab	59.04±4.01ab	57.11±11.07ab	66.93±11.59ab	66.84±9.95b
700 kHz/O ₃	29.92±5.11b	49.47±12.01ab	45.92±5.42ab	51.49±5.76ab	59.99±7.75b	71.88±8.37b
1 MHz/O ₃	59.92±6.67a	72.03±9.34a	73.98±6.93a	75.90±6.00a	80.48±5.33a	83.77±4.96a

^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

Table 2 Chlorpyrifos concentration by ultrasonication, ozonation and the combination treatments.

T44	Chlorpyrifos concentration (mg/l)*						
Treatment	10 min	20 min	30 min	40 min	50 min	60 min	
Control	0.97±0.01a	0.93±0.00a	0.91±0.00a	0.88±0.01a	0.87±0.01a	0.87±0.01a	
108 kHz	0.81±0.05ab	0.65±0.04ab	0.59±0.12b	0.49±0.13bc	0.46±0.14bc	0.41±0.05b	
400 kHz	0.81±0.03ab	0.71±0.04ab	0.63±0.05ab	0.58±0.07b	0.52±0.03b	0.41±0.03b	
700 kHz	0.82±0.04ab	0.75±0.05ab	0.70±0.05ab	0.61±0.07b	0.52±0.07b	0.37±0.07b	
1 MHz	0.69±0.10b	0.57±0.08bc	0.52±0.07bc	0.39±0.05bc	0.31±0.05bc	0.25±0.03b	
O_3	0.62±0.10bc	0.56±0.09bc	0.47±0.08bc	0.43±0.10bc	0.38±0.04bc	0.33±0.03b	
108 kHz/ O ₃	0.69±0.09b	0.69±0.06bc	0.48±0.05bc	0.41±0.02bc	0.36±0.04bc	0.34±0.03b	
400 kHz/ O ₃	0.59±0.04bc	0.48±0.06bc	0.41±0.06bc	0.43±0.10bc	0.33±0.07bc	0.33±0.08b	
700 kHz/ O ₃	0.69±0.03b	0.49±0.10bc	0.53±0.04bc	0.48±0.04bc	0.40±0.06bc	0.28±0.07b	
1 MHz/ O ₃	0.41±0.05c	0.28±0.09c	0.27±0.07c	0.24±0.06c	0.20±0.05c	0.17±0.04c	

^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

Table 3 Temperature of chlorpyrifos after treated with ultrasonication, ozonation and the combination treatments.

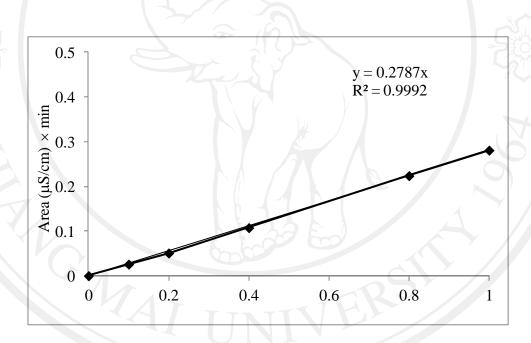
Treatment	Temperature of chlorpyrifos (°C)*							
	10 min	20 min	30 min	40 min	50 min	60 min		
Control	25.77±0.75e	25.80±0.75e	25.79±0.75d	25.82±0.75e	25.83±0.75d	25.85±0.75c		
108 kHz	30.77±0.83ab	32.17±0.73ab	33.00±1.04ab	33.10±1.42ab	33.23±1.45ab	33.40±1.44a		
400 kHz	28.97±0.88bcd	29.80±0.68bcd	29.97±0.78cd	30.23±0.35bc	30.23±0.84bc	29.97±0.67b		
700 kHz	28.40±0.70bcde	29.47±1.06bcd	29.53±0.82cd	29.60±0.70cd	29.47±0.68c	29.45±0.47b		
1 MHz	32.40±0.64a	33.80±0.79a	35.00±0.98a	34.67±0.87a	34.57±0.69a	34.23±0.64a		
O_3	27.90±1.28de	27.0±0.87de	27.90±1.30d	27.80±0.95de	27.60±1.40d	27.30±0.80c		
108 kHz/O ₃	29.10±0.80bcd	28.93±0.87cd	29.67±0.83cd	29.37±1.25cd	29.65±0.92c	29.50±0.95b		
400 kHz/O ₃	28.03±0.32cde	27.17±0.79de	28.27±0.22cde	27.47±0.94cde	27.67±0.41cd	27.70±1.00bc		
700 kHz/O ₃	27.47±0.89de	27.33±1.42de	27.73±0.94de	27.30±1.30cde	27.60±1.05cd	27.47±1.23bc		
1 MHz/O ₃	30.33±0.69ab	30.77±0.85bc	30.80±0.68bc	30.57±1.04bc	30.53±1.03bc	29.97±0.96b		

