Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/70695
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWorapong Fupinwongen_US
dc.date.accessioned2020-10-14T08:39:31Z-
dc.date.available2020-10-14T08:39:31Z-
dc.date.issued2020-09-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85092056435en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85092056435&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/70695-
dc.description.abstract© 2020 by TJM. All rights reserved. A Banach space X is said to have the fixed point property if for each nonexpansive mapping T: E → E on a bounded closed convex subset E of X has a fixed point. Let X be an infinite dimensional unital Abelian real Banach algebra with Ω(X) ≠ ∅ satisfying: (i) if x, y ∈ X is such that |τ(x)| ≤ |τ(y)|, for each τ ∈Ω(X), then ‖x‖ ≤ ‖y‖, (ii) inf{rX (x): x ∈ X, ‖x‖ = 1} > 0. We prove that, for each element x0 in X with infinite spectrum, the Banach algebra [formula presented] generated by x0 does not have the fixed point property.en_US
dc.subjectMathematicsen_US
dc.titleFixed point property of real unital abelian banach algebras and their closed subalgebras generated by an element with infinite spectrumen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume18en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.