Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/51810
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wannasiri Wannasit | en_US |
dc.contributor.author | Saad El-Zanati | en_US |
dc.date.accessioned | 2018-09-04T06:09:31Z | - |
dc.date.available | 2018-09-04T06:09:31Z | - |
dc.date.issued | 2012-01-28 | en_US |
dc.identifier.issn | 0012365X | en_US |
dc.identifier.other | 2-s2.0-80955172797 | en_US |
dc.identifier.other | 10.1016/j.disc.2011.09.017 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=80955172797&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/51810 | - |
dc.description.abstract | It is known that a ρ-tripartite labeling of a tripartite graph G with n edges can be used to obtain a cyclic G-decomposition of K2nt+1for every positive integer t. We show that if G is an odd prism, an even Möbius ladder or a connected cubic tripartite graph of order at most 10, then G admits a ρ-tripartite labeling. We conjecture that every connected tripartite cubic graph admits a ρ-tripartite labeling. © 2011 Elsevier B.V. All rights reserved. | en_US |
dc.subject | Mathematics | en_US |
dc.title | On cyclic G-designs where G is a cubic tripartite graph | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Discrete Mathematics | en_US |
article.volume | 312 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
article.stream.affiliations | Illinois State University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.