ชื่อเรื่องวิทยานิพนธ์ การวิเคราะห์หาปริมาณวิตามินในลูกยอและผลมะขามป้อมและน้ำหมัก ของพืชทั้ง 2 ชนิด

ผู้เขียน นายชลยุทธ ระวิวรรณ

ปริญญา วิทยาศาสตรมหาบัณฑิต (วิทยาศาสตร์เภสัชกรรม)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

 ผศ. ดร. ใชยวัฒน์ ใชยสุต
 ประธานกรรมการ

 รศ. ดร. บุญสม เหลี่ยวเรื่องรัตน์
 กรรมการ

 ผศ. ดร. สุนีย์ จันทร์สกาว
 กรรมการ

บทคัดย่อ

ได้ประยุกต์ระบบโครมาโทกราฟีของเหลวสมรรถนะสูงชนิดรีเวิร์สเฟสสำหรับวิเคราะห์ หาปริมาณวิตามินบางชนิด (วิตามินซี วิตามินบี วิตามินอี และเบต้า-แคโรทีน) ในผลของลูกขอและ มะขามป้อมและน้ำหมักของพืชทั้ง 2 ชนิด โดยใช้ SPE C_8 cartridge แยกวิตามินที่ละลายน้ำได้ ออกจากสารที่เราไม่ต้องการก่อนทำการฉีดเข้าระบบโครมาโทกราฟีของเหลวสมรรถนะสูง ทำการ แยกวิตามินซีและวิตามินบี โดยใช้คอลัมน์ชนิด C_{18} (Hyperclone® C_{18} ; 4.6 x 250 mm, 5 μ m) ตรวจวัดที่ความยาวคลื่น 210 นาโนเมตร และ 280 นาโนเมตร ตามลำคับ โดยใช้วัฏภาคเคลื่อนที่ แตกต่างกัน โดยใช้สารละลาย 2 เปอร์เซ็นต์ของกรดอะซิติก เป็นวัฏภาคเคลื่อนที่สำหรับวิเคราะห์ วิตามินซี ได้กราฟมาตรฐานวิตามินซี มีความเป็นเส้นตรงในช่วง 5.0-800.0 และ 100.0-1000.0 ไมโครกรัมต่อมิลลิลิตร ($r^2 > 0.999$) ค่าขีดจำกัดต่ำสุดของการวิเคราะห์วิตามินซีเท่ากับ 0.50 ไมโครกรัมต่อ มิลลิลิตร เปอร์เซนต์การคืนกลับได้จากเดิมสารละลายมาตรฐานวิตามินซีลงในสารสกัดพืชทั้ง 2 ชนิดเท่ากับ 100.37 ± 0.51 และ 99.32 ± 0.24 ตามลำดับ

วิธีที่เสนอได้ประยุกต์ในการวิเคราะห์หาปริมาณวิตามินซีในผลลูกยอและมะขามป้อม พบปริมาณวิตามินซีเฉลี่ยเท่ากับ 0.08 และ 0.21 มิลลิกรัมต่อกรัมตามลำดับ และได้วิเคราะห์หา ปริมาณวิตามินซีในน้ำหมักลูกยอและมะขามป้อม ณ เวลาต่าง ๆ กัน วันที่ 0, 7, 15, 30, 45, 60, 90 วัน พบว่าวิตามินซีมีปริมาณลดลงและไม่สามารถวิเคราะห์ได้เมื่อวันที่ 90 ของการหมัก ปริมาณ วิตามินซีในน้ำหมักลูกยอมีค่า 3.26 - 457.10 มิลลิกรัมต่อลิตร และในน้ำหมักลูกยอมีค่า 10.14 – 824.77 มิลลิกรัมต่อลิตร ตามลำดับ

