Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/55985
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Suwicha Imnang | en_US |
dc.contributor.author | Theeradet Kaewong | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.date.accessioned | 2018-09-05T03:07:04Z | - |
dc.date.available | 2018-09-05T03:07:04Z | - |
dc.date.issued | 2016-01-01 | en_US |
dc.identifier.issn | 13143395 | en_US |
dc.identifier.issn | 13118080 | en_US |
dc.identifier.other | 2-s2.0-84994714136 | en_US |
dc.identifier.other | 10.12732/ijpam.v110i1.18 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84994714136&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/55985 | - |
dc.description.abstract | © 2016 Academic Publications, Ltd. In this paper, we introduce an iterative method to approximate a common solution of a new general system of variational inequalities, a mixed equilibrium problem and a fixed point problem for a nonexpansive mapping in real Hilbert spaces. We prove that the iterative sequence converges strongly to a common solution of the three problems in the framework of Hilbert spaces. Our main results extend and improve some results in the literature. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Iterative algorithm for solving the new system of generalized variational inequalities in Hilbert spaces | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | International Journal of Pure and Applied Mathematics | en_US |
article.volume | 110 | en_US |
article.stream.affiliations | Thaksin University | en_US |
article.stream.affiliations | South Carolina Commission on Higher Education | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.