Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/67756
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIttided Poonkasemen_US
dc.contributor.authorNipon Theera-Umponen_US
dc.contributor.authorSansanee Auephanwiriyakulen_US
dc.contributor.authorDirek Patikulsilaen_US
dc.date.accessioned2020-04-02T15:02:51Z-
dc.date.available2020-04-02T15:02:51Z-
dc.date.issued2019-01-01en_US
dc.identifier.other2-s2.0-85074277142en_US
dc.identifier.other10.1109/ICGHIT.2019.00025en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074277142&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/67756-
dc.description.abstract© 2019 IEEE. The patients with diabetes have a chance to have blindness. An impairment of metabolism can cause a high glucose level in blood vessel leading to an abnormality called hard exudates. Hard exudates are often arranged in clumps or circinate rings and located in the outer layer of the retina. The aim of this research is to detect hard exudates by applying image processing techniques and classify them by using convolutional neuron network (CNN). DIARETDB1 dataset is used in the experiments. The proposed method achieves the area under the curve (AUC) of 0.97 and 0.95 on the training and validation sets, respectively, of 10-fold cross validation experiment. These show that the combination of image processing techniques, three channels of fundus images, and CNN can perform as a promising classification tool in hard exudates detection system.en_US
dc.subjectComputer Scienceen_US
dc.subjectDecision Sciencesen_US
dc.subjectEnergyen_US
dc.subjectPhysics and Astronomyen_US
dc.titleDetection of hard exudates in fundus images using convolutional neural networksen_US
dc.typeConference Proceedingen_US
article.title.sourcetitleProceedings - 2019 7th International Conference on Green and Human Information Technology, ICGHIT 2019en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.