ใช้เฟสเคลื่อนที่เป็นสารละลายผสมของอะซี สำหรับการวิเคราะห์หาปริมาณวิตามินปี โทรในใตรล์ ต่อ 5 มิลลิโมล โซเคียม-1-ออกเทนซัลโฟเนท ปรับพีเอช เท่ากับ 2.5 ในอัตราส่วน 75:25 โดยปริมาตร ได้กราฟมาตรฐานสำหรับวิตามินบี 1 วิตามินบี 2 วิตามินบี 3 และวิตามินบี 6 มีความเป็นเส้นตรงในช่วงความเข้มข้น 10.0- 100.0, 10.0-100.0, 10.0-100.0 และ 0.50-50.0 ใมโครกรัมต่อมิลลิลิตร โดยมีค่าสัมประสิทธิ์สัมพันธ์ความสัมพันธ์เชิงเส้น(${f r}^2$) มากกว่า 0.999 ค่า ขีดต่ำสุดของการวิเคราะห์หาวิตามินบี 1 วิตามินบี 2 วิตามินบี 3 และวิตามินบี 6 เท่ากับ 0.50, 0.10. 2.00 และ 0.05 ใมโครกรัมต่อมิลลิลิตร ตามลำคับ ค่าปิดจำกัดของการวิเคราะห์ปริมาณ เท่ากับ 1.50, 0.50, 5.00 และ 0.50 ใมโครกรัมต่อมิลลิสิตร ตามลำดับ ค่าร้อยละของการคืนกลับ เฉลี่ยของวิตามินบี 1 วิตามินบี 2 วิตามินบี 3 และวิตามินบี 6 ในผลลูกยอเท่ากับ 100.08 ± 0.27 , 100.07 ± 0.41 , 99.71 ± 0.27 และ 99.87 ± 0.18 เปอร์เซ็นต์ ตามลำคับ และมะขามป้อมเท่ากับ 99.75 ± 0.17 , 100.03 ± 0.64 , 100.61 ± 0.93 และ 99.18 ± 1.41 เปอร์เซ็นต์ ตามลำดับ วิธีที่ เสนอได้ประยุกต์ในการวิเคราะห์หาปริมาณวิตามินบีในผลลูกยอและมะขามป้อม ในผลลูกยอพบ ปริมาณวิตามินบี 3 และวิตามินบี 6 เฉลี่ยเท่ากับ 0.99 และ 0.23 มิลลิกรัมต่อกรัม ตามลำดับ และ ในมะขามป้อมพบปริมาณวิตามินบี 6 เท่ากับ 0.07 มิลลิกรัมต่อกรัม และใด้วิเคราะห์หาปริมาณ วิตามินบีในน้ำหมักลูกขอและมะขามป้อม ณ เวลาต่าง ๆ กัน วันที่ 0, 7, 15, 30, 45, 60, 90 วัน พบว่าวิตามินบีมีปริมาณลดลงจนกระทั่งไม่สามารถวิเคราะห์ได้เมื่อวันที่ 60 ของการหมัก ปริมาณ วิตามินบี 1 วิตามินบี 2 วิตามินบี 3 และวิตามินบี 6 ในน้ำหมักลูกยอมีค่า 18.55–270.52, 10.39– 69.22 , 18.62–215.74 และ 1.77–13.14 มิลลิกรัมต่อลิตร ตามลำดับ และในน้ำหมักมะขามป้อม พบปริมาณวิตามินบี 2 วิตามินบี 3 และวิตามินบี 6 มีค่า 13.76-121.45, 67.34-897.02 และ 2.09 - 5.22 มิลลิกรัมต่อลิตร ตามลำดับ

การศึกษาความคงตัวของวิตามินในน้ำหมักลูกยอและมะขามป้อม สูตรที่มีค่าความเป็น กรคสูง (ค่าพีเอชต่ำ) จะมีผลต่อความคงตัวของวิตามินและทำให้การสลายตัวของวิตามินเกิดช้าลง ในกระบวนการผลิตมีการเกิดผลพลอยได้ เช่น เอทานอล เมทานอล อะซีทัลดีไฮล์และไอโซโพรพานอล ซึ่งมีผลต่อการสลายตัวของวิตามินซี วิตามินบี1 วิตามินบี2 วิตามินบี3 และวิตามินบี6 เพราะ

วิตามินดังกล่าวมีความไวต่อสารละลายอินทรีย์ แสงและออกซิเจน ยังส่งผลต่อความคงตัวของ วิตามินดังกล่าว

