Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/57288
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYu Jia Zhaien_US
dc.contributor.authorDing Li Yuen_US
dc.contributor.authorKe Jun Qianen_US
dc.contributor.authorSanghyuk Leeen_US
dc.contributor.authorNipon Theera-Umponen_US
dc.date.accessioned2018-09-05T03:37:49Z-
dc.date.available2018-09-05T03:37:49Z-
dc.date.issued2017-01-01en_US
dc.identifier.issn19961073en_US
dc.identifier.other2-s2.0-85022027280en_US
dc.identifier.other10.3390/en10010131en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85022027280&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/57288-
dc.description.abstract© 2017 by the authors. The air/fuel ratio (AFR) regulation for spark-ignition (SI) engines has been an essential and challenging control problem for engineers in the automotive industry. The feed-forward and feedback scheme has been investigated in both academic research and industrial application. The aging effect can often cause an AFR sensor fault in the feedback loop, and the AFR control performance will degrade consequently. In this research, a new control scheme on AFR with fault-tolerance is proposed by using an artificial neural network model based on fault detection and compensation, which can provide the satisfactory AFR regulation performance at the stoichiometric value for the combustion process, given a certain level of misreading of the AFR sensor.en_US
dc.subjectEnergyen_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleA soft sensor-based fault-tolerant control on the air fuel ratio of spark-ignition enginesen_US
dc.typeJournalen_US
article.title.sourcetitleEnergiesen_US
article.volume10en_US
article.stream.affiliationsXi'an Jiaotong-Liverpool Universityen_US
article.stream.affiliationsLiverpool John Moores Universityen_US
article.stream.affiliationsSuzhou Power Supply Companyen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.