Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/59737
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Suwicha Imnang | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.date.accessioned | 2018-09-10T03:20:41Z | - |
dc.date.available | 2018-09-10T03:20:41Z | - |
dc.date.issued | 2009-08-13 | en_US |
dc.identifier.issn | 16870425 | en_US |
dc.identifier.issn | 01611712 | en_US |
dc.identifier.other | 2-s2.0-68349083653 | en_US |
dc.identifier.other | 10.1155/2009/391839 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=68349083653&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/59737 | - |
dc.description.abstract | Let X be a real uniformly convex Banach space and C a closed convex nonempty subset of X. Let {Ti}i=1rbe a finite family of nonexpansive self-mappings of C. For a given x1∈ C, let {xn} and {xn(i)}, i = 1,2,.., r, be sequences defined xn(0)= xn, xn(i)= an1(1)T1xn(0)+ (1 - an1(1)xn(0), xn(2)= an2(2)T2xn(1)+ an1(2)T1xn+ (1 - an2(2)- an1(2))xn,..;, xn+1= xn(r)- anr(r)Trxn(r-1) + an(r-1)(r)Tr-1xn(r-2)+..; + an1(r)T1xn+ (1 - an(r)(r)- an(r-1)(r)-..; - an1(r)xn, n ≥ 1, where ani(j)∈ (0, 1) for all j ∈ {1, 2,..,r}, n ∈ N and i = 1, 2,..;, j. In this paper, weak and strong convergence theorems of the sequence {xn} to a common fixed point of a finite family of nonexpansive mappings Ti(i = 1, 2,..;, r) are established under some certain control conditions. | en_US |
dc.subject | Mathematics | en_US |
dc.title | A new iterative method for common fixed points of a finite family of nonexpansive mappings | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | International Journal of Mathematics and Mathematical Sciences | en_US |
article.volume | 2009 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.