Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/70727
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanadon Chaobankohen_US
dc.date.accessioned2020-10-14T08:40:05Z-
dc.date.available2020-10-14T08:40:05Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn21804206en_US
dc.identifier.issn01266705en_US
dc.identifier.other2-s2.0-85086710874en_US
dc.identifier.other10.1007/s40840-020-00963-2en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85086710874&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/70727-
dc.description.abstract© 2020, Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia. Let (X, d) be a compact metric space. Then, the normed algebra of pointwise Lipschitz functions on X is denoted by Lip pw(X, d). We study and characterize the completeness of these algebras and obtain a necessary and sufficient condition for such an algebra to be complete. We then investigate the endomorphisms of Lip pw(X, d) by considering their associated self-maps. A necessary and sufficient condition is given for these operators to be compact. Moreover, we discuss relations between Lip pw(X, d) and other normed function algebras.en_US
dc.subjectMathematicsen_US
dc.titleEndomorphisms of Pointwise Lipschitz Algebrasen_US
dc.typeJournalen_US
article.title.sourcetitleBulletin of the Malaysian Mathematical Sciences Societyen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.