^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

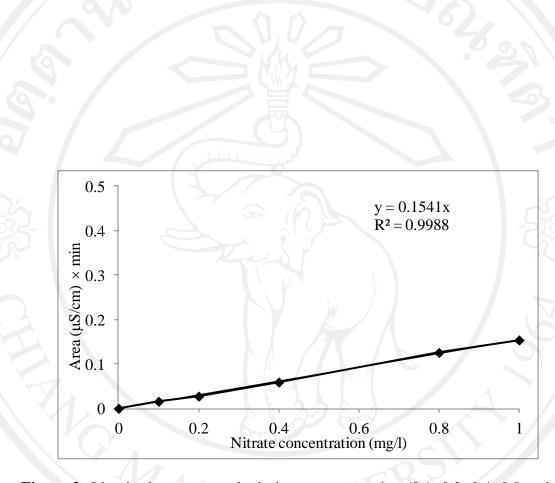
Table 4 pH of chlorpyrifos after treated with ultrasonication, ozonation and the combination treatments.

10 min 7.46±0.13a	20 min 7.46±0.13a	30 min	40 min	50 min	60 m:
7.46±0.13a	7.46+0.120			50 mm	60 min
	7. 4 0±0.13a	7.47±0.13a	7.46±0.13a	7.45±0.13a	7.47±0.13a
6.17±0.04bcd	6.14±0.17bcd	5.98±0.21bcd	6.09±0.23b	6.11±0.23b	5.84±0.11b
6.05±0.04cd	5.95±0.13def	5.75±0.11bcd	5.91±0.13bc	5.73±0.17bc	5.51±0.05bc
6.10±0.28bcd	6.01±0.17cde	5.69±0.15cd	5.77±0.24bc	5.53±0.17bc	5.45±0.11bc
5.87±0.37cd	5.81±0.30ef	5.30±0.22de	5.31±0.20cd	5.08±0.15cd	4.78±0.16cd
6.22±0.14bc	6.45±0.25bcde	6.11±0.06bc	6.33±0.18b	5.87±0.19bc	5.61±0.74b
6.85±0.35ab	6.77±0.36b	6.08±0.48bc	6.34±0.46b	6.13±0.15b	5.63±0.10b
6.84±0.26ab	6.64±0.23bcd	6.36±0.23bc	6.28±0.24b	5.81±0.42bc	6.19±0.10b
6.66±0.30bc	6.71±0.19bc	6.53±0.31b	6.44±0.23b	6.05±0.25b	6.14±0.10b
6.41±0.19d	6.30±0.12f	4.85±0.16e	4.74±0.05d	4.62±0.04d	4.49±0.06d
((5.22±0.14bc 5.85±0.35ab 5.84±0.26ab 5.66±0.30bc	6.22±0.14bc 6.45±0.25bcde 6.85±0.35ab 6.77±0.36b 6.84±0.26ab 6.64±0.23bcd 6.66±0.30bc 6.71±0.19bc	6.22±0.14bc 6.45±0.25bcde 6.11±0.06bc 6.85±0.35ab 6.77±0.36b 6.08±0.48bc 6.84±0.26ab 6.64±0.23bcd 6.36±0.23bc 6.66±0.30bc 6.71±0.19bc 6.53±0.31b	6.22±0.14bc 6.45±0.25bcde 6.11±0.06bc 6.33±0.18b 6.85±0.35ab 6.77±0.36b 6.08±0.48bc 6.34±0.46b 6.84±0.26ab 6.64±0.23bcd 6.36±0.23bc 6.28±0.24b 6.66±0.30bc 6.71±0.19bc 6.53±0.31b 6.44±0.23b	6.22±0.14bc 6.45±0.25bcde 6.11±0.06bc 6.33±0.18b 5.87±0.19bc 6.85±0.35ab 6.77±0.36b 6.08±0.48bc 6.34±0.46b 6.13±0.15b 6.84±0.26ab 6.64±0.23bcd 6.36±0.23bc 6.28±0.24b 5.81±0.42bc 6.66±0.30bc 6.71±0.19bc 6.53±0.31b 6.44±0.23b 6.05±0.25b