ได้ประยุกต์ระบบโครมาโทกราฟีของเหลวสมรรถนะสูงชนิครีเวิร์สเฟสสำหรับหา ปริมาณวิตามินอี และเบต้า-แคโรทีน ในผลของลูกยอและมะขามป้อมและน้ำหมักของพืชทั้ง 2 ชนิด ทำการแยกวิตามินอีและเบต้า-แคโรทีนโดยใช้คอลัมน์ชนิดซี 18 (Inersil® ODS-3; 4.6 x 250 mm, 5um) โดยมีเฟสเคลื่อนที่เป็นสารละลายผสมเอทานอล ต่อ เมทานอล โดยใช้ระบบ gradient อัตราส่วนเริ่มต้น 35:65 โดยปริมาตร ได้กราฟมาตรฐานสำหรับวิตามินอี และเบต้า-แค โรทีน มีความเป็นเส้นตรงในช่วงความเข้มข้น 1.0-10.0 และ 1.0-10.0 ไมโครกรัมต่อมิลลิลิตร โดยมีค่าสัมประสิทธิ์สัมพันธ์ความสัมพันธ์เชิงเส้น (${f r}^2$) มากกว่า 0.999 ค่าขีดต่ำสุดของการ วิเคราะห์หาวิตามินอี และเบต้า-แคโรทีน เท่ากับ 0.01 และ 0.01 ไมโครกรัมต่อมิลลิลิตร ตามลำคับ ค่าขีดจำกัดของการวิเคราะห์ปริมาณเท่ากับ 0.05 และ 0.03 ไมโครกรัมต่อมิลลิลิตร ตามลำดับ ค่า ร้อยละของการคืนกลับเฉลี่ยของวิตามินอีและเบต้า-แคโรทีน ในผลลูกยอเท่ากับ 100.20 ± 1.58 และ 100.65 ± 0.87 เปอร์เซ็นต์และมะขามป้อมเท่ากับ 100.15 ± 1.31 และ 99.75 ± 0.62 เปอร์เซ็นต์ ตามลำดับ วิธีที่เสนอได้ประยุกต์ในการวิเคราะห์หาปริมาณวิตามินอีและเบต้า-แคโรทีน ในผลลูกขอและมะขามป้อม ในผลลูกขอพบปริมาณวิตามินอีและเบต้า-แคโรทีนเฉลี่ยเท่ากับ 0.31 และ 0.01 มิลลิกรัมต่อกรัม ตามลำดับ และในมะขามป้อมพบปริมาณวิตามินอีและเบต้า-แคโรทีน เฉลี่ยเท่ากับ เท่ากับ 0.04 และ 0.03 มิลลิกรัมต่อกรัม วิธีที่นำเสนอนี้สามารถนำไปวิเคราะห์หา ปริมาณวิตามินที่เป็นองค์ประกอบของพืชสมุนไพรชนิดอื่น ๆ ได้ วิธีที่เสนอมีความเที่ยงและความ แม่นอยู่ในเกณฑ์ที่ดี

ลิขสิทธิ์มหาวิทยาลัยเชียงใหม่ Copyright © by Chiang Mai University All rights reserved

Thesis Title Determination of Vitamins in Fruits of *Morinda citrifolia* Linn.

and Phyllanthus emblica Linn. and Their Fermented Juices.

Author Mr. Chonlayut Raweewan

Degree Master of Science (Pharmaceutical Sciences)

Thesis Advisory Committee

Asst. Prof. Dr. Chaiyavat Chaiyasut Chairperson

Assoc. Prof. Dr. Boonsom Liawruangrath Member

Asst. Prof. Dr. Sunee Chansakaow Member

ABSTRACT

The reverse phase high performance liquid chromatographic (RP-HPLC) methods were described for the separation and determination of some vitamins (vitamins C, B, E and β -carotene) in *Morinda citrifolia* L. and *Phyllanthus emblica* L. fruits and their fermented juices. L-ascorbic acid (vitamin C) and vitamin B (B₁, B₂, B₃ and B₆) were isolated from the samples by means of a solid-phase extraction with C₈ AR cartridge for water-soluble vitamins. Vitamin C and vitamin B in fruits and fermented juices were separated on a Hyperclone® column C₁₈ (4.6 x 250 mm, 5µm) with UV detection at 210 nm and 280 nm, respectively using different mobile phases. The mobile phase system for analysis of vitamin C was 2% acetic acid. The calibration curves for vitamin C were linear over the ranges 5.0-800.0 and 100.0-1000.0 µg.mL⁻¹ with r² > 0.999. A detection limit (S/N = 3) and quantitation limit (S/N = 10) of 0.50 µg.mL⁻¹ and 1.50 µg.mL⁻¹, respectively were obtained. The mean percentage recoveries of the spiked vitamin C in the two kinds of fruits extract were

found to be 100.37 ± 0.51 and $99.32 \pm 0.24\%$, respectively. The proposed method has been applied to determination of vitamin C in *M. citrifolia* and *P. emblica* fruit with average contents of 0.08 and $0.21 \, \mu g.mL^{-1}$, respectively. It was also applied to vitamin C determination in fermented juices of *M. citrifolia* and *P. emblica* after the 0^{th} , 7^{th} , 15^{th} , 30^{th} , 45^{th} , 60^{th} and 90^{th} days of fermentation. It was found that the amounts of vitamin C decreased with increasing time and diminish to zero after the 90^{th} day of fermentation. Vitamin C observed in fermented juices containing *M. citrifolia* and *P. emblica* were ranges $3.26 - 457.10 \, \mu g.mL^{-1}$ and $10.14 - 824.77 \, \mu g.mL^{-1}$, respectively.

