Thesis Title Synthesis and Characterization of Metal Tellurides

and Antimonides for Using as Thermoelectric

Materials

Author Mr. Tawat Suriwong

Degree Doctor of Philosophy (Materials Science)

Thesis Advisory Committee Prof. Dr. SomchaiThongtem Advisor

Assoc. Prof. TitipunThongtemCo-Advisor

Assoc. Prof. Dr. PisithSingjai Co-Advisor

ABSTRACT

In this research, thermoelectric materials:ZnTe and Sb₂Te₃were successfully synthesized by microwave heating and microwave generating of plasma for solid-state reaction.Cubic ZnTenanocrystals were synthesized from 1:1, 1.5:1 and 1.8:1 molar ratios of Zn:Te by a 900 W microwave plasma. Their green emissions were detected at 562 nm (2.21 eV) using luminescence spectrophotometry.Sb₂Te₃ with a rhombohedral crystal system was successfully synthesized by an environmentally benign process with a short reaction time using a 900 W irradiated microwave plasma. At 2:2, 2:1.75, and 2:1.5 molar ratios of Sb:Te, with time lengths of 10 and 20 min,

the products were pure Sb_2Te_3 phase with no detection of any residues. The direct energy gaps were determined to be 0.340-0.515 eV.

In addition, Ni₃GaSb and Ni₃InSb were successfully synthesized by alloying synthesis at high temperature in closed silica ampoules.Ni₃GaSb and Ni₃InSb compounds indicated metal-like characteristics in α and ρ . The power factor $(\alpha^2 \rho^{-1})$ values increased with temperature and reached maximum at 1073 K. The thermal conductivity (κ) and dimensionless figure of merit ZT of both sampleswere increased with temperature as well. The maximum values of the ZTfor Ni₃GaSb and Ni₃InSb at 1073 Kwere achieved to be 0.022 and 0.023, respectively.

ชื่อเรื่องวิทยานิพนธ์

การสังเคราะห์และการหาลักษณะเฉพาะของโลหะเทล-ลูไลค์และแอนติโมไนค์สำหรับใช้เป็นวัสคุเทอร์โมอิ-เล็กตริก

ผู้เขียน

นายชวัช สุริวงษ์

ปริญญา

วิทยาศาสตรคุษฎีบัณฑิต (วัสคุศาสตร์)

คณะกรรมการที่ปรึกษาวิทยานิพนธ์

ส. คร. สมชาย ทองเต็มรศ. ธิติพันธุ์ ทองเต็มรศ. คร. พิศิษฐ์ สิงห์ใจ

อาจารย์ที่ปรึกษาหลัก อาจารย์ที่ปรึกษาร่วม อาจารย์ที่ปรึกษาร่วม

บทคัดย่อ

งานวิจัยนี้ เป็นการสังเคราะห์วัสคุเทอร์โมอิเล็กตริก คือ ZnTeและ $\mathrm{Sb_2Te_3}$ ด้วยวิธีพลาสมาของ รังสี ไมโครเวฟเพื่อให้เกิดปฏิกิริยาของของแข็ง ซึ่งประสบความสำเร็จในการสังเคราะห์ZnTeที่มี ขนาดผลึกในระดับนาโนเมตร ด้วยอัตราส่วนโดยโมลของ Zn:Te เท่ากับ 1:1, 1.5:1 และ 1.8:1 ที่ 900 W ไมโครเวฟ โดยสาร ZnTeนี้เรื่องแสงสีเขียวที่มีความยาวคลื่น 562 nm(2.21 eV) สำหรับการ สังเคราะห์สาร $\mathrm{Sb_2Te_3}$ มีการใช้ 900 W ไมโครเวฟ ที่อัตราส่วนโดยโมลของ $\mathrm{Sb:Te}$ เท่ากับ 2:2, 2:1.75 และ 2:1.5 และเวลาในการทำปฏิกิริยาเป็น10 และ 20 min ตามสภาวะการทดลองนี้ทำให้สังเคราะห์ สาร $\mathrm{Sb_2Te_3}$ มีความบริสุทธิ์เมื่อทำการวิเคราะห์หาช่องว่างพลังงานพบว่าอยู่ในช่วง 0.340-0.515 eV

นอกจากนี้ยังได้สังเคราะห์สารประกอบNi $_3$ GaSbและ Ni $_3$ InSbให้เกิดปฏิกิริยาในหลอดซิลิ กาที่ปิดสนิทที่อุณหภูมิสูง ผลการทดลองของสารประกอบ Ni $_3$ GaSbและ Ni $_3$ InSb พบว่ามีค่า α และ ρ ที่มีสมบัติกล้ายโลหะโดยค่า power factor และ dimensionless figure of merit มีค่าเพิ่มขึ้น เมื่ออุณหภูมิสูงขึ้น และมีค่าสูงสุดที่ 1073 Kโดยdimensionless figure of merit ของ Ni $_3$ GaSb และ Ni $_3$ InSb มีค่าเท่ากับ 0.022 และ 0.023 ตามลำดับ