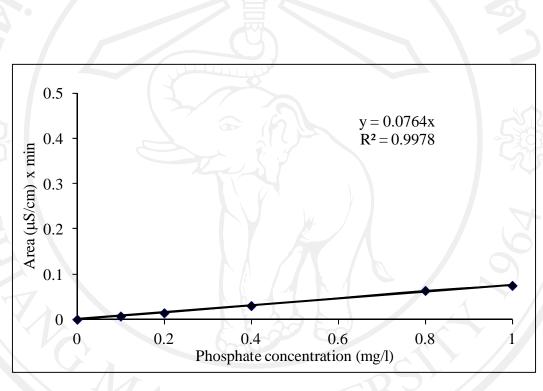
^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.


Table 5 ORP value of chlorpyrifos after treated with ultrasonication, ozonation and the combination treatments.

Treatment	ORP value of chlorpyrifos (mV)*							
	10 min	20 min	30 min	40 min	50 min	60 min		
Control	-25.00±7.79d	-23.33±7.79f	-22.33±7.79e	-20.33±7.79d	-18.33±7.79d	-18.33±7.79d		
108 kHz	58.50±2.85bc	61.20±10.97bcde	70.53±12.93bcd	64.33±13.66c	66.13±12.31c	79.30±6.81c		
400 kHz	65.57±2.89bc	70.10±5.97bc	83.57±6.74bc	74.87±7.88bc	83.50±8.16bc	98.50±2.46bc		
700 kHz	62.67±16.52bc	68.33±9.93bcd	87.67±8.78bc	83.23±14.08bc	96.97±8.53bc	101.23±6.96bc		
1 MHz	76.70±22.23ab	81.17±18.77ab	112.87±13.27ab	111.97±12.22ab	125.63±11.48ab	143.93±9.45ab		
O_3	55.07±8.84bc	41.20±15.11bcde	61.13±3.50cd	49.30±10.79c	75.50±9.21c	98.50±0.49bc		
108 kHz/O ₃	17.83±5.25c	22.63±21.71e	63.73±28.81cd	48.80±27.79c	61.50±25.65c	90.77±44.31c		
400 kHz/O ₃	25.60±8.82c	30.33±13.42cde	47.6±13.92cd	51.33±14.51c	80.07±25.13bc	56.97±5.83c		
700 kHz/O ₃	29.33±17.93c	26.20±11.38de	36.57±18.43d	42.50±13.54c	64.57±14.98c	59.93±5.76c		
1 MHz/O ₃	103.93±11.20a	111.37±6.93a	138.53±9.31a	144.50±2.82a	159.33±2.18a	151.50±3.70a		


^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

Preparation of mobile phase for anion analysis by IC


Sodium carbonate anhydrous (Na_2CO_3) 3.4096 g (% assay 99.9 %) add Sodium carbonate anhydrous ($NaHCO_3$) 0.8426 g (assay 97.7 %) were dissolved in deionized water volume 100 ml. The solution was mobile phase stock (3.2 mM of Na_2CO_3 and 1.0 mM of $NaHCO_3$). The stock solution 20 ml was diluted with deionized water to be 2 l, and then the solution was degassing sonication for 25 min.

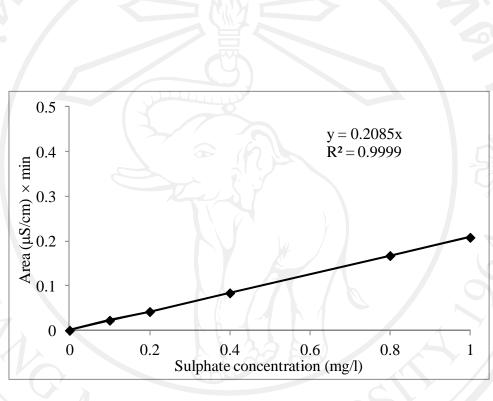

Figure 2 Linerity between standard chloride concentration (0.1, 0.2, 0.4, 0.8 and 1.0 mg/l) and area of chloride ion peak from IC.

