Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/50991
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chakkrid Klin-Eam | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.date.accessioned | 2018-09-04T04:49:31Z | - |
dc.date.available | 2018-09-04T04:49:31Z | - |
dc.date.issued | 2010-07-15 | en_US |
dc.identifier.issn | 0362546X | en_US |
dc.identifier.other | 2-s2.0-77955421790 | en_US |
dc.identifier.other | 10.1016/j.na.2010.03.034 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77955421790&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/50991 | - |
dc.description.abstract | In this paper we propose a new modified viscosity approximation method for approximating common fixed points for a countable family of nonexpansive mappings in a Banach space. We prove strong convergence theorems for a countable family nonexpansive mappings in a reflexive Banach space with uniformly Gateaux differentiable norm under some control conditions. These results improve and extend the results of Jong Soo Jung [J.S. Jung, Convergence on composite iterative schemes for nonexpansive mappings in Banach spaces, Fixed Point Theory and Appl. 2008 (2008) 14 pp., Article ID 167535]. Further, we apply our result to the problem of finding a zero of an accretive operator and extend the results of Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 5160], Ceng, et al. [L.-C. Ceng, A.R. Khan, Q.H. Ansari, J.-C, Yao, Strong convergence of composite iterative schemes for zeros of m-accretive operators in Banach space, Nonlinear Anal. 70 (2009)1830-1840] and Chen and Zhu [R. Chen, Z. Zhu, Viscosity approximation methods for accretive operator in Banach space, Nonlinear Anal. 69 (2008) 1356-1363]. © 2010 Elsevier Ltd. All rights reserved. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Strong convergence of composite iterative schemes for a countable family of nonexpansive mappings in Banach spaces | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Nonlinear Analysis, Theory, Methods and Applications | en_US |
article.volume | 73 | en_US |
article.stream.affiliations | Naresuan University | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.