Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/62294
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | B. Fisher | en_US |
dc.contributor.author | A. Kananthai | en_US |
dc.contributor.author | G. Sritanatana | en_US |
dc.contributor.author | K. Nonlaopon | en_US |
dc.date.accessioned | 2018-09-11T09:25:16Z | - |
dc.date.available | 2018-09-11T09:25:16Z | - |
dc.date.issued | 2005-01-01 | en_US |
dc.identifier.issn | 10652469 | en_US |
dc.identifier.other | 2-s2.0-22944444656 | en_US |
dc.identifier.other | 10.1080/10652460412331270661 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=22944444656&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/62294 | - |
dc.description.abstract | Let F be a distribution and f be a locally summable function. The distribution F(f) is defined as the neutrix limit of the sequence {Fn(f)}, where Fn(x) = F(X) δn{ δn(x) and {δn(x)} is a certain sequence of infinitely differentiable functions converging to the Dirac delta-function δ(x). The distribution x-sIn X- is denoted by Fs(x) and then Fms(x+rp/m) is evaluated for r,s= 1,2,..., and m = 2,3,..., where 1 ≤ p < m and p and m are coprime. © 2005 Taylor & Francis Ltd. | en_US |
dc.subject | Mathematics | en_US |
dc.title | The composition of the distributions x- -ms ln x - and x+ r-p/m | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Integral Transforms and Special Functions | en_US |
article.volume | 16 | en_US |
article.stream.affiliations | University of Leicester | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.