The mobile phase system for separation and determination of vitamins B was a mixture consisting of acetonitrile-5mM sodium-1-octanesulfonate (75:25, v/v) adjusted to pH 2.5 with acetic acid. The calibration curves for vitamin B₁, vitamin B₂, vitamin B₃ and vitamin B₆ were linear over the ranges 10.0- 100.0, 10.0-100.0, 10.0-100.0 and 0.50-50.0 μ g.mL⁻¹ with $r^2 > 0.999$. The detection limit of vitamin B₁, vitamin B₂, vitamin B₃ and vitamin B₆ were 0.50, 0.10, 2.00 and 0.05 µg.mL⁻¹ and limit of quantitation were 1.50, 0.50, 5.00 and 0.50 µg.mL⁻¹, respectively. The mean percentage recoveries of the spiked vitamin B₁, vitamin B₂, vitamin B₃ and vitamin B₆ in M. citrifolia fruit extracts were found to be 100.08 ± 0.27 , 100.07 ± 0.41 , $99.71 \pm$ 0.27 and 99.87 \pm 0.18%, respectively and in *P. emblica* fruit were found to be 99.75 \pm 0.17, 100.03 ± 0.64 , 100.61 ± 0.93 and $99.18 \pm 1.41\%$, respectively. The proposed method has been applied to determination of vitamin B group in M. citrifolia and P. emblica fruit. It was found that vitamin B₃ and vitamin B₆ in M. citrifolia fruit were 0.99 and 0.23 mg.g⁻¹, respectively and vitamin B₆ in P. emblica fruit was 0.07 mg.g-1. It was also applied to vitamin B group determination in fermented juices of M. citrifolia and P. emblica after the 0th, 7th, 15th, 30th, 45th, 60th and 90th days of fermentation. It was found that the amounts of vitamin B group decreased with increasing time and diminish to zero after the 60th day of fermentation. Vitamin B₁, vitamin B_2 , vitamin B_3 and vitamin B_6 observed in fermented juice containing M. citrifolia were ranges 18.55-270.52 µg.mL⁻¹, 10.39-69.22 µg.mL⁻¹, 18.62-215.74 μg.mL⁻¹ and 1.77–13.14 μg.mL⁻¹, respectively. Vitamin B₂, vitamin B₃ and vitamin B₆ in fermented juices containing P. emblica were ranges 13.76–121.45 µg.mL⁻¹, 67.34– $897.02 \,\mu g.mL^{-1}$ and $2.09 - 5.22 \,\mu g.mL^{-1}$, respectively.

The stability of fermented products were also studied. Formula with lower pH, degradation of vitamins less occurred than do the formula with higher pH. During fermentation some by-products were present (e.g. ethyl alcohol, methyl alcohol, acetaldehyde and iso-propanol). Therefore, produced organic solvents effected the stability of vitamin C, vitamin B₁, B₂, B₃ and B₆ in product. Light and oxygen may also contribute to the stability of such vitamins.

A reverse phase high performance liquid chromatographic (RP-HPLC) method was applied to the determination of α -tocopherol (vitamin E) and β -carotene in M. citrifolia and P. emblica fruits and their fermented juices. The method was based on the separation of α-tocopherol (vitamin E) and β-carotene in fruit and fermented juices on an Inersil® ODS-3 column (4.6 x 250 mm, 5µm) with UV detection at 295 and 450 nm. The mobile phase system was a mixture consisting of ethanol-methanol (35:65, v/v) by gradient elution. The calibration curves for α tocopherol (vitamin E) and β-carotene were linear over the ranges 1.0-10.0 and 1.0-10.0 μg.mL⁻¹ with $r^2 > 0.999$. The detection limit of α-tocopherol (vitamin E) and βcarotene were 0.01 µg.mL⁻¹ and 0.01 µg.mL⁻¹, respectively and limit of quantitative were 0.05 and 0.03 µg.mL⁻¹, respectively. The mean percentage recoveries of the spiked α -tocopherol (vitamin E) and β -carotene in M. citrifolia fruits extract were found to be 100.20 ± 1.58 and $100.65 \pm 0.87\%$, respectively and in P. emblica fruit were found to be 100.15 ± 1.31 and $99.75 \pm 0.62\%$, respectively. The proposed method has been applied to determination of α -tocopherol (vitamin E) and β -carotene in M. citrifolia fruit with average contents of 0.31 and 0.01 µg.mL⁻¹, respectively and in P. emblica was found 0.04 and 0.03 µg.mL⁻¹, respectively. It was also applied to α-tocopherol (vitamin E) and β-carotene determinations in fermented juices of M. citrifolia and P. emblica after the 0th, 7th, 15th, 30th, 45th, 60th and 90th days of fermentation. α-Tocopherol (vitamin E) and β-carotene in fermented juices were not found. The proposed RP-HPLC method was rapid, simple, very accurate and precise. The proposed method could be applied to the determination of multi-vitamin product from other medicinal plants.