Figure 3 Linerity between standard nitrate concentration (0.1, 0.2, 0.4, 0.8 and 1.0 mg/l) and area of nitrate ion peak from IC.

Figure 4 Linerity between standard phosphate concentration (0.1, 0.2, 0.4, 0.8 and 1.0 mg/l) and area of phosphate ion peak from IC.

Figure 5 Linerity between standard sulphate concentration (0.1, 0.2, 0.4, 0.8 and 1.0 mg/l) and area of sulphate ion peak from IC.

Table 6 Chloride concentration of chlorpyrifos after treated with ultrasonication, ozonation and the combination treatments.

Treatment _	Chloride concentration (mg/l)*							
1 reatment _	20 min	40 min	60 min					
Control	0.03±0.01f	0.03±0.01d	0.03±0.01d					
108 kHz	0.13±0.00b	0.16±0.02bc	0.17±0.04bc					
400 kHz	0.11±0.01c	0.14±0.02c	0.16±0.02c					
700 kHz	0.10±0.00cd	0.14±0.01c	0.19±0.01bc					
1 MHz	0.13±0.00e	0.15±0.00bc	0.18±0.01bc					
O_3	0.09±0.00d	0.16±0.00bc	0.21±0.01abc					
108 kHz/O ₃	$0.14 \pm 0.00 b$	0.17±0.01bc	0.21±0.01abc					
400 kHz/O ₃	0.14±0.01b	0.18±0.01b	0.21±0.01abc					
700 kHz/O ₃	0.11±0.00c	0.16±0.00bc	0.22±0.02ab					
1 MHz/O ₃	0.21±0.00a	0.23±0.01a	0.26±0.01a					

^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

Table 7 Nitrate concentration of chlorpyrifos after treated with ultrasonication, ozonation and the combination treatments.

Transfer	Nitrate concentration (mg/l)*						
Treatment	20 min	40 min	60 min				
Control	0.03±0.02b	0.03±0.02ab	0.03±0.02c				
108 kHz	0.02±0.01b	0.05±0.01ab	0.07±0.03abc				
400 kHz	0.05±0.04ab	0.05±0.02ab	0.06±0.00bc				
700 kHz	0.02±0.01b	0.05±0.02ab	0.08±0.01abc				
1 MHz	0.03±0.01b	0.05±0.01ab	0.08±0.00abc				
O_3	0.09±0.03ab	0.13±0.01a	0.13±0.02ab				
108 kHz/O ₃	0.08±0.02ab	0.11±0.06ab	0.13±0.02ab				
400 kHz/O ₃	$0.09\pm0.00ab$	0.11±0.01ab	0.12±0.04ab				
700 kHz/O ₃	0.09±0.03ab	0.10±0.00ab	0.14±0.05ab				
1 MHz/O ₃	0.12±0.01a	0.12±0.04a	0.15±0.01a				

^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

Table 8 Sulphate concentration of chlorpyrifos after treated with ultrasonication, ozonation and the combination treatments.

Treatment	Sulphate concentration (mg/l)*						
Treatment	20 min	40 min	60 min				
Control	0.00±0.00a	0.00±0.00b	0.00±0.00b				
108 kHz	0.02±0.01a	0.03±0.03b	0.10±0.08ab				
400 kHz	0.04±0.04a	0.01±0.01b	0.08±0.06ab				
700 kHz	0.03±0.07a	0.02±0.02b	0.05±0.05ab				
1 MHz	0.02±0.01a	0.04±0.03b	0.10±0.09ab				
O_3	0.03±0.04a	0.06±0.01b	0.06±0.02ab				
108 kHz/O ₃	0.02±0.02a	0.03±0.02b	0.05±0.00ab				
400 kHz/O ₃	0.04±0.01a	0.03±0.02b	0.07±0.03ab				
700 kHz/O ₃	0.04±0.02a	0.06±0.03b	0.12±0.05ab				
1 MHz/O ₃	0.05±0.01a	0.15±0.06a	0.24±0.05a				

^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

Table 9 Percent degradation of chlorpyrifos on bird chilli by ultrasonication, ozonation and the combination treatments.

Tuestus and	Chlorpyrifos degradation on chilli (%)*						
Treatment	10 min	20 min	30 min	40 min	50 min	60 min	
Control	0.62±1.29d	0.95±1.14d	6.31±4.20c	11.06±2.46b	21.96±9.59c	27.54±3.01d	
108 kHz	22.06±2.40c	32.97±6.75bc	36.13±7.16ab	39.20±6.52a	41.94±5.50bc	47.36±2.93c	
400 kHz	24.43±2.93c	29.70±4.15c	32.32±4.88b	44.01±7.66a	50.77±7.12ab	53.81±6.49bc	
700 kHz	25.64±2.58cd	28.72±3.60c	33.14±4.41ab	39.28±4.79a	45.39±3.50ab	48.28±2.40c	
1 MHz	38.51±5.79abc	37.77±7.90ab	39.34±8.12ab	47.42±8.50a	51.23±6.30ab	62.44±6.56abc	
O_3	23.25±1.71c	25.25±1.12c	32.83±3.47b	42.07±4.30a	41.70±6.76bc	52.48±7.26c	
108 kHz/O ₃	42.78±12.30abc	44.89±12.76abc	51.55±11.87ab	51.02±10.34a	57.63±10.34ab	69.44±7.55ab	
400 kHz/O ₃	43.54±10.18abc	48.84±10.48abc	49.95±10.40ab	58.24±9.54a	61.58±9.29ab	69.49±6.40ab	
700 kHz/O ₃	48.41±12.41ab	56.19±10.16ab	59.25±8.96a	60.39±9.42a	63.53±8.17ab	71.15±4.34ab	
1 MHz/O ₃	50.42±10.69a	58.52±9.38a	59.81±8.63a	62.70±7.52a	66.27±2.15a	76.81±1.52a	

^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p = 0.05 using the least significant difference test.

Table 10 Chlorpyrifos concentration residue on bird chilli after treated with ultrasonication and ozonation during storage at 13°C for 4 weeks.

Treatment	Chlorpyrifos concentration residue on bird chilli (mg/l)*						
	10 min	20 min	30 min	40 min	50 min	60 min	
Control	1.13±0.03a	1.11±0.00a	1.03±0.01a	0.98±0.01a	0.85±0.03a	0.80±0.00a	
1 MHz	0.69±0.09b	0.70±0.10b	0.68±0.11b	0.59±0.12b	0.55±0.09b	0.42±0.09b	
O_3	0.85±0.05c	0.83±0.04b	0.75±0.07b	0.64±0.07b	0.65±0.10b	0.53±0.10b	
1 MHz/O ₃	0.56±0.07cd	0.47±0.06c	0.46±0.06c	0.42±0.05bc	0.38±0.05c	0.26±0.03c	

^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

Table 11 Percentage of weight loss of bird chilli after treated with ultrasonication and ozone treatment for 60 min for storage at 13°C for 4 weeks.

Treatment _	Percent weight loss of bird chilli (%)*							
Treatment _	1 week	2 weeks	3 weeks	4 weeks				
Control	3.29±0.46a	7.46±1.16a	11.65±0.83a	15.74±1.36a				
1 MHz	3.43±0.36a	8.29±0.96a	12.97±1.48a	17.68±1.96a				
O_3	3.19±0.18a	7.64±0.27a	11.71±0.56a	15.78±0.87a				
1 MHz/O ₃	3.42±0.42a	8.21±1.05a	13.00±0.57a	17.92±1.27a				

^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

Table 12 Disease incidence of chilli after treated with ultrasonication and ozone treatment for 60 min for storage at 13°C for 4 weeks.

