Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/62294
Full metadata record
DC FieldValueLanguage
dc.contributor.authorB. Fisheren_US
dc.contributor.authorA. Kananthaien_US
dc.contributor.authorG. Sritanatanaen_US
dc.contributor.authorK. Nonlaoponen_US
dc.date.accessioned2018-09-11T09:25:16Z-
dc.date.available2018-09-11T09:25:16Z-
dc.date.issued2005-01-01en_US
dc.identifier.issn10652469en_US
dc.identifier.other2-s2.0-22944444656en_US
dc.identifier.other10.1080/10652460412331270661en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=22944444656&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/62294-
dc.description.abstractLet F be a distribution and f be a locally summable function. The distribution F(f) is defined as the neutrix limit of the sequence {Fn(f)}, where Fn(x) = F(X) δn{ δn(x) and {δn(x)} is a certain sequence of infinitely differentiable functions converging to the Dirac delta-function δ(x). The distribution x-sIn X- is denoted by Fs(x) and then Fms(x+rp/m) is evaluated for r,s= 1,2,..., and m = 2,3,..., where 1 ≤ p < m and p and m are coprime. © 2005 Taylor & Francis Ltd.en_US
dc.subjectMathematicsen_US
dc.titleThe composition of the distributions x- -ms ln x - and x+ r-p/men_US
dc.typeJournalen_US
article.title.sourcetitleIntegral Transforms and Special Functionsen_US
article.volume16en_US
article.stream.affiliationsUniversity of Leicesteren_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.