Treatment	Disease incidence of chilli (score)*							
Treatment _	1 week	2 weeks	3 weeks	4 weeks				
Control	1.00±0.00a	1.00±0.00a	1.53±0.13a	2.60±0.16a				
1 MHz	1.00±0.00a	1.00±0.00a	1.00±0.00b	2.07±0.12b				
O_3	1.00±0.00a	1.00±0.00a	1.60±0.13a	2.00±0.17b				
1 MHz/O ₃	1.00±0.00a	1.00±0.00a	1.00±0.00b	1.47±0.17c				

^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

Table 13 L* value of chilli after treated with ultrasonication and ozone treatment for 60 min for storage at 13°C for 4 weeks.

Treatment _	L* value of chilli*				
	0 week	1 week	2 weeks	3 weeks	4 weeks
Control	46.45±1.61a	47.98±1.04ab	49.77±1.16a	45.51±1.17b	47.63±0.99a
1 MHz	47.99±1.11a	47.06±0.56ab	49.76±1.46a	49.69±1.15a	49.80±0.55a
O_3	49.26±0.55a	49.42±1.22b	50.31±0.75a	48.74±1.17ab	50.09±0.33a
1 MHz/O ₃	49.40±1.04a	50.05±0.33a	50.78±1.30a	48.05±0.57ab	49.39±2.21a

^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

Table 14 a* value of chilli after treated with ultrasonication and ozone treatment for 60 min for storage at 13°C for 4 weeks.

Treatment	a* value of chilli*					
	0 week	1 week	2 weeks	3 weeks	4 weeks	
Control	-5.91±0.31a	-7.18±0.78a	-6.45±0.63a	-11.06±0.96a	-8.30±1.32a	
1 MHz	-7.05±0.66ab	-6.31±0.52a	-7.95±0.91a	-10.32±0.32a	-10.28±0.72a	
O_3	-7.36±0.14ab	-7.73±0.74a	-8.05±0.37a	-10.81±1.26a	-9.14±0.72a	
1 MHz/O ₃	-6.68±0.29a	-8.45±0.82a	-8.18±0.70a	-9.63±0.98a	-9.54±0.10a	

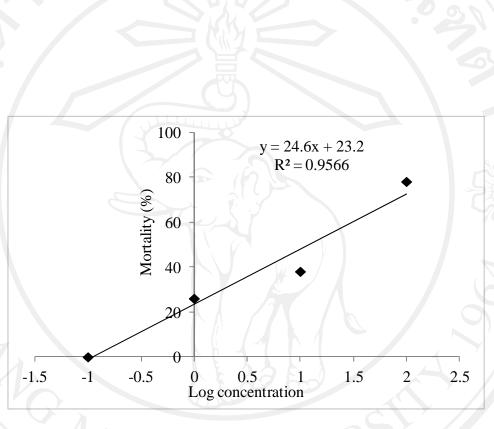
^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

Table 15 b* value of chilli after treated with ultrasonication and ozone treatment for 60 min for storage at 13°C for 4 weeks. Means \pm SE within the same column followed by the same letter do not differ significantly at p = 0.05 using the least significant difference test.

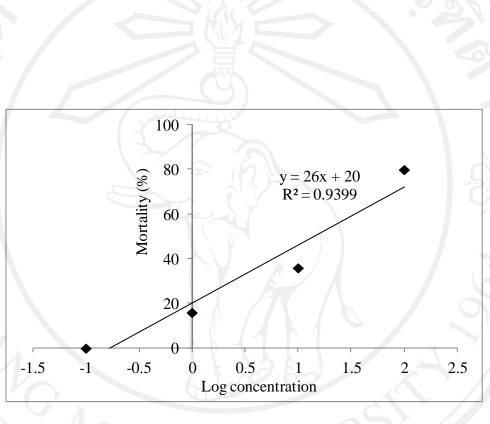
Treatment	b* value of chilli*						
	0 week	1 week	2 weeks	3 weeks	4 weeks		
Control	7.50±1.37a	10.17±0.77ab	8.67±1.37a	15.74±1.72a	12.78±2.23a		
1 MHz	8.74±2.81a	8.02±0.68b	10.63±1.50a	15.10±0.09a	17.25±2.99a		
O_3	9.58±0.32a	10.82±1.11ab	11.31±0.91a	16.84±2.12a	15.11±1.69a		
1 MHz/O ₃	8.97±0.60a	12.20±1.07a	10.07±1.72a	14.37±2.03a	14.26±0.48a		

^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

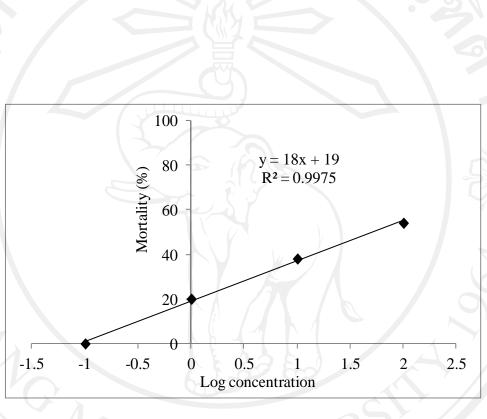
Table 16 Total sensory quality evaluation of chilli after treated with ultrasonication and ozone treatment for 60 min during storage at 13°C for 4 weeks.


Sensory	Treatment	Total sensory quality evaluation of chilli (score)*				
quality	Treatment	1 week	2 weeks	3 weeks	4 weeks	
	Control	8.53±0.17a	6.13±0.46c	5.13±0.46c	3.20±0.38b	
	1 MHz	8.87±0.09a	7.73±0.18b	7.53±0.19ab	4.93±0.28a	
Appearance	O_3	8.78±0.12a	7.87±0.22b	6.87±0.22b	5.00±0.40a	
	1 MHz/O ₃	8.80±0.11a	8.73±0.12a	8.27±0.15a	5.00±0.52a	
7 2	Control	8.20±0.20b	7.93±0.27b	7.00±0.29c	5.00±0.28c	
Color	1 MHz	8.67±0.13a	8.47±0.17a	8.20±0.20ab	7.00±0.20a	
Color	O_3	8.60±0.13ab	8.53±0.17ab	7.60±0.21bc	6.27±0.32ab	
	1 MHz/O ₃	8.60±0.13ab	8.53±0.13a	8.27±0.15a	6.00±0.26b	
	Control	8.40±0.27a	6.20±0.22c	5.20±0.22c	3.20±0.31b	
Odor	1 MHz	8.53±0.13a	8.40±0.16a	7.93±0.23a	4.67±0.36a	
Odor	O_3	8.53±0.22a	7.40±0.31b	6.27±0.34b	5.27±0.45a	
	1 MHz/O ₃	8.67±0.13a	8.53±0.13a	8.13±0.19a	5.67±0.49a	
	Control	8.53±0.13a	7.33±0.36c	6.40±0.39b	3.27±0.32b	
A coomto bility	1 MHz	8.60±0.13a	8.27±0.12ab	8.07±0.15a	5.00±0.63a	
Acceptability	O_3	8.67±0.13a	7.60±0.25bc	6.60±0.25b	5.07±0.45a	
	1 MHz/O ₃	8.67±0.13a	8.47±0.13a	8.20±0.17a	5.80±0.55a	
	Control	8.42±0.19a	6.90±0.33c	5.93±0.34c	3.67±0.32b	
Total	1 MHz	8.67±0.12a	8.22±0.16ab	7.93±0.19a	5.40±0.37a	
Total	O_3	8.65±0.15a	7.85±0.24b	6.84±0.26b	5.40±0.41a	
	1 MHz/O ₃	8.69±0.12a	8.57±0.13a	8.22±0.17a	5.62±0.46a	

^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.


Table 17 Chlorpyrifos concentration residue on chilli after treated with ultrasonication and ozonation during storage at 13°C for 4 weeks.

Treatment _	Chlorpyrifos concentration residue on chilli during storage (mg/l)*						
	0 week	1 week	2 weeks	3 weeks	4 weeks		
Control	0.80±0.00a	0.48±0.05a	0.42±0.06a	0.45±0.05a	0.30±0.02a		
1 MHz	0.42±0.05b	0.46±0.04a	0.34±0.06ab	0.36±0.02a	0.22±0.02b		
O_3	0.53±0.06b	0.38±0.04a	0.40±0.04a	0.35±0.06a	0.24±0.01b		
1 MHz/O ₃	0.26±0.01c	0.21±0.01b	0.23±0.02b	0.17±0.01b	0.15±0.01c		


^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

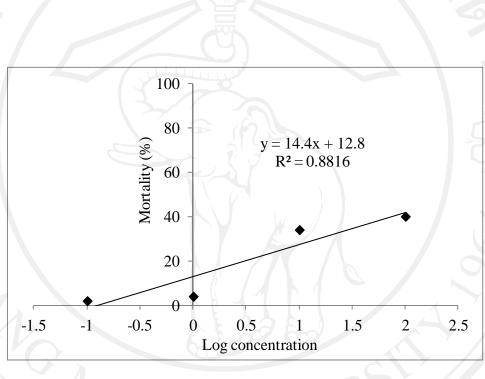

Figure 6 Mortality of brine shrimp after treated with standard chlorpyrifos various concentration at 0, 0.1, 1.0, 10.0 and 100 mg/l for 18 h.

Figure 7 Mortality of brine shrimp after treated chlorpyrifos solution with ultrasonication various concentration at 0, 0.1, 1.0, 10.0 and 100 mg/l for 18 h.

Figure 8 Mortality of brine shrimp after treated chlorpyrifos solution with ozonation various concentration at 0, 0.1, 1.0, 10.0 and 100 mg/l for 18 h.

Figure 9 Mortality of brine shrimp after treated chlorpyrifos solution with ultrasonication combined ozonation various concentration at 0, 0.1, 1.0, 10.0 and 100 mg/l for 18 h.

Table 18 Mortality of brine shrimp after treated with wastewater from chilli washing using ultrasonication, ozonation and the combination treatments.

Treatment	410.	Mortality of br	rine shrimp (%)*	*
Treatment	0 h	6 h	12 h	18 h
Control	0.00±0.00a	0.00±0.00a	4.00±2.45a	12.00±3.74a
1 MHz	0.00±0.00a	0.00±0.00a	2.00±2.00a	6.00±4.00ab
O_3	0.00±0.00a	0.00±0.00a	2.00±2.00a	12.00±2.00a
1 MHz/O ₃	0.00±0.00a	0.00±0.00a	0.00±0.00a	2.00±1.00b

^{*}Means \pm SE within the same column followed by the same letter do not differ significantly at p=0.05 using the least significant difference test.

CURRICULUM VITAE

Name Miss Sarunya Pengphol

Date of Birth 31 July 1981

Educational Background

High School Nakhon Sawan School, Nakhon Sawan, 1999

Bachelor Degree Plant Production Technology, Faculty of Technology,

Mahasarakham University, Mahasarakham, 2003

Master Degree Postharvest Technology, Postharvest Technology

Research Institute, Graduate School, Chiang Mai

University, Chiang Mai, 2007

Scholarship Postharvest Technology Innovation Center,

Commission on Higher Education, Bangkok, Thailand,

2010 - 2011

The Scholarship for the Ph.D. program from Nakhon

Sawan Rajabhat University, 2008 - present

Publications

Whangchai, K. and S. Pengphol. 2008. Effect of Ozone on postharvest diseases control and catalase activity changes in longan fruit during storage at low temperature. Burapha Sci. J. 13: 55 - 62.

Pengphol, S., K. Whangchai, J. Uthaibutra and N. Nomura. 2011. Effect of frequency and sonication times of ultrasonic irradiation in combination with ozone on postharvest chlorpyrifos residue reduction in fresh bird chilli (*Capsicum frutescens* Linn.) fruits. Agricultural Sci. J. 42: 1(Suppl.) 236 - 239.

- Whangchai, K., J. Uthaibutra, S. Phiyanalinmat, S. Pengphol and N. Nomura. 2011. Effect of ozone treatment on the reduction of chlorpyrifos residues in fresh lychee fruits. Ozone: Sci. Eng. 33(3): 232 235.
- Pengphol, S., J. Uthaibutra, O. A. Arquero, N. Nomura and K. Whangchai. 2012. Oxidative degradation and detoxification of chlorpyrifos by ultrasonic and ozone treatments. J. Agric. Sci. 4(8): 164 172.
- Pengphol, S., J. Uthaibutra, O. A. Arquero, N. Nomura and K. Whangchai. 2012. Reduction of residual chlorpyrifos on harvested bird chillies (*Capsicum frutescens* Linn.) using ultrasonication and ozonation. Thai J. Agric. Sci